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• Last year we were trying to prove a statement in Online Learning

• We found a proof which is based on the Minimax Theorem

• Consequently, our proof did not apply in the general case

• not uncommon in ML theory: usually “swept under the rug”

Background
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• It sometimes makes sense to lose generality in order to simplify 
presentation and focus on key (and novel) ideas

• However, the result we’ll discuss was discovered while attempting to 
generalize the result beyond what was ”needed”

• Curiously, it seems this side-result turned out to be more popular 
than the main result (even among ML people)

Background



The Minimax Theorem

John Von-Neumann: “As far as I can see, there could be 
no theory of games… without that theorem… I thought 
there was nothing worth publishing until the Minimax 
Theorem was proved”



Definitions.  
• Two players: Minnie and Max

• 𝑆 – Minnie’s Pure Strategies

• 𝑇 – Max’s Pure Strategies

• 𝑀: 𝑆×𝑇 → {0,1} – The Payoff Matrix
• 𝑀 𝑠, 𝑡 = 1 → Max wins
• 𝑀 𝑠, 𝑡 = 0 → Minnie wins

The Minimax Theorem



Definitions.  
• Two players: Minnie and Max

• 𝑆 – Minnie’s Pure Strategies

• 𝑇 – Max’s Pure Strategies

• 𝑀: 𝑆×𝑇 → {0,1} – The Payoff Matrix
• 𝑀 𝑠, 𝑡 = 1 → Max wins
• 𝑀 𝑠, 𝑡 = 0 → Minnie wins

Minnie and Max may use randomized (aka mixed) strategies:

• 𝑝 – a distribution over 𝑆

• 𝑞 – a distribution over 𝑇

• 𝑀 𝑝, 𝑞 := 𝐄
!∼#,%∼&

𝑀 𝑠, 𝑡 = the prob that Max wins/Minnie loses

The Minimax Theorem



Theorem. [von Neumann 1928]  
If 𝑆 and 𝑇 are finite then 

min
!
max
"

𝑀 𝑝, 𝑞 = max
"

min
!
𝑀 𝑝, 𝑞

The Minimax Theorem

• min
#
max
&

𝑀 𝑝, 𝑞 :

First Minnie picks 𝑝 and then Max picks 𝑞 = 𝑞(𝑝) – Max has advantage

• max
&

min
#
𝑀 𝑝, 𝑞

First Max picks 𝑞 and then Minnie picks 𝑝 = 𝑝(𝑞) – Minnie has advantage
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The Minimax Theorem

Minimax: it doesn’t matter who plays first!
If ∀ strategy of oponnent ∃ a response that wins it w.p ≥ 𝑣
Then ∃ univeral strategy that wins ∀ oponnent’s strategy w.p ≥ 𝑣
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Theorem. [von Neumann 1928]  
If 𝑆 and 𝑇 are finite then 

min
!
max
"

𝑀 𝑝, 𝑞 = max
"

min
!
𝑀 𝑝, 𝑞

The Minimax Theorem

Definition. [Game Value] 
Let 𝑀 be a game which satisfies the Minimax Theorem. Define:

val 𝑀 := min
#
max
&

𝑀 𝑝, 𝑞 = max
&

min
#
𝑀 𝑝, 𝑞
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Minimax for Infinite Games?
Question. Does The Minimax Theorem Apply to Infinite Games?

• If only one of 𝑆, 𝑇 is infinite then yes

• Other extensions assume geometric/topological structure and 
replace finiteness by compactness

There are simple infinite games for which the Minimax fails to hold. 



Minimax for Infinite Games?

We will now see such a game popularized by Ephraim Kishon
that does not satisfy minimax

Ephraim 
Kishon 

1924-2005



For quite a while the two of us sat at our table, wordlessly stirring 
our coffee. Ervinke was bored.
”All right”, he said.
”Let's play poker”.

Kishon’s Jewish Poker



For quite a while the two of us sat at our table, wordlessly stirring 
our coffee. Ervinke was bored.
”All right”, he said.
”Let's play poker”.

Kishon’s Jewish Poker

“No”, I answered.
”I hate cards. I always lose.”
“Who's talking about cards? ” thus Ervinke.
“I was thinking of Jewish poker.”
He then briefly explained the rules of the game.
“Jewish poker is played without cards, in your head,
as befits the People of the Book.”



“You think of a number, I also think of a number”, Ervinke said.
“Whoever thinks of a higher number wins. 
This sounds easy, but it has a hundred pitfalls. Nu!”
“All right”, I agreed.
“Let's try.”
We plunked down five piasters each, and, leaning back in our chairs 
began to think of numbers. After a while Ervinke signaled that he 
had one. I said I was ready.

Kishon’s Jewish Poker



“All right”, thus Ervinke.
“Let's hear your number”.
“Eleven”, I said.
“Twelve”, Ervinke said, and took the money.
I could have' kicked myself, because originally I had thought of 
Fourteen, and only at the last moment had I climbed down to 
Eleven, I really don't know why.

Kishon’s Jewish Poker



“All right”, thus Ervinke.
“Let's hear your number”.
“Eleven”, I said.
“Twelve”, Ervinke said, and took the money.
I could have' kicked myself, because originally I had thought of 
Fourteen, and only at the last moment had I climbed down to 
Eleven, I really don't know why.

“Listen”. I turned to Ervinke.
“What would have happened had I said Fourteen?”
“What a question! I'd have lost. Now, that is just the charm of poker: 
you never know how things will turn out. But if your nerves cannot 
stand a little gambling, perhaps we had better call it off.”

Kishon’s Jewish Poker



Without saying another word, I put down ten piasters on the table. 
Ervinke did likewise. I pondered my number carefully and opened 
with Eighteen.
“Damn!” Ervinke said.
“I have only Seventeen!”
I swept the money into my pocket and quietly guffawed. 

Kishon’s Jewish Poker



Without saying another word, I put down ten piasters on the table. 
Ervinke did likewise. I pondered my number carefully and opened 
with Eighteen.
“Damn!” Ervinke said.
“I have only Seventeen!”
I swept the money into my pocket and quietly guffawed. 

Ervinke had certainly not dreamed that I would master the tricks of 
Jewish poker so quickly. He had probably counted on my opening 
with Fifteen or Sixteen, but certainly not with Eighteen. Ervinke, his 
brow in angry furrows, proposed to double the stakes.
As you like, I sneered, and could hardly keep back my jubilant 
laughter. In the meantime a fantastic number had occurred to me: 
Thirty-five!

Kishon’s Jewish Poker



Lead! said Ervinke.
“Thirty-five!|
“Forty-three!”
With that he pocketed the forty piasters. 
I could feel the blood rushing into my brain…. 

Kishon’s Jewish Poker



Kishon’s Jewish Poker

Let’s present this game in the language of game theory:

• 𝑆 = 𝑇 = ℕ

• 𝑀(𝑠, 𝑡)=@1 𝑠 < 𝑡
0 𝑡 < 𝑠



Kishon’s Jewish Poker

Let’s present this game in the language of game theory:

• 𝑆 = 𝑇 = ℕ

• 𝑀(𝑠, 𝑡)=@1 𝑠 < 𝑡
0 𝑡 < 𝑠

• Payoff Matrix is infinite triangular

• * = can be defined arbitrarily

*  1  1  1  1  1  1 
0  *  1  1  1  1  1 
0  0  *  1  1  1  1  
0  0  0  *  1  1  1
0  0  0  0  *  1  1
0  0  0  0  0  *  1
0  0  0  0  0  0  *

0

1
2

0 1 2

⋮

⋯



Jewish Poker Does Not 
Satisfy Minimax

Let’s present this game in the language of game theory:

• 𝑆 = 𝑇 = ℕ

• 𝑀(𝑠, 𝑡)=@1 𝑠 < 𝑡
0 𝑡 < 𝑠

Observation. Jewish Poker does not satisfy the Minimax theorem:

inf
#
sup
&
𝑀 𝑝, 𝑞 = 1 ≠ 0 = sup

&
inf
#
𝑀 𝑝, 𝑞



Main Result: Jewish Poker is 
The Only Obstacle for Minimax

Theorem. [Hanneke-Livni-M 2021]  
Let 𝑀 be a (possibly infinite) game. Then, if the payoff matrix 
does not contain arbitrarily large triangular submatrices then

inf
!
sup
"
𝑀 𝑝, 𝑞 = sup

"
inf
!
𝑀 𝑝, 𝑞



Main Result: Jewish Poker is 
The Only Obstacle for Minimax

• “Contains a submatrix” = up to a permutation of rows and columns

• Contra-positively: if the Minimax Theorem fails to hold then there exist 
arbitrarily large sub-games of jewish poker

Theorem. [Hanneke-Livni-M 2021]  
Let 𝑀 be a (possibly infinite) game. Then, if the payoff matrix 
does not contain arbitrarily large triangular submatrices then

inf
!
sup
"
𝑀 𝑝, 𝑞 = sup

"
inf
!
𝑀 𝑝, 𝑞



Open Questions
Conjecture. 
Let 𝑀 be a (possibly infinite) game. Then, if the payoff matrix does not 
contain an infinite triangular submatrix then

inf
!
sup
"
𝑀 𝑝, 𝑞 = sup

"
inf
!
𝑀 𝑝, 𝑞



Open Questions

• Contra-positively: if the Minimax Theorem fails to hold then there jewish poker 
is a subgame of 𝑀

Conjecture. 
Let 𝑀 be a (possibly infinite) game. Then, if the payoff matrix does not 
contain an infinite triangular submatrix then

inf
!
sup
"
𝑀 𝑝, 𝑞 = sup

"
inf
!
𝑀 𝑝, 𝑞



Open Questions

• Is there a sense in which finite games with no large triangular submatrices 
satisfy a more “efficient” version of the Minimax? 

• Perhaps Computationally?

Question. 
Is there a “finite manifestation” of this theorem?



Proof Sketch
Theorem. [Hanneke-Livni-M 2021]  
Let 𝑀 be a (possibly infinite) game. Then, if the payoff matrix does not 
contain arbitrarily large triangular submatrices then

inf
!
sup
"
𝑀 𝑝, 𝑞 = su𝑝

"
inf
!
𝑀 𝑝, 𝑞



Proof Sketch

Proof.
Assume towards contradiction that there is a game 𝑀 s.t.
1. 𝑀 does not satisfy the Minimax, and 
2. the largest triangular submatrix of 𝑀 has bounded size.

We will reach a contradiction to Item 2 by showing that 𝑀 contains 
an infinite triangular submatrix.

Theorem. [Hanneke-Livni-M 2021]  
Let 𝑀 be a (possibly infinite) game. Then, if the payoff matrix does not 
contain arbitrarily large triangular submatrices then

inf
!
sup
"
𝑀 𝑝, 𝑞 = su𝑝

"
inf
!
𝑀 𝑝, 𝑞



Proof Sketch
Proof. (Continued)
We will reach a contradiction to Item 2 by showing that 𝑀 contains 
an infinite triangular submatrix.

This is achieved using two lemmas:



Proof Sketch
Proof. (Continued)
We will reach a contradiction to Item 2 by showing that 𝑀 contains 
an infinite triangular submatrix.

This is achieved using two lemmas:

Lemma 1.
There exist sequences of sets of strategies 
𝑆#, 𝑆$, … ⊆ 𝑆 and 𝑇#, 𝑇$, … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆% , 𝑇% ≤ 𝑑 for some finite 𝑑.

• val 𝑆%, 𝑇& = :
< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch
Proof. (Continued)
We will reach a contradiction to Item 2 by showing that 𝑀 contains 
an infinite triangular submatrix.

This is achieved using two lemmas:

• Proof uses Uniform Law of Large Numbers (Vapnik-Chervonenkis ‘69)

Lemma 1.
There exist sequences of sets of strategies 
𝑆#, 𝑆$, … ⊆ 𝑆 and 𝑇#, 𝑇$, … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆% , 𝑇% ≤ 𝑑 for some finite 𝑑.

• val 𝑆%, 𝑇& = :
< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch

Lemma 2.
Let 𝑆#, 𝑆$, … and 𝑇#, 𝑇$, … as in Lemma 1. 
Then, there is a way to choose 𝑠% ∈ 𝑆% and 𝑡& ∈ 𝑇& and a 
subsequence 𝑘#, 𝑘$, … such that the matrix

𝑀 𝑠'! , 𝑡'" ∈ {0,1}ℕ×ℕ

is infinite upper-triangular. \\like jewish poker

Lemma 1.
There exist sequences of sets of strategies 
𝑆', 𝑆(, … ⊆ 𝑆 and 𝑇', 𝑇(, … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆) , 𝑇) ≤ 𝑑 for some finite 𝑑.

• val 𝑆), 𝑇* = @
< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch

• Proof uses Ramsey Theorem (Ramsey ‘28) \\same year like Minimax

Lemma 2.
Let 𝑆#, 𝑆$, … and 𝑇#, 𝑇$, … as in Lemma 1. 
Then, there is a way to choose 𝑠% ∈ 𝑆% and 𝑡& ∈ 𝑇& and a 
subsequence 𝑘#, 𝑘$, … such that the matrix

𝑀 𝑠'! , 𝑡'" ∈ {0,1}ℕ×ℕ

is infinite upper-triangular. \\like jewish poker

Lemma 1.
There exist sequences of sets of strategies 
𝑆', 𝑆(, … ⊆ 𝑆 and 𝑇', 𝑇(, … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆) , 𝑇) ≤ 𝑑 for some finite 𝑑.

• val 𝑆), 𝑇* = @
< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch
Lemma 1.
There exist sequences of sets of strategies 
𝑆!, 𝑆", … ⊆ 𝑆 and 𝑇!, 𝑇", … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆# , 𝑇# ≤ 𝑑 for some finite 𝑑.

• val 𝑆# , 𝑇$ = 6< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).

Proof. 
By assumption: 

inf
#
sup
&
𝑀 𝑝, 𝑞 = 𝛽 > 𝛼 = sup

&
inf
#
𝑀 𝑝, 𝑞

Set 𝑟 = +,-
(

We prove the claim by induction. 



Proof Sketch

Proof. Given 𝑆', 𝑆(, … , 𝑆. and 𝑇', 𝑇(, … , 𝑇.. Derive 𝑆.,' as follows:

Lemma 1.
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𝑆!, 𝑆", … ⊆ 𝑆 and 𝑇!, 𝑇", … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆# , 𝑇# ≤ 𝑑 for some finite 𝑑.

• val 𝑆# , 𝑇$ = 6< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch
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• Consider the game where Max’s pure strategies are restricted to ∪)/'. 𝑇)
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> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).
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Proof. Given 𝑆', 𝑆(, … , 𝑆. and 𝑇', 𝑇(, … , 𝑇.. Derive 𝑆.,' as follows:
• Consider the game where Max’s pure strategies are restricted to ∪)/'. 𝑇)
• This game satisfies Minimax and has value

Val S,∪)/'. 𝑇) ≤ 𝛼
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Proof. Given 𝑆', 𝑆(, … , 𝑆. and 𝑇', 𝑇(, … , 𝑇.. Derive 𝑆.,' as follows:
• Consider the game where Max’s pure strategies are restricted to ∪)/'. 𝑇)
• This game satisfies Minimax and has value

Val S,∪)/'. 𝑇) ≤ 𝛼

• Hence ∃𝑝 such that ∀𝑏 ∈∪)/'. 𝑇): 𝑀 𝑝, 𝑏 ≤ 𝛼

Lemma 1.
There exist sequences of sets of strategies 
𝑆!, 𝑆", … ⊆ 𝑆 and 𝑇!, 𝑇", … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆# , 𝑇# ≤ 𝑑 for some finite 𝑑.

• val 𝑆# , 𝑇$ = 6< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch

Proof. Given 𝑆', 𝑆(, … , 𝑆. and 𝑇', 𝑇(, … , 𝑇.. Derive 𝑆.,' as follows:
• Consider the game where Max’s pure strategies are restricted to ∪)/'. 𝑇)
• This game satisfies Minimax and has value

Val S,∪)/'. 𝑇) ≤ 𝛼

• Hence ∃𝑝 such that ∀𝑏 ∈∪)/'. 𝑇): 𝑀 𝑝, 𝑏 ≤ 𝛼

𝑆@A# is derived by sampling strategies from 𝑝

Lemma 1.
There exist sequences of sets of strategies 
𝑆!, 𝑆", … ⊆ 𝑆 and 𝑇!, 𝑇", … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆# , 𝑇# ≤ 𝑑 for some finite 𝑑.

• val 𝑆# , 𝑇$ = 6< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch

𝑆@A# is derived by sampling 𝑑 = 𝑂 BC(D)
EFG # strategies from 𝑝

• Bound on number of samples follows from Vapnik-Chervonenkis Theory
• Payoff matrix has bounded VC dimension

Lemma 1.
There exist sequences of sets of strategies 
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> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch

• Bound on number of samples follows from Vapnik-Chervonenkis Theory
• Payoff matrix has bounded VC dimension
• In fact it even has a bounded threshold dimension

𝑆@A# is derived by sampling 𝑑 = 𝑂 BC(D)
EFG # strategies from 𝑝

Lemma 1.
There exist sequences of sets of strategies 
𝑆!, 𝑆", … ⊆ 𝑆 and 𝑇!, 𝑇", … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆# , 𝑇# ≤ 𝑑 for some finite 𝑑.

• val 𝑆# , 𝑇$ = 6< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch

• Bound on number of samples follows from Vapnik-Chervonenkis Theory
• Payoff matrix has bounded VC dimension
• In fact it even has a bounded threshold dimension

𝑇.,' is derived by the same argument ∎

𝑆@A# is derived by sampling 𝑑 = 𝑂 BC(D)
EFG # strategies from 𝑝

Lemma 1.
There exist sequences of sets of strategies 
𝑆!, 𝑆", … ⊆ 𝑆 and 𝑇!, 𝑇", … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆# , 𝑇# ≤ 𝑑 for some finite 𝑑.

• val 𝑆# , 𝑇$ = 6< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch

Lemma 2.
Let 𝑆#, 𝑆$, … and 𝑇#, 𝑇$, … as in Lemma 1. 
Then, there is a way to choose 𝑠% ∈ 𝑆% and 𝑡& ∈ 𝑇& and a 
subsequence 𝑘#, 𝑘$, … such that the matrix

𝑀 𝑠'! , 𝑡'" ∈ {0,1}ℕ×ℕ

is infinite upper-triangular. \\like jewish poker

Lemma 1.
There exist sequences of sets of strategies 
𝑆', 𝑆(, … ⊆ 𝑆 and 𝑇', 𝑇(, … ⊆ 𝑇 s.t.:
• For all 𝑖, 𝑆) , 𝑇) ≤ 𝑑 for some finite 𝑑.

• val 𝑆), 𝑇* = @< 𝑟 𝑖 < 𝑗,
> 𝑟 𝑖 > 𝑗, for some 𝑟 ∈ (0,1).



Proof Sketch
Lemma 2.
Let 𝑆!, 𝑆", … and 𝑇!, 𝑇", … as in Lemma 1. 
Then, there is a way to choose 𝑠# ∈ 𝑆# and 𝑡$ ∈ 𝑇$ and a subsequence 𝑘!, 𝑘", … such 
that the matrix

𝑀 𝑠%! , 𝑡%" ∈ {0,1}ℕ×ℕ

is infinite upper-triangular. \\like jewish poker

Proof.
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