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November 24, 2025

Dear friends,

I am honored and humbled to write to you in my new role as the third director of the Simons Institute. I know I am 
stepping into some giant shoes, and I will do my best to ensure that the Institute continues to thrive and serve 
as the hugely influential and beloved global hub for the theory of computing. As one of my first communications 
as director, I’m delighted to share with you the inaugural issue of Polynomial Times, the annual magazine of the 
Simons Institute for the Theory of Computing. Released each year in the fall, the magazine will showcase some key 
results and connections emerging from our recent programs, review new initiatives and special convenings, and 
explore what’s on the horizon for the Institute in the near future.

In 2024–25, we held standard research programs on Sublinear Algorithms (Summer 2024) and Modern Paradigms 
in Generalization (Fall 2024); a summer cluster on AI, Psychology, and Neuroscience (Summer 2024); an extended 
reunion for the program on Theoretical Foundations of Computer Systems (Summer 2024); and a Special Year on 
Large Language Models and Transformers (Fall 2024 and Spring 2025). We also held a number of special workshops 
not associated with programs, including a workshop on Theoretical Aspects of Trustworthy AI, and a joint workshop 
with SLMath on AI for Mathematics and Theoretical Computer Science. We hosted ongoing research pods on 
Machine Learning, Quantum Computing, and Resilience in Brain, Natural, and Algorithmic Systems, and presented 
two public lecture series, Theoretically Speaking and the Richard M. Karp Distinguished Lectures. We opened our 
doors to 268 long-term participants in our research programs and clusters this past year.

We continue to train the largest cohort of postdoctoral-level researchers in theoretical computer science worldwide, 
comprising multiyear postdoctoral positions in our research pods and semester-long research fellowships within 
each research program. Many of this past year’s research fellows have gone on to tenure-track positions at 
prestigious institutions, including Cornell, Johns Hopkins, Yale, UMass, UW–Madison, UC Berkeley, UT Austin, NYU, 
Princeton, UC San Diego, Tel Aviv University, and Monash University.

We announced calls for two named workshop series this past year: Breakthroughs Workshops and Goldwasser 
Exploratory Workshops, the first of which will be held in 2025–26. From time to time, the steady progress of research 
is interrupted by a massive leap forward, due to a particular breakthrough result. When such breakthroughs happen, 
they enable a cascade of progress as researchers examine their implications for a wide range of problems and 
applications. The Simons Institute’s Breakthroughs Workshops celebrate breakthrough results and provide a forum 
for the integration and extrapolation to follow. Meanwhile, the Goldwasser Exploratory Workshops honor Simons 
Institute Director Emerita Shafi Goldwasser, whose ventures into uncharted territory have led to field-transforming 
discoveries, including zero-knowledge proofs, for which she and Silvio Micali received the Turing Award. In this spirit, 
each Goldwasser Exploratory Workshop will stake out new territory, explore new interdisciplinary alliances, or advance 
unexpected approaches to long-standing problems. 

We launched another initiative during 2024–25: Circles, the Simons Institute – Jane Street Small Group Collaborations. 
Supported by a gift from Jane Street, this initiative supports groups of three to six researchers for four weeklong visits 
(two visits to Jane Street in New York and two to the Simons Institute) spread over two years, to collaborate intensively 
on an ambitious research project. The inaugural accepted projects — one on Building Bridges: Codes, TCS, and 
Geometric Group Theory, and another on Approaches to the Metamathematical Difficulty of Complexity Lower Bounds 
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— will bring together collaborative groups where some members have worked together at the Simons Institute during 
our past research programs.

In May 2025, we upgraded the audiovisual system in our main auditorium. Under the new setup, presenters can now 
independently initiate Zoom webinars, without staff assistance. New audience-facing cameras enrich the experience 
for remote presenters and our worldwide online audience. And the new equipment offers improved audio quality in our 
livestreams and video recordings.

In the current (2025–26) academic year, we’ve already run a summer research program, Cryptography 10 Years Later: 
Obfuscation, Proof Systems, and Secure Computation; as well as a Summer Cluster on Quantum Computing. Also on 
the docket this year: Algorithmic Foundations for Emerging Computing Technologies (Fall 2025), Complexity and Linear 
Algebra (Fall 2025), and Federated and Collaborative Learning (Spring 2026). We are excited to have been selected as 
an inaugural member of the Google DeepMind x Google.org AI for Math Initiative, and look forward to engaging our 
research community in building out our participation in the consortium.

The Simons Institute is fundamentally community driven, with its programmatic agenda shaped by our brilliant 
and collaborative research community. All of us in the Institute’s leadership are tremendously grateful to all the 
researchers, funders, and broader community who give the Institute its vitality. As director, I look forward to 
collaborating with all of you to sustain and deepen the Institute’s hallmark atmosphere of immersion and intensity, 
which time and again has fueled stunning advances only possible through a sustained cross-fertilization of ideas 
among researchers with complementary expertise.

We’ve dedicated this inaugural issue to our founding benefactor, Jim Simons, who passed away in 2024. Jim and 
Marilyn Simons’ broad vision and commitment to basic science inspired them to make philanthropic investments 
that have transformed the face of our field. We are deeply grateful to them and to the Simons Foundation, for 
without their support, the work described in these pages might never have been done.

I hope you enjoy the first issue of Polynomial Times, including the research vignettes we share with you here. I look 
forward to seeing you in Berkeley soon.

Yours,

Venkatesan Guruswami 
Director
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I n May 2023, an account on Twitter posted an 
image of an explosion near the Pentagon. The 
image was shared widely on social media. Stock 

markets dipped briefly but recovered when authorities 
— including the Arlington County Fire Department in 
Virginia — confirmed that there had been no such 
explosion. Hany Farid, a professor of computer science 
at UC Berkeley and an expert in digital forensics, 
misinformation, and image analysis, told the media that 
many features in the image were inconsistent with real 
images of the Pentagon. This suggested that the image 
had been generated using an AI model.1

Since then, the use of artificial intelligence for 
generating text, images, and even video has become so 
much more sophisticated, making it easier to fool more 
people for longer. Simply using human cognition to flag 
AI-generated content is futile. Methods to watermark 
such content, by embedding hidden patterns and even 
messages (such as time stamps and user IDs) into the 
generated data, are becoming an imperative.

But when Sam Gunn, a computer science PhD student 
in the Theory Group at UC Berkeley, and Miranda Christ, 
a PhD student and member of the Theory Group and the 
Crypto Lab at Columbia University in New York, began 
looking at existing watermarking methods, they found 
them lacking. So, during time at the Simons Institute 
for the Spring 2023 program on Meta-Complexity, Gunn 
and Christ studied the use of pseudorandomness — the 
bedrock of cryptography — to construct pseudorandom 
codes for watermarking.

Any watermark should satisfy three requirements: 

1)	Quality: the watermark shouldn’t degrade the 
generated content; watermarked content should 
look, sound, or read no differently from the 
unwatermarked counterpart. 

2)	Robustness: schemes for detecting watermarks in 
generated content should have a high true-positive 
rate (correctly flagging content as AI generated when 
it is), ideally even after malicious perturbations to 
the watermarked content. 

3)	Unforgeability: detectors should have a low false-
positive rate (erroneously flagging content as the 
output of an AI model when it isn’t), even after 
malicious perturbations to unwatermarked content.

Sam Gunn

Watermarks and Pseudorandom Codes
Anil Ananthaswamy, science communicator at large

 1 https://www.ischool.berkeley.edu/news/2023/hany-farid-breaks-down-fake-pentagon-images-cnn-article
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Christ and Gunn realized that existing watermarking 
methods involved untenable trade-offs among these 
properties, and they proved that pseudorandom 
codes (PRCs) are necessary to achieve all three 
properties simultaneously. The researchers constructed 
PRCs by combining two foundational concepts: 
pseudorandomness (from cryptography) and error-
correcting codes (from theoretical computer science). 
Pseudorandomness enables, for example, the 
generation of bit strings that are n bits long, using a 
deterministic function that uses as its input bit strings 
that are k bits long, where k << n, such that the 
generated bit strings look uniformly random to any 
polynomial-time adversary (i.e., an adversary using an 
algorithm whose running time is polynomial in n). Error-
correcting codes involve adding extra information to the 
generated bit strings such that even if some fraction of 
the bits were to be corrupted, one can reconstruct the 
original bit strings. “PRCs are nontrivial to construct, 
despite the simplicity of both pseudorandomness and 
error-correcting codes,” said Gunn.

But once they built a PRC, using it for watermarking 
came down to identifying a source of randomness in 
the generative AI algorithm and replacing some of that 
randomness with outputs from a PRC.

Any generative AI model implicitly or explicitly does two 
things: it first learns a probability distribution over the 
training data (such as text, images, or videos), and then 
it samples from that distribution to produce data whose 

statistics resemble the statistics of the training data. 
The sampling introduces an element of randomness. 
Generative AI models differ in the exact specifics of how 
they accomplish these tasks.

For example, a diffusion model for image generation is 
trained to sample from a unit normal Gaussian (pure 
noise) and then denoise the sample (the so-called 
reverse diffusion process) to produce an image that 
looks like a sample from the distribution over the 
images in the training data. Sampling from the unit 
normal involves randomness.

Or take a large language model (LLM). An LLM, given 
some prompt, produces a probability distribution 
over its entire vocabulary of words (or, more precisely, 
tokens). The algorithm for generating text then samples 
from this distribution to predict the next word or token. 
Again, randomness comes in at this stage of data 
generation.

In their paper, “Pseudorandom Error-Correcting Codes,” 
the first version of which was published on arXiv in 
February 2024, Christ and Gunn presented a watermarking 
scheme for language models.2 They begin by showing 
how to build a pseudorandom error-correcting code, or 
simply a pseudorandom code, which they parametrize 
with a decoding key to generate codewords. Without this 
key, any polynomial number of codewords would appear 
pseudorandom to an adversary.

Miranda Christ

“They begin by showing how 
to build a pseudorandom 
error-correcting code, or 
simply a pseudorandom code, 
which they parametrize with 
a decoding key to generate 
codewords.” 

2https://arxiv.org/abs/2402.09370

6
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The PRC can also correct for errors (the number of 
which is bounded) and is thus robust. So if a message 
m is encoded into a message x, and x’ is a corrupted 
version of x, then an algorithm can decode x’ to 
recover the original message m. In this scenario, x 
corresponds roughly to the watermarked content of 
a model, and x’ to the perturbed content resulting 
from an adversary trying to remove the watermark. The 
pseudorandomness of the PRC enables the watermark’s 
high quality, and the robustness of the PRC allows 
the watermark detector to work despite the malicious 
intervention.

Such a PRC can be used to watermark the content of a 
language model. Christ and Gunn define an abstract 
algorithm called Generate that takes as input a prompt 
and a random seed  and samples a response 

. (They develop their method for binary 
tokens — i.e., the language model has an alphabet 0 
and 1 — and then show that their results generalize to 
a language model with an arbitrary token alphabet.) 
Generate works iteratively, or auto-regressively, by first 
taking the user’s prompt, and sampling the next token, 
appending the token to the prompt, and sampling the 
next token, and so on, until it generates an end-of-text 
token. When Generate is given a seed from a PRC, the 
generated text is said to be watermarked.

Previous methods used the same seed for all 
responses. This resulted in a lack of diversity in a 
language model’s responses. To improve diversity, the 
scheme with a single seed had to increase the length 
of the seed, costing the detector more compute time 
to spot the watermark. Such schemes had to trade off 
generation diversity against detector efficiency.

Christ and Gunn circumvented this trade-off by sampling 
a new seed for each response, ensuring that there are 
no discernible correlations between responses, making 
the watermark undetectable to anyone without the 
key. The algorithm preserves the language model’s 
output diversity while simultaneously ensuring 
that a detector with a key can spot the watermark, 
regardless of the model’s output length and diversity. 

Crucially, the Generate function satisfied two important 
properties. One: given random seeds, the function’s 
output matched the language model’s unwatermarked 
distribution. Two: given structured seeds from a PRC, 
the function’s outputs are detectably correlated with 
the seeds.

“The watermark is undetectable in the sense that 
any number of samples of watermarked text are 
computationally indistinguishable from text output 
by the original model,” wrote Christ and Gunn in their 
paper. “This is the first undetectable watermarking 
scheme that can tolerate a constant rate of errors.”

Then, in October 2024, Gunn and Xuandong Zhao, a 
postdoctoral researcher with UC Berkeley professor 
Dawn Song, used a similar technique to watermark 
image generation models. In particular, they showed 
how to watermark images generated by Stable 
Diffusion 2.1 (it came down to replacing the random 
samples of Gaussian noise with seeds from their 
PRC). In their paper,3 they concluded not only that 
their scheme allowed them to watermark images 
and encode long messages in the watermark (which 
could be extracted by a decoder with the key) without 
creating any discernible shift in the distribution 
of generated images, but that it’s also robust to 
adversarial attacks: adversaries cannot remove the 
watermark without significantly altering the quality of 
the generated images.

3https://arxiv.org/abs/2410.07369

“The pseudorandomness 
of the PRC enables the 
watermark’s high quality, and 
the robustness of the PRC 
allows the watermark detector 
to work despite the malicious 
intervention.” 

7
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4https://arxiv.org/html/2411.05947

“Pseudorandom code is the only way that we know 
how to do quality-preserving watermarks for image 
models,” said Gunn. But for language models, while 
Christ and Gunn proved that their watermarking 
scheme would work asymptotically for LLMs, they have 
yet to implement it, because the number of generated 
tokens needed for the watermark to appear and be 
robust is currently impractical. “We can prove that it will 
work. We know exactly how to do it,” said Gunn. “It’s a 
problem that can be solved with some more work.”

To further strengthen the security of their scheme, 
Christ, Gunn, Omar Alrabiah (an EECS graduate 
student at UC Berkeley), and colleagues addressed 
some additional concerns. The watermarking method 
described above is robust against errors that are 
introduced obliviously, or by a memory-less channel, 
meaning the errors are the outcome of a process 
that has no knowledge of the watermark or the key, 
and each error is independent of previous errors. 

Adversaries in real life might have access to the key, 
however, or to multiple instances of watermarked 
content, or to a decoding oracle that might be able to 
detect watermarks. Any watermarking scheme using 
pseudorandom codes that can withstand such an 
adversary is termed adaptively robust. In their latest 
paper, “Ideal Pseudorandom Codes,” published on 
arXiv in November 2024 and presented at STOC 2025, 
the authors proved that a small tweak to their earlier 
PRC can make it adaptively robust, even for certain 
worst-case settings.4 “These results immediately 
imply stronger robustness guarantees for generative AI 
watermarking schemes,” the authors write.  n

8
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“Yet, the question of full PRUs that could 
fool adaptive adversaries — those whose 
behavior could depend on the outcomes of 
previous queries — remained mysterious.”
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The compressed oracle method and its 
generalization, the path-recording oracle, 
are beautiful linear algebraic techniques 

that have led to fundamental discoveries in quantum 
cryptography and complexity over the past year and 
a half, in the Simons Institute’s Quantum Pod and its 
thematic research programs. 

The quest for pseudorandom unitaries
To set the stage, recall that a (cryptographic) 
pseudorandom permutation (PRP) is a polynomial-
time computable random permutation on  
that cannot be distinguished from a uniformly random 
permutation by any  time algorithm given 
black-box query access to it. PRPs are known to exist 
under standard cryptographic assumptions and are a 
foundational object in classical cryptography.

The quantum analogue of PRPs is pseudorandom 
unitaries (PRUs), first defined by Ji, Liu, and Song 
in 2017.1 A pseudorandom unitary is an efficiently 
computable  unitary matrix that is 
indistinguishable from a uniformly (Haar) random 
unitary by any  time quantum algorithm, which 
we will refer to as an adversary. Besides being a natural 
object in quantum cryptography, PRUs were of interest 
to physicists, who use them to model black holes, 
among other things.

The question of the existence of PRUs captivated the 
quantum community, including at the Simons Institute, 
where many talks were given about it over the past 

few years. The first constructions of PRUs that could 
fool nonadaptive adversaries were given in early 
2024, in two independent breakthrough works by 
Metger-Poremba-Sinha-Yuen2 and by Chen-Bouland-
Brandão-Docter-Hayden-Xu.3 Nonadaptive adversaries 
are mathematically nice because the output of a 

 time distinguishing algorithm  given 
black-box access to a unitary , which we will  
denote , is linear in the tensor power , 
and the problem boils down to showing closeness of 
(the covariance matrices of) these tensor powers of the 
random and pseudorandom unitaries in an appropriate 
norm.4 This is still difficult, but it can be approached 
using the framework of representation theory and 
random matrix theory.

Interestingly, both papers found (different) ways 
to reduce PRUs to PRPs. Metger et al. introduced 
a particularly simple construction based on 
representation theory called the “PFC ensemble,” 
which they conjectured could actually fool adaptive 
adversaries. Chen et al. developed a new approach in 
the spirit of random matrix theory, which as I pointed 
out in a Simons Institute newsletter article5 had a huge 
impact on random matrix theory itself.

Yet, the question of full PRUs that could fool adaptive 
adversaries — those whose behavior could depend 
on the outcomes of previous queries — remained 
mysterious. 

The Compressed Oracle Method  
and Its Generalization
Nikhil Srivastava, senior scientist

1 https://arxiv.org/pdf/1711.00385
2 https://arxiv.org/pdf/2404.12647
3 https://arxiv.org/pdf/2404.16751
4 https://www.math3ma.com/blog/the-tensor-product-demystified
5 https://simons.berkeley.edu/news/theory-institute-beyond-october-2024

10
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Hidden symmetries, and a crash course 
in tensor products
Enter the compressed oracle method, invented in 
2018 by Mark Zhandry.6 In the classical world, you 
can analyze the interaction between an adversary 
and a random function  
given as a black box — called a random oracle — by 
lazy evaluation: basically, you sample the bits of the 
oracle on the fly depending on the adversary’s queries 
and store past answers, yielding a succinct “stateful” 
description of the oracle that is useful in proofs. But 
this idea doesn’t work in the quantum world, because 
the adversary can query the oracle in superposition — 
mathematically, the oracle is a random  diagonal 
unitary matrix , and a single query means preparing a 
quantum state

 
,
 

which can depend on all the values of .

Zhandry’s beautiful insight was that it is nonetheless 
possible to “quantize” the lazy evaluation argument 
by exploiting three facts about the way measurement 
works in quantum mechanics. 

Observe that if  is a (discrete, for technical 
convenience) random variable with probability 
distribution , then one can encode the behavior of 
an adversary on the entire distribution of  at once by 
considering the “purified” state 

,

where  is the bra-ket notation for the tensor 
product  of two vectors. If that seems unfamiliar, 
this is a good moment to study the definition of the 
tensor product of two vector spaces.

 

Fact 1. The covariance matrix 
 

 
(which is the thing we care about in the PRU problem 
and in quantum query complexity) is equal to the 
reduced density matrix 
 

on the first tensor factor, where denotes the 
partial trace acting on the second tensor factor. This is 
the quantum analogue of taking a marginal probability 
distribution.

Fact 2. The reduced density matrix  is invariant 
under applying a unitary transformation of type  
to , i.e., 

for all unitary . Here  denotes the tensor 
product of two operators.

Fact 3. The tensor product is bilinear, in particular

 
for a scalar alpha.

Conceptually, what this is saying is that there is a 
different description of the covariance matrix  
in an enlarged space, which admits many more 
symmetries than the original description, in the form of 
Fact 2. The punch line is that by choosing  to be the 
Fourier transform — a certain symmetry of the uniform 
distribution on diagonal — one obtains an alternate, 
succinct combinatorial description of the oracle. This 
is the “compressed oracle,” which may be viewed as an 
efficient data structure that exactly simulates a random 
diagonal  to an efficient adversary. Though the proof 
is short, it seems magical to me that a mathematical 
duality (of the Fourier transform) yields a computational 
duality (of efficiency in the adversary and in the oracle), 
essentially by using Fact 3 to “push” the behavior of the 
adversary onto the oracle. 

 6 https://eprint.iacr.org/2018/276.pdf

11



2025–26 | Issue 1     2025–26 | Issue 1     

In October 2024, Fermi Ma and Hsin-Yuan Huang 
fully solved the problem of the existence of PRUs 
by showing that the PFC ensemble is in fact secure 
against adaptive adversaries assuming the existence 
of one-way functions, as Metger et al. had conjectured. 
Their striking insight was that the compressed oracle 
method can be generalized to the case of Haar random

 (i.e., not diagonal) if one allows a small error — a 
generalization they named the “path-recording oracle.” 
This is surprising since the unitary group is highly 
noncommutative and does not admit nearly as nice a 
“Fourier transform.” 

Unlike Zhandry, they did not particularly care about 
the succinctness or efficiency of this oracle viewed 
as a data structure. What was really important was 
the symmetries satisfied by the path-recording oracle 
— in particular, that it exactly simulates the uniform 
distribution on random signed permutations, 
for a large subclass of adversaries known as the 
“distinct subspace,” which also played a role in the 
work of Metger et al. By exploiting a higher-order 
analogue of Fact 3, they upgraded this to the following 
dramatic conclusion:

The path-recording oracle approximately simulates 
every “mildly symmetric” random variable against 
all adversaries. 

It turned out that both the PFC ensemble and the 
Haar unitary ensemble satisfied the required mild 
symmetries, so Ma and Huang concluded that they must 
both be close to the path-recording oracle and therefore 
to each other in the appropriate sense, solving the 
problem. It is hard to imagine a more elegant proof than 
theirs. It is all identities, save for a single inequality 
which amounts to showing that a Euclidean projection 
cannot increase the norm of a vector. And yet, the 
motivation for this crisp linear algebraic proof came 
from considerations that are emblematic of theoretical 
computer science: simulation, interaction, efficiency, 
and approximation.  n

Fermi Ma

Hsin-Yuan Huang

“Unlike Zhandry, they did not 
particularly care about the 
succinctness or efficiency 
of this oracle viewed as a 
data structure. What was 
really important was the 
symmetries satisfied by the 
path-recording oracle.” 

12
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“At first glance, this problem sounds similar to the 
notoriously difficult problem of graph coloring, where 
the goal is to color the vertices of a graph using as few 
colors as possible, so that adjacent vertices get different 
colors. For this latter problem, even getting a very crude 
approximation to the number of colors required is known 
to be NP-hard.”
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G iven a graph, how do we color its edges 
using as few colors as possible, so that any 
two edges sharing an endpoint get different 

colors? This is a classic problem, for which a group of 
collaborators in the Summer 2024 Simons Institute 
research program on Sublinear Algorithms came up with 
a deterministic  algorithm that earned 
the Best Paper Award at STOC — one of the flagship 
conferences for theoretical computer science. 

At first glance, this problem sounds similar to the 
notoriously difficult problem of graph coloring, where 
the goal is to color the vertices of a graph using as 
few colors as possible, so that adjacent vertices get 
different colors. For this latter problem, even getting 
a very crude approximation to the number of colors 
required is known to be NP-hard. 

Somewhat surprisingly, in 1964 Vadim Vizing proved 
a remarkable result that gave pretty much the exact 
number of colors required for edge coloring. Let 
be the maximum degree of a given graph — i.e., the 
maximum overall vertices  of the number of edges 
that have an endpoint at . Since each edge incident 
on a vertex  must get a different color, it is clear that 

 colors are necessary for any edge coloring. Vizing 
gave an algorithm for coloring the edges of the graph 
that used at most  colors! If  is the number of 
vertices and  is the number of edges, his algorithm 
runs in time . 

The edge coloring problem is more than a nice puzzle. 
It has applications in areas such as scheduling, 
communication channel assignment, and compiler 
design. To elaborate on one application, imagine a 
communication network where nodes communicate 
with their neighbors along edges. To avoid interference 
or cross talk in communicating with its neighbors, a 
node needs to use different frequencies on each of its 

edges. But we don’t want to use too many frequencies 
since the spectrum is a scarce resource. Thinking 
of frequencies as colors, we get precisely the edge 
coloring problem.

Since the graphs involved in some applications can 
be quite large, there has been a great deal of interest 
in finding the most efficient algorithm for coming up 
with an edge coloring. In the 1980s, two independent 
sets of researchers gave an  algorithm, and 
there it more or less stood for over 40 years. In Summer 
2024, during the Simons Institute program on Sublinear 
Algorithms, Sepehr Assadi presented his latest work, 
where he gave an algorithm that achieved runtime 

 but used  more colors than 
the bound promised by Vizing’s theorem. He also gave 
a randomized algorithm that produced a 
-coloring, running in expected time . 
He and Soheil Behnezhad, who was in the audience, 
started working on further improvements during this 
program. While neither the result Assadi presented 
nor the final result is sublinear, the program enabled 
the discovery of the latter result. Independently and 
simultaneously, Sayan Bhattacharya, Din Carmon, 
Martín Costa, Shay Solomon, and Tianyi Zhang also 
broke the  barrier, giving a randomized 
algorithm running in . Both teams were 
intrigued by the fact that the techniques in these results 
were entirely different and decided to work together 
to see whether they could combine their ideas to get 
even better results. This collaboration bore fruit in the 
algorithm of Assadi, Behnezhad, Bhattacharya, Costa, 
Solomon, and Zhang that won the Best Paper Award at 
STOC ’25. 

To understand some technical details in these latest 
developments, it helps to start by reviewing Vizing’s 
algorithm. 

Edge Coloring in Nearly Linear Time
Sampath Kannan, associate director
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Vizing’s algorithm starts with a graph  of maximum 
degree . Without loss of generality, we can assume 
that  is connected, since we otherwise can treat each 
component on its own.

One idea in Vizing’s algorithm is that any graph with 
maximum degree  can be partitioned into two 
graphs, each with maximum degree at most , using 
a technique called Eulerian partitioning. By adding 
one edge between pairs of odd-degree vertices, we 
can ensure that every vertex has even degree. Now a 
well-known result in graph theory says that we can find 
an “Eulerian tour” — i.e., a walk that goes through all 
edges exactly once. If we now put all edges occurring 
in odd positions on this tour in one component, and 
all edges in even positions in the other, we have the 
desired decomposition. Now recursively we can color 
each of these graphs with at most  colors, 
which may overall use  colors. 

Since this exceeds the desired bound by 2, the 
algorithm uncolors the edges colored with two of these 
colors (say, the least frequently used colors) and colors 
them again one by one using the other  colors. 
Since the maximum degree is , every vertex must 
have at least one unused or free color around it. If both 

 and  have the same free color, then we can just 
color the edge  with this free color. If instead 
green is free at  and blue is free at , then Vizing’s 
algorithm performs a series of color swaps along paths 
whose edges are alternately colored green and blue. 
If even this fails, the algorithm recolors edges in an 
ingenious structure called the Vizing fan, and again 
ends up finding a color for . Each edge can 
take  time to recolor in this manner, leading to a 
recurrence that solves to . 

Some of the key observations leading to the overall 
improvement are: 

1)	All  uncolored edges at some stage can be 
categorized into  categories depending on 
the free colors at the two endpoint vertices. 

2)	We can efficiently increase the number of uncolored 
edges in one category to be a -fraction of 
all uncolored edges in expected  time by again 
using alternating paths.

3)	All uncolored edges in one category can be colored 
in  time using a Vizing-like procedure since the 
alternating paths or fans for coloring these edges do 
not overlap with each other. (The simple fan structure 
in Vizing’s algorithm does not work, but a more 
complex variant does.)

4)	Repeating Steps 2 and 3 above  times 
allows us to color all uncolored edges in expected 

 time.

Putting all this together leads to an  
algorithm that seems “simple enough” to also be fast  
in practice.  n
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Optimal List Decoding
How a recent Simons Institute program helped  
push list decoding to its theoretical limit
Venkatesan Guruswami, director

In coding theory, erasures are the easy enemy: if 
we want to tolerate the loss of 20% of the symbols 
(chosen adversarially), we can do so with a code 

with redundancy equal to 20%, where we encode  
data symbols into a redundant set of  codeword 
symbols. In fact, the classical and ubiquitous Reed–
Solomon codes do the job, and even undergraduates 
in computer science are often taught the interpolation 
algorithm that fills in the missing positions.

Errors are trickier, as one does not immediately 
know which symbols are affected. Indeed, classical 
algorithms to tackle a 20% error rate (again for Reed–
Solomon codes) require 40% redundancy, which is two 
times more than the erasure case. And if the errors are 
worst case and we demand unambiguous recovery, 
this increased redundancy is inherently required. 
However, a work-around called list decoding relaxes 
the requirement on the error-correction algorithm, 

allowing it to output, in the worst case, a small list of 
codewords within the target error bound. (The hope is 
that in typical cases the list will anyway have a unique 
element, so in practice this doesn’t affect the utility of 
error correction, except it lets one handle pathological 
cases within the worst-case model.)

In this model, remarkably, one can deal with errors with 
the same efficiency as erasures! Two decades ago, the 
author and Atri Rudra showed that a simple variant of 
RS codes — folded Reed–Solomon codes, which bundle 
several consecutive RS symbols into one larger “mega-
symbol” — can efficiently correct a fraction  of errors 
with redundancy approaching the optimal bound of , 
for any target error rate . This present article 
reports on progress forged by the Spring 2024 Simons 
Institute research program on Error-Correcting Codes, 
which essentially closed the chapter opened by this work.
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List-size for optimal decoding
As far as the trade-off between redundancy and error 
resilience goes, this result achieves the optimal trade-
off. But a third parameter — the worst-case list-size — is 
also important, and when the redundancy is , for 
some small , the result only established an upper 
bound of  on the list-size, where  is the length of 
the code. It was known that the list-size cannot be any 
smaller than , but this left a huge gap! 

Though the list-size was large, it was later shown by 
the author and Carol Wang in the early 2010s that 
it is well structured in the sense that one can find a 
subspace of dimension  containing the list. This 
led to constructions of other codes with improved list-
size, but the situation for folded Reed–Solomon codes 
was not improved until 2018, when Swastik Kopparty, 
Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters 
showed that the list-size is bounded by  
by elegantly pruning the subspace to zero in on the 
close-by codewords. The nice feature was that the 
list-size now had no degradation with , but it was still 
exponentially off from the best-possible bound.

Could the list-size be further improved by showing 
folded Reed–Solomon codes to be simultaneously 
optimal on all three aspects — error-fraction, 
redundancy, and list-size? Or could it be that we need 
to look elsewhere for such optimal codes? The answer 
wasn’t clear, and neither was an approach to attack the 
question apparent.

“This is a textbook example 
of how the Simons Institute’s 
collaborative environment 
helps early-career researchers 
crystallize and exchange 
ideas, while benefiting from 
all the surrounding activity on 
closely related themes.” 
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Two recent breakthroughs
In this context, a concurrent pair of recent student-
authored works completely resolved the question, 
showing that, in fact, folded Reed–Solomon codes 
achieve a list-size of , which as mentioned earlier is 
optimal!

In a paper that received the Best Paper Award at the 
2025 ACM-SIAM Symposium on Discrete Algorithms 
(SODA), Shashank Srivastava showed a list-size bound 
of , a huge improvement over the previous 
exponential bounds and quadratically close to the 
optimal bound.

In a paper that received the Best Student Paper Award 
at the 2025 ACM Symposium on Theory of Computing 
(STOC), Yeyuan Chen and Zihan Zhang, two PhD 
students who began work on this problem during their 
visit to the Simons Institute’s Spring 2024 program on 
Error-Correcting Codes, went a step further, and proved 
the optimal list-size bound of . 

These works not only achieve a long-sought-after 
milestone in error correction that simultaneously 
optimizes redundancy, list-decoding radius, and 
list-size, but do so most elegantly. As Yeyuan and 
Zihan explicitly acknowledge in their paper, their 
work was initiated during their visit to the Simons 
Institute. This is a textbook example of how the Simons 
Institute’s collaborative environment helps early-career 
researchers crystallize and exchange ideas, while 
benefiting from all the surrounding activity on closely 
related themes. Their collaborations have continued 
apace beyond this work, and have led to three more 
papers, and counting. 

At the heart of both the above works is the fact 
that folded Reed–Solomon codes have a so-called 
“subspace design” property. This property was already 
established in 2013 by the author and Swastik Kopparty 
for a different purpose, but its stunning power to lead to 
the optimal list-size came as a surprise even to experts. 
The revelation of the centrality and unifying power of 

subspace designs has fueled several exciting recent 
works and already had a lot of impact. 

A work by Vikrant Ashvinkumar, Mursalin Habib, 
and Shashank Srivastava (to appear in SODA 2026) 
gives an algorithmic version of the above results that 
accomplishes the decoding task in time polynomial in 
both  and . In a pair of works, Yeyuan and Zihan, 
together with Josh Brakensiek and Manik Dhar, have 
made striking connections between subspace designs 
and discrete Brascamp–Lieb inequalities, as well as 
random linear codes. Rohan Goyal and the author 
show that subspace design–based codes have optimal 
proximity gaps, an important concept in the analysis 
of succinct non-interactive arguments of knowledge 
(SNARKs) used in blockchain and related technologies.  n

References for readers who want to 
learn more
Capacity with folded Reed–Solomon codes:  
V. Guruswami and A. Rudra, “Explicit Codes Achieving 
List Decoding Capacity” (STOC, 2006; journal version  
in IEEE Trans. Inf. Theory, 2008). V. Guruswami and  
C. Wang, “Linear-Algebraic List Decoding for Variants  
of Reed–Solomon Codes” (IEEE Trans. Inf. Theory, 2013).

Pre-2024 list-size bounds: S. Kopparty, N. Ron-Zewi,  
S. Saraf, M. Wootters, “Improved List Decoding of 
Folded Reed-Solomon and Multiplicity Codes” (FOCS, 
2018; SICOMP, 2023). I. Tamo, “Tighter List-Size Bounds 
for List-Decoding and Recovery of Folded Reed-Solomon 
and Multiplicity Codes” (IEEE Trans. Inf. Theory, 2024).

The new results: S. Srivastava, “Improved List Size 
for Folded Reed-Solomon Codes” (SODA, 2025). Y. 
Chen and Z. Zhang, “Explicit Folded Reed-Solomon 
and Multiplicity Codes Achieve Relaxed Generalized 
Singleton Bounds” (STOC, 2025).

Subspace designs: V. Guruswami and S. Kopparty, 
“Explicit Subspace Designs” (Combinatorica, 2016). 
See also V. Guruswami and C. Xing, “List Decoding 
Reed-Solomon, Algebraic-Geometric, and Gabidulin 
Subcodes up to the Singleton Bound” (STOC, 2013) for 
the original notion in a different context.
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