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November 24, 2025
Dear friends,

I am honored and humbled to write to you in my new role as the third director of the Simons Institute. | know | am
stepping into some giant shoes, and | will do my best to ensure that the Institute continues to thrive and serve

as the hugely influential and beloved global hub for the theory of computing. As one of my first communications
as director, I’m delighted to share with you the inaugural issue of Polynomial Times, the annual magazine of the
Simons Institute for the Theory of Computing. Released each year in the fall, the magazine will showcase some key
results and connections emerging from our recent programs, review new initiatives and special convenings, and
explore what’s on the horizon for the Institute in the near future.

In 2024-25, we held standard research programs on Sublinear Algorithms (Summer 2024) and Modern Paradigms
in Generalization (Fall 2024); a summer cluster on Al, Psychology, and Neuroscience (Summer 2024); an extended
reunion for the program on Theoretical Foundations of Computer Systems (Summer 2024); and a Special Year on
Large Language Models and Transformers (Fall 2024 and Spring 2025). We also held a number of special workshops
not associated with programs, including a workshop on Theoretical Aspects of Trustworthy Al, and a joint workshop
with SLMath on Al for Mathematics and Theoretical Computer Science. We hosted ongoing research pods on
Machine Learning, Quantum Computing, and Resilience in Brain, Natural, and Algorithmic Systems, and presented
two public lecture series, Theoretically Speaking and the Richard M. Karp Distinguished Lectures. We opened our
doors to 268 long-term participants in our research programs and clusters this past year.

We continue to train the largest cohort of postdoctoral-level researchers in theoretical computer science worldwide,
comprising multiyear postdoctoral positions in our research pods and semester-long research fellowships within
each research program. Many of this past year’s research fellows have gone on to tenure-track positions at
prestigious institutions, including Cornell, Johns Hopkins, Yale, UMass, UW—-Madison, UC Berkeley, UT Austin, NYU,
Princeton, UC San Diego, Tel Aviv University, and Monash University.

We announced calls for two named workshop series this past year: Breakthroughs Workshops and Goldwasser
Exploratory Workshops, the first of which will be held in 2025-26. From time to time, the steady progress of research
is interrupted by a massive leap forward, due to a particular breakthrough result. When such breakthroughs happen,
they enable a cascade of progress as researchers examine theirimplications for a wide range of problems and
applications. The Simons Institute’s Breakthroughs Workshops celebrate breakthrough results and provide a forum
for the integration and extrapolation to follow. Meanwhile, the Goldwasser Exploratory Workshops honor Simons
Institute Director Emerita Shafi Goldwasser, whose ventures into uncharted territory have led to field-transforming
discoveries, including zero-knowledge proofs, for which she and Silvio Micali received the Turing Award. In this spirit,
each Goldwasser Exploratory Workshop will stake out new territory, explore new interdisciplinary alliances, or advance
unexpected approaches to long-standing problems.

We launched another initiative during 2024-25: Circles, the Simons Institute — Jane Street Small Group Collaborations.
Supported by a gift from Jane Street, this initiative supports groups of three to six researchers for four weeklong visits
(two visits to Jane Street in New York and two to the Simons Institute) spread over two years, to collaborate intensively
on an ambitious research project. The inaugural accepted projects — one on Building Bridges: Codes, TCS, and
Geometric Group Theory, and another on Approaches to the Metamathematical Difficulty of Complexity Lower Bounds
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— will bring together collaborative groups where some members have worked together at the Simons Institute during
our past research programs.

In May 2025, we upgraded the audiovisual system in our main auditorium. Under the new setup, presenters can now
independently initiate Zoom webinars, without staff assistance. New audience-facing cameras enrich the experience
for remote presenters and our worldwide online audience. And the new equipment offers improved audio quality in our
livestreams and video recordings.

In the current (2025—26) academic year, we’ve already run a summer research program, Cryptography 10 Years Later:
Obfuscation, Proof Systems, and Secure Computation; as well as a Summer Cluster on Quantum Computing. Also on
the docket this year: Algorithmic Foundations for Emerging Computing Technologies (Fall 2025), Complexity and Linear
Algebra (Fall 2025), and Federated and Collaborative Learning (Spring 2026). We are excited to have been selected as
an inaugural member of the Google DeepMind x Google.org Al for Math Initiative, and look forward to engaging our
research community in building out our participation in the consortium.

The Simons Institute is fundamentally community driven, with its programmatic agenda shaped by our brilliant
and collaborative research community. All of us in the Institute’s leadership are tremendously grateful to all the
researchers, funders, and broader community who give the Institute its vitality. As director, | look forward to
collaborating with all of you to sustain and deepen the Institute’s hallmark atmosphere of immersion and intensity,
which time and again has fueled stunning advances only possible through a sustained cross-fertilization of ideas
among researchers with complementary expertise.

We’ve dedicated this inaugural issue to our founding benefactor, Jim Simons, who passed away in 2024. Jim and
Marilyn Simons’ broad vision and commitment to basic science inspired them to make philanthropic investments
that have transformed the face of our field. We are deeply grateful to them and to the Simons Foundation, for
without their support, the work described in these pages might never have been done.

I hope you enjoy the first issue of Polynomial Times, including the research vignettes we share with you here. | look
forward to seeing you in Berkeley soon.

Yours,

sl

Venkatesan Guruswami

Director







Watermarks and Pseudorandom Codes
Anil Ananthaswamy, science communicator at large

n May 2023, an account on Twitter posted an

image of an explosion near the Pentagon. The

image was shared widely on social media. Stock
markets dipped briefly but recovered when authorities
— including the Arlington County Fire Department in
Virginia — confirmed that there had been no such
explosion. Hany Farid, a professor of computer science
at UC Berkeley and an expert in digital forensics,
misinformation, and image analysis, told the media that
many features in the image were inconsistent with real
images of the Pentagon. This suggested that the image
had been generated using an Al model.’

Since then, the use of artificial intelligence for
generating text, images, and even video has become so
much more sophisticated, making it easier to fool more
people for longer. Simply using human cognition to flag
Al-generated content is futile. Methods to watermark
such content, by embedding hidden patterns and even
messages (such as time stamps and user IDs) into the

Sam Gunn

Any watermark should satisfy three requirements:

generated data, are becoming an imperative. 1) Quality: the watermark shouldn’t degrade the
generated content; watermarked content should

But when Sam Gunn, a computer science PhD student look, sound, or read no differently from the

in the Theory Group at UC Berkeley, and Miranda Christ, unwatermarked counterpart.

a PhD student and member of the Theory Group and the
Crypto Lab at Columbia University in New York, began
looking at existing watermarking methods, they found
them lacking. So, during time at the Simons Institute
for the Spring 2023 program on Meta-Complexity, Gunn
and Christ studied the use of pseudorandomness — the
bedrock of cryptography — to construct pseudorandom
codes for watermarking.

2) Robustness: schemes for detecting watermarks in
generated content should have a high true-positive
rate (correctly flagging content as Al generated when
itis), ideally even after malicious perturbations to
the watermarked content.

3) Unforgeability: detectors should have a low false-
positive rate (erroneously flagging content as the
output of an Al model when it isn’t), even after
malicious perturbations to unwatermarked content.

! https://www.ischool.berkeley.edu/news/2023/hany-farid-breaks-down-fake-pentagon-images-cnn-article
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They begin by showing how
to build a pseudorandom
error-correcting code, or
simply a pseudorandom code,
which they parametrize with

a decoding key to generate

codewords.

Christ and Gunn realized that existing watermarking
methods involved untenable trade-offs among these
properties, and they proved that pseudorandom
codes (PRCs) are necessary to achieve all three
properties simultaneously. The researchers constructed
PRCs by combining two foundational concepts:
pseudorandomness (from cryptography) and error-
correcting codes (from theoretical computer science).
Pseudorandomness enables, for example, the
generation of bit strings that are n bits long, using a
deterministic function that uses as its input bit strings
that are £ bits long, where £ << n, such that the
generated bit strings look uniformly random to any
polynomial-time adversary (i.e., an adversary using an

algorithm whose running time is polynomial in 72). Error-

correcting codes involve adding extra information to the
generated bit strings such that even if some fraction of
the bits were to be corrupted, one can reconstruct the
original bit strings. “PRCs are nontrivial to construct,
despite the simplicity of both pseudorandomness and
error-correcting codes,” said Gunn.

But once they built a PRC, using it for watermarking
came down to identifying a source of randomness in
the generative Al algorithm and replacing some of that
randomness with outputs from a PRC.

Any generative Al model implicitly or explicitly does two
things: it first learns a probability distribution over the

training data (such as text, images, or videos), and then
it samples from that distribution to produce data whose

*https://arxiv.org/abs/2402.09370
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statistics resemble the statistics of the training data.
The sampling introduces an element of randomness.
Generative Al models differ in the exact specifics of how
they accomplish these tasks.

For example, a diffusion model for image generation is
trained to sample from a unit normal Gaussian (pure
noise) and then denoise the sample (the so-called
reverse diffusion process) to produce an image that
looks like a sample from the distribution over the
images in the training data. Sampling from the unit
normal involves randomness.

Or take a large language model (LLM). An LLM, given
some prompt, produces a probability distribution

over its entire vocabulary of words (or, more precisely,
tokens). The algorithm for generating text then samples
from this distribution to predict the next word or token.
Again, randomness comes in at this stage of data
generation.

Miranda Christ

In their paper, “Pseudorandom Error-Correcting Codes,”
the first version of which was published on arXivin
February 2024, Christ and Gunn presented a watermarking
scheme for language models.” They begin by showing
how to build a pseudorandom error-correcting code, or
simply a pseudorandom code, which they parametrize
with a decoding key to generate codewords. Without this
key, any polynomial number of codewords would appear
pseudorandom to an adversary.



The PRC can also correct for errors (the number of
which is bounded) and is thus robust. So if a message
m is encoded into a message &, and &’ is a corrupted
version of &, then an algorithm can decode 2’ to
recover the original message 7. In this scenario, @
corresponds roughly to the watermarked content of

a model, and @’ to the perturbed content resulting
from an adversary trying to remove the watermark. The
pseudorandomness of the PRC enables the watermark’s
high quality, and the robustness of the PRC allows

the watermark detector to work despite the malicious
intervention.

Such a PRC can be used to watermark the content of a
language model. Christ and Gunn define an abstract
algorithm called Generate that takes as input a prompt
and a random seed 2 € {0, 1}” and samples a response
tef{0, 1}”. (They develop their method for binary
tokens — i.e., the language model has an alphabet 0
and 1 — and then show that their results generalize to
a language model with an arbitrary token alphabet.)
Generate works iteratively, or auto-regressively, by first
taking the user’s prompt, and sampling the next token,
appending the token to the prompt, and sampling the
next token, and so on, until it generates an end-of-text
token. When Generate is given a seed from a PRC, the
generated text is said to be watermarked.

Previous methods used the same seed for all
responses. This resulted in a lack of diversity in a
language model’s responses. To improve diversity, the
scheme with a single seed had to increase the length
of the seed, costing the detector more compute time
to spot the watermark. Such schemes had to trade off
generation diversity against detector efficiency.

Christ and Gunn circumvented this trade-off by sampling
a new seed for each response, ensuring that there are
no discernible correlations between responses, making
the watermark undetectable to anyone without the

key. The algorithm preserves the language model’s
output diversity while simultaneously ensuring

that a detector with a key can spot the watermark,
regardless of the model’s output length and diversity.

*https://arxiv.org/abs/2410.07369
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Crucially, the Generate function satisfied two important
properties. One: given random seeds, the function’s
output matched the language model’s unwatermarked
distribution. Two: given structured seeds from a PRC,
the function’s outputs are detectably correlated with
the seeds.

“The watermark is undetectable in the sense that
any number of samples of watermarked text are
computationally indistinguishable from text output
by the original model,” wrote Christ and Gunn in their
paper. “This is the first undetectable watermarking
scheme that can tolerate a constant rate of errors.”

The pseudorandomness

of the PRC enables the
watermark’s high quality, and
the robustness of the PRC
allows the watermark detector
to work despite the malicious

Intervention.

Then, in October 2024, Gunn and Xuandong Zhao, a
postdoctoral researcher with UC Berkeley professor
Dawn Song, used a similar technique to watermark
image generation models. In particular, they showed
how to watermark images generated by Stable
Diffusion 2.1 (it came down to replacing the random
samples of Gaussian noise with seeds from their
PRQ). In their paper,® they concluded not only that
their scheme allowed them to watermark images

and encode long messages in the watermark (which
could be extracted by a decoder with the key) without
creating any discernible shift in the distribution

of generated images, but that it’s also robust to
adversarial attacks: adversaries cannot remove the
watermark without significantly altering the quality of
the generated images.
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“Pseudorandom code is the only way that we know

how to do quality-preserving watermarks for image
models,” said Gunn. But for language models, while
Christ and Gunn proved that their watermarking
scheme would work asymptotically for LLMs, they have
yet to implement it, because the number of generated
tokens needed for the watermark to appear and be
robust is currently impractical. “We can prove that it will
work. We know exactly how to do it,” said Gunn. “It’s a
problem that can be solved with some more work.”

To further strengthen the security of their scheme,
Christ, Gunn, Omar Alrabiah (an EECS graduate
student at UC Berkeley), and colleagues addressed
some additional concerns. The watermarking method
described above is robust against errors that are
introduced obliviously, or by a memory-less channel,
meaning the errors are the outcome of a process

that has no knowledge of the watermark or the key,
and each error is independent of previous errors.

“https://arxiv.org/html/2411.05947
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Adversaries in real life might have access to the key,
however, or to multiple instances of watermarked
content, or to a decoding oracle that might be able to
detect watermarks. Any watermarking scheme using
pseudorandom codes that can withstand such an
adversary is termed adaptively robust. In their latest
paper, “Ideal Pseudorandom Codes,” published on
arXivin November 2024 and presented at STOC 2025,
the authors proved that a small tweak to their earlier
PRC can make it adaptively robust, even for certain
worst-case settings.” “These results immediately
imply stronger robustness guarantees for generative Al
watermarking schemes,” the authors write. @
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Yet, the question of full PRUs that could
fool adaptive adversaries — those whose
behavior could depend on the outcomes of

previous queries — remained mysterious.
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The Compressed Oracle Method
and Its Generalization

Nikhil Srivastava, senior scientist

he compressed oracle method and its

generalization, the path-recording oracle,

are beautiful linear algebraic techniques
that have led to fundamental discoveries in quantum
cryptography and complexity over the past year and
a half, in the Simons Institute’s Quantum Pod and its
thematic research programs.

The quest for pseudorandom unitaries
To set the stage, recall that a (cryptographic)
pseudorandom permutation (PRP) is a polynomial-
time computable random permutation on {0, 1}"
that cannot be distinguished from a uniformly random
permutation by any poly(n) time algorithm given
black-box query access to it. PRPs are known to exist
under standard cryptographic assumptions and are a
foundational object in classical cryptography.

The quantum analogue of PRPs is pseudorandom
unitaries (PRUs), first defined by Ji, Liu, and Song

in 2017." A pseudorandom unitary is an efficiently
computable 2" X 2" unitary matrix that is
indistinguishable from a uniformly (Haar) random
unitary by any poly(n) time quantum algorithm, which
we will refer to as an adversary. Besides being a natural
object in quantum cryptography, PRUs were of interest
to physicists, who use them to model black holes,
among other things.

The question of the existence of PRUs captivated the
quantum community, including at the Simons Institute,
where many talks were given about it over the past

* https://arxiv.org/pdf/1711.00385

* https://arxiv.org/pdf/2404.12647

3 https://arxiv.org/pdf/2404.16751

“ https://www.math3ma.com/blog/the-tensor-product-demystified

> https://simons.berkeley.edu/news/theory-institute-beyond-october-2024
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few years. The first constructions of PRUs that could
fool nonadaptive adversaries were given in early

2024, in two independent breakthrough works by
Metger-Poremba-Sinha-Yuen® and by Chen-Bouland-
Brandao-Docter-Hayden-Xu.?> Nonadaptive adversaries
are mathematically nice because the output of a

t = poly(n)time distinguishing algorithm Alg given
black-box access to a unitary [/, which we will

denote |AlgU), is linear in the tensor power U®t,
and the problem boils down to showing closeness of
(the covariance matrices of) these tensor powers of the
random and pseudorandom unitaries in an appropriate
norm.“ This is still difficult, but it can be approached
using the framework of representation theory and
random matrix theory.

Interestingly, both papers found (different) ways

to reduce PRUs to PRPs. Metger et al. introduced

a particularly simple construction based on
representation theory called the “PFC ensemble,”
which they conjectured could actually fool adaptive
adversaries. Chen et al. developed a new approach in
the spirit of random matrix theory, which as | pointed
out in a Simons Institute newsletter article® had a huge
impact on random matrix theory itself.

Yet, the question of full PRUs that could fool adaptive
adversaries — those whose behavior could depend
on the outcomes of previous queries — remained
mysterious.

10



Hidden symmetries, and a crash course

in tensor products

Enter the compressed oracle method, invented in
2018 by Mark Zhandry.® In the classical world, you

can analyze the interaction between an adversary

and a random function f : {0, 1}" — {—1,1}
given as a black box — called a random oracle — by
lazy evaluation: basically, you sample the bits of the
oracle on the fly depending on the adversary’s queries
and store past answers, yielding a succinct “stateful”
description of the oracle that is useful in proofs. But
this idea doesn’t work in the quantum world, because
the adversary can query the oracle in superposition —
mathematically, the oracle is a random =1 diagonal
unitary matrix U, and a single query means preparing a
quantum state

Z aUlz),

ze{0,1}"
which can depend on all the values ofU(x).

Zhandry’s beautiful insight was that it is nonetheless
possible to “quantize” the lazy evaluation argument
by exploiting three facts about the way measurement
works in quantum mechanics.

Observe that if U is a (discrete, for technical
convenience) random variable with probability
distribution p('), then one can encode the behavior of
an adversary on the entire distribution of U atonce by
considering the “purified” state

[¥) =) 1/p(U)|Alg")|U),
U

where |a)|b) is the bra-ket notation for the tensor
product @ ® b of two vectors. If that seems unfamiliar,
this is a good moment to study the definition of the

tensor product of two vector spaces.

¢ https://eprint.iacr.org/2018/276.pdf
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Fact 1. The covariance matrix

U U
Evpw)|Alg”)(Alg” |
(which is the thing we care about in the PRU problem

and in quantum query complexity) is equal to the
reduced density matrix

paig := Tra([¥) ()

on the first tensor factor, where T’."'g denotes the
partial trace acting on the second tensor factor. This is

the quantum analogue of taking a marginal probability
distribution.

Fact 2. The reduced density matrix 2 Alg is invariant
under applying a unitary transformation of type 1 @ T’

to "l/)),i.e.,
paig =Tra(I @ T(1Y)(YNI @ T")

forall unitary T'. Here ] ® T denotes the tensor
product of two operators.

Fact 3. The tensor product is bilinear, in particular

(va) ®b=a R (ab)

for a scalar alpha.

Conceptually, what this is saying is that there is a
different description of the covariance matrix 2 Alg

in an enlarged space, which admits many more
symmetries than the original description, in the form of
Fact 2. The punch line is that by choosing 1" to be the
Fourier transform — a certain symmetry of the uniform
distribution on diagonal U — one obtains an alternate,
succinct combinatorial description of the {J oracle. This
is the “compressed oracle,” which may be viewed as an
efficient data structure that exactly simulates a random
diagonal U to an efficient adversary. Though the proof
is short, it seems magical to me that a mathematical
duality (of the Fourier transform) yields a computational
duality (of efficiency in the adversary and in the oracle),
essentially by using Fact 3 to “push” the behavior of the
adversary onto the oracle.

11



Unlike Zhandry, they did not
particularly care about the
succinctness or efficiency

of this oracle viewed as a
data structure. What was
really important was the
symmetries satisfied by the

path-recording oracle.

In October 2024, Fermi Ma and Hsin-Yuan Huang

fully solved the problem of the existence of PRUs

by showing that the PFC ensemble is in fact secure
against adaptive adversaries assuming the existence
of one-way functions, as Metger et al. had conjectured.
Their striking insight was that the compressed oracle
method can be generalized to the case of Haar random
U (.e., not diagonal) if one allows a small error — a
generalization they named the “path-recording oracle.
This is surprising since the unitary group is highly
noncommutative and does not admit nearly as nice a

”»

“Fourier transform.”

el J

Hsin-Yuan Huang
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Fermi Ma

Unlike Zhandry, they did not particularly care about
the succinctness or efficiency of this oracle viewed

as a data structure. What was really important was

the symmetries satisfied by the path-recording oracle
— in particular, that it exactly simulates the uniform
distribution on random signed 2" x 2"permutations,
for a large subclass of adversaries known as the
“distinct subspace,” which also played a role in the
work of Metger et al. By exploiting a higher-order
analogue of Fact 3, they upgraded this to the following
dramatic conclusion:

The path-recording oracle approximately simulates
every “mildly symmetric” random variable Uagainst
all adversaries.

It turned out that both the PFC ensemble and the

Haar unitary ensemble satisfied the required mild
symmetries, so Ma and Huang concluded that they must
both be close to the path-recording oracle and therefore
to each otherin the appropriate sense, solving the
problem. It is hard to imagine a more elegant proof than
theirs. It is all identities, save for a single inequality
which amounts to showing that a Euclidean projection
cannot increase the norm of a vector. And yet, the
motivation for this crisp linear algebraic proof came
from considerations that are emblematic of theoretical
computer science: simulation, interaction, efficiency,
and approximation. @

12



At first glance, this problem sounds similar to the
notoriously difficult problem of graph coloring, where
the goal is to color the vertices of a graph using as few
colors as possible, so that adjacent vertices get different
colors. For this latter problem, even getting a very crude
approximation to the number of colors required is known
to be NP-hard.”




Edge Coloring in Nearly Linear Time
Sampath Kannan, associate director

iven a graph, how do we color its edges

using as few colors as possible, so that any

two edges sharing an endpoint get different
colors? This is a classic problem, for which a group of
collaborators in the Summer 2024 Simons Institute
research program on Sublinear Algorithms came up with
a deterministic O(m log A) algorithm that eamned
the Best Paper Award at STOC — one of the flagship
conferences for theoretical computer science.

At first glance, this problem sounds similar to the
notoriously difficult problem of graph coloring, where
the goal is to color the vertices of a graph using as
few colors as possible, so that adjacent vertices get
different colors. For this latter problem, even getting
a very crude approximation to the number of colors
required is known to be NP-hard.

Somewhat surprisingly, in 1964 Vadim Vizing proved
a remarkable result that gave pretty much the exact
number of colors required for edge coloring. Let /A
be the maximum degree of a given graph — i.e., the
maximum overall vertices U of the number of edges
that have an endpoint at V. Since each edge incident
on a vertex U must get a different color, it is clear that
A colors are necessary for any edge coloring. Vizing
gave an algorithm for coloring the edges of the graph
that used at most 2\ + 1 colors! If 72 is the number of
vertices and M is the number of edges, his algorithm
runs in time O (mn).

The edge coloring problem is more than a nice puzzle.
It has applications in areas such as scheduling,
communication channel assignment, and compiler
design. To elaborate on one application, imagine a
communication network where nodes communicate
with their neighbors along edges. To avoid interference
or cross talk in communicating with its neighbors, a
node needs to use different frequencies on each of its

2025-26 | Issue 1

edges. But we don’t want to use too many frequencies
since the spectrum is a scarce resource. Thinking

of frequencies as colors, we get precisely the edge
coloring problem.

Since the graphs involved in some applications can

be quite large, there has been a great deal of interest
in finding the most efficient algorithm for coming up
with an edge coloring. In the 1980s, two independent
sets of researchers gave an O(m\/ﬁ) algorithm, and
there it more or less stood for over 40 years. In Summer
2024, during the Simons Institute program on Sublinear
Algorithms, Sepehr Assadi presented his latest work,
where he gave an algorithm that achieved runtime
O(mlog A)butused O(log n) more colors than
the bound promised by Vizing’s theorem. He also gave
a randomized algorithm that produced a (A + 1)
-coloring, running in expected time O(n? log n).

He and Soheil Behnezhad, who was in the audience,
started working on further improvements during this
program. While neither the result Assadi presented

nor the final result is sublinear, the program enabled
the discovery of the latter result. Independently and
simultaneously, Sayan Bhattacharya, Din Carmon,
Martin Costa, Shay Solomon, and Tianyi Zhang also
broke the O(m+/n) barrier, giving a randomized
algorithm running in O(mn'/3). Both teams were
intrigued by the fact that the techniques in these results
were entirely different and decided to work together

to see whether they could combine their ideas to get
even better results. This collaboration bore fruit in the
algorithm of Assadi, Behnezhad, Bhattacharya, Costa,
Solomon, and Zhang that won the Best Paper Award at
STOC ’25.

To understand some technical details in these latest

developments, it helps to start by reviewing Vizing’s
algorithm.

14



Vizing’s algorithm starts with a graph G of maximum
degree /. Without loss of generality, we can assume
that G is connected, since we otherwise can treat each
component on its own.

One idea in Vizing’s algorithm is that any graph with
maximum degree /A can be partitioned into two

graphs, each with maximum degree at most [%1, using

a technique called Eulerian partitioning. By adding
one edge between pairs of odd-degree vertices, we
can ensure that every vertex has even degree. Now a
well-known result in graph theory says that we can find
an “Eulerian tour” — i.e., a walk that goes through all
edges exactly once. If we now put all edges occurring
in odd positions on this tour in one component, and
all edges in even positions in the other, we have the
desired decomposition. Now recursively we can color
each of these graphs with at most [ 2] + 1 colors,
which may overall use A + 3 colors.

Since this exceeds the desired bound by 2, the
algorithm uncolors the edges colored with two of these
colors (say, the least frequently used colors) and colors
them again one by one using the other A + 1 colors.
Since the maximum degree is /\, every vertex must
have at least one unused or free color around it. If both
U and U have the same free color, then we can just
color the edge (u, U)with this free color. If instead
green is free at U and blue is free at U, then Vizing’s
algorithm performs a series of color swaps along paths
whose edges are alternately colored green and blue.

If even this fails, the algorithm recolors edges in an
ingenious structure called the Vizing fan, and again
ends up finding a color for (u, U). Each edge can

take O(n) time to recolor in this manner, leading to a
recurrence that solves to O(mn).

Some of the key observations leading to the overall
improvement are:

1) All O(n) uncolored edges at some stage can be
categorized into O(AQ) categories depending on
the free colors at the two endpoint vertices.

2) We can efficiently increase the number of uncolored
edges in one category to be a ©(1/A )-fraction of
all uncolored edges in expected O(n) time by again
using alternating paths.
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3) All uncolored edges in one category can be colored
in O(n) time using a Vizing-like procedure since the
alternating paths or fans for coloring these edges do
not overlap with each other. (The simple fan structure
in Vizing’s algorithm does not work, but a more
complex variant does.)

4) Repeating Steps 2 and 3 above O(A) times
allows us to color all uncolored edges in expected

O(nA) = O(m)time.
Putting all this together leads to an O(m log A)

algorithm that seems “simple enough” to also be fast
in practice. @

15



Optimal List Decoding

How a recent Simons Institute program helped
push list decoding to its theoretical limit

Venkatesan Guruswami, director

n coding theory, erasures are the easy enemy: if

we want to tolerate the loss of 20% of the symbols

(chosen adversarially), we can do so with a code
with redundancy equal to 20%, where we encode (.87
data symbols into a redundant set of 72 codeword
symbols. In fact, the classical and ubiquitous Reed—
Solomon codes do the job, and even undergraduates
in computer science are often taught the interpolation
algorithm that fills in the missing positions.

Errors are trickier, as one does not immediately

know which symbols are affected. Indeed, classical
algorithms to tackle a 20% error rate (again for Reed—
Solomon codes) require 40% redundancy, which is two
times more than the erasure case. And if the errors are

worst case and we demand unambiguous recovery,
this increased redundancy is inherently required.
However, a work-around called list decoding relaxes
the requirement on the error-correction algorithm,

allowing it to output, in the worst case, a small list of
codewords within the target error bound. (The hope is
that in typical cases the list will anyway have a unique
element, so in practice this doesn’t affect the utility of
error correction, except it lets one handle pathological
cases within the worst-case model.)

In this model, remarkably, one can deal with errors with
the same efficiency as erasures! Two decades ago, the
author and Atri Rudra showed that a simple variant of
RS codes — folded Reed-Solomon codes, which bundle
several consecutive RS symbols into one larger “mega-
symbol” — can efficiently correct a fraction £ of errors
with redundancy approaching the optimal bound of £,
for any target error rate p € (0, 1). This present article
reports on progress forged by the Spring 2024 Simons
Institute research program on Error-Correcting Codes,
which essentially closed the chapter opened by this work.




List-size for optimal decoding

As far as the trade-off between redundancy and error
resilience goes, this result achieves the optimal trade-
off. But a third parameter — the worst-case list-size — is
also important, and when the redundancy is p + €, for
some small € > 0, the result only established an upper
bound ofnl/6 on the list-size, where T is the length of
the code. It was known that the list-size cannot be any
smaller than 1/6, but this left a huge gap!

Though the list-size was large, it was later shown by
the author and Carol Wang in the early 2010s that

it is well structured in the sense that one can find a
subspace of dimension 1/6 containing the list. This
led to constructions of other codes with improved list-
size, but the situation for folded Reed—Solomon codes
was not improved until 2018, when Swastik Kopparty,
Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters
showed that the list-size is bounded by (1/6)0(1/6)
by elegantly pruning the subspace to zero in on the
close-by codewords. The nice feature was that the
list-size now had no degradation with 7, but it was still
exponentially off from the best-possible bound.

“This is a textbook example

of how the Simons Institute’s
collaborative environment
helps early-career researchers
crystallize and exchange
ideas, while benefiting from
all the surrounding activity on

closely related themes.”’

Could the list-size be further improved by showing
folded Reed—-Solomon codes to be simultaneously
optimal on all three aspects — error-fraction,
redundancy, and list-size? Or could it be that we need
to look elsewhere for such optimal codes? The answer
wasn’t clear, and neither was an approach to attack the
question apparent.




In this context, a concurrent pair of recent student-
authored works completely resolved the question,
showing that, in fact, folded Reed—Solomon codes
achieve a list-size of 1 /¢, which as mentioned earlier is
optimall!

In a paper that received the Best Paper Award at the
2025 ACM-SIAM Symposium on Discrete Algorithms
(SODA), Shashank Srivastava showed a list-size bound
of 0(1/62), a huge improvement over the previous
exponential bounds and quadratically close to the
optimal bound.

In a paper that received the Best Student Paper Award
at the 2025 ACM Symposium on Theory of Computing
(ST0Q), Yeyuan Chen and Zihan Zhang, two PhD
students who began work on this problem during their
visit to the Simons Institute’s Spring 2024 program on
Error-Correcting Codes, went a step further, and proved
the optimal list-size bound of 1 /€.

These works not only achieve a long-sought-after
milestone in error correction that simultaneously
optimizes redundancy, list-decoding radius, and
list-size, but do so most elegantly. As Yeyuan and
Zihan explicitly acknowledge in their paper, their

work was initiated during their visit to the Simons
Institute. This is a textbook example of how the Simons
Institute’s collaborative environment helps early-career
researchers crystallize and exchange ideas, while
benefiting from all the surrounding activity on closely
related themes. Their collaborations have continued
apace beyond this work, and have led to three more
papers, and counting.

At the heart of both the above works is the fact

that folded Reed—Solomon codes have a so-called
“subspace design” property. This property was already
established in 2013 by the author and Swastik Kopparty
for a different purpose, but its stunning power to lead to
the optimal list-size came as a surprise even to experts.
The revelation of the centrality and unifying power of
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subspace designs has fueled several exciting recent
works and already had a lot of impact.

A work by Vikrant Ashvinkumar, Mursalin Habib,

and Shashank Srivastava (to appear in SODA 2026)
gives an algorithmic version of the above results that
accomplishes the decoding task in time polynomial in
both 12 and 1/6. In a pair of works, Yeyuan and Zihan,
together with Josh Brakensiek and Manik Dhar, have
made striking connections between subspace designs
and discrete Brascamp—Lieb inequalities, as well as
random linear codes. Rohan Goyal and the author
show that subspace design—based codes have optimal
proximity gaps, an important concept in the analysis
of succinct non-interactive arguments of knowledge
(SNARKSs) used in blockchain and related technologies. @

Capacity with folded Reed-Solomon codes:

V. Guruswami and A. Rudra, “Explicit Codes Achieving
List Decoding Capacity” (STOC, 2006; journal version
in IEEE Trans. Inf. Theory, 2008). V. Guruswami and

C. Wang, “Linear-Algebraic List Decoding for Variants
of Reed-Solomon Codes” (/EEE Trans. Inf. Theory, 2013).

Pre-2024 list-size bounds: S. Kopparty, N. Ron-Zewi,

S. Saraf, M. Wootters, “Improved List Decoding of
Folded Reed-Solomon and Multiplicity Codes” (FOCS,
2018; SICOMP, 2023). |. Tamo, “Tighter List-Size Bounds
for List-Decoding and Recovery of Folded Reed-Solomon
and Multiplicity Codes” (/EEE Trans. Inf. Theory, 2024,).

The new results: S. Srivastava, “Improved List Size
for Folded Reed-Solomon Codes” (SODA, 2025). Y.
Chen and Z. Zhang, “Explicit Folded Reed-Solomon
and Multiplicity Codes Achieve Relaxed Generalized
Singleton Bounds” (STOC, 2025).

Subspace designs: V. Guruswami and S. Kopparty,
“Explicit Subspace Designs” (Combinatorica, 2016).
See also V. Guruswami and C. Xing, “List Decoding
Reed-Solomon, Algebraic-Geometric, and Gabidulin
Subcodes up to the Singleton Bound” (STOC, 2013) for
the original notion in a different context.
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Current and Upcoming Programs
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