Deterministic approximate counting for degree-2 polynomial threshold functions

Simons Workshop on Real Analysis in Testing, Learning and Inapproximability

Rocco A. Servedio
Columbia University

Joint work with

Anindya De
UC Berkeley

Ilias Diakonikolas
U Edinburgh
Approximate Counting

Much work on approximately counting combinatorial structures:

• Given an n-by-n bipartite graph G, how many perfect matchings?
• Given an n-node bounded-degree graph G, how many k-colorings?
• etc.

Also much work (including this work) on approximately counting *satisfying assignments* of Boolean functions:

• Given a poly(n)-term DNF, how many satisfying assignments?
• Given an LTF, how many satisfying assignments?
• etc.
PTFs and LTFs

Degree-d **polynomial threshold function** (PTF): sign of a degree-d polynomial

\[
f : \{-1, 1\}^n \rightarrow \{-1, 1\}
\]
\[
f(x) = \text{sign}(p(x_1, \ldots, x_n))
\]

\(p\) a degree-\(d\) polynomial. Can assume it’s multilinear.

Linear threshold function (LTF): degree \(d\) is 1.
Randomness

Very useful for approximately counting satisfying assignments!

Example: LTFs

Input: an LTF \(f(x) = \text{sign}(\sum_{i=1}^{n} w_i x_i - \theta) \)

Output: a value \(\hat{p} \) such that \(\hat{p} \in [(1 - \varepsilon)p, (1 + \varepsilon)p] \) where
\[
p = \Pr_{x \in \{-1,1\}^n} [f(x) = 1]
\]

- [MorrisSinclair99]: sophisticated MCMC analysis
- [Dyer03]: elementary randomized algorithm & analysis using “dart throwing” & dynamic programming

Both approaches give \(\text{poly}(n, 1/\varepsilon) \)-time algorithms.
A glorious success story: **deterministic** approximate counting for LTFs

More recently, $\text{poly}(n, 1/\varepsilon)$-time **deterministic** (!) algorithms have been obtained for LTFs.

- [GopalanKlivansMeka10]: clever approximation of LTFs by read-once branching programs
- [StefankovicVempalaVigoda10]: clever use of dynamic programming
This work: Approximately counting satisfying assignments for degree-2 PTFs

Input: a degree-2 PTF \(f(x) = \text{sign}(q(x)) \)

Output: a good approximation of \(p = \Pr_{x \in \{-1,1\}^n} [f(x) = 1] \)

Note: efficient multiplicative \((1 \pm \varepsilon)\)-approximation of \(p \) is probably impossible, even using randomness…

…if you can distinguish \(p = 0 \) from \(p > 0 \), you can solve MAX-CUT: given \(G = (V, E) \), the degree-2 polynomial

\[
q(x) = (|E| - \sum_{\{i,j\} \in E} x_i x_j)/2 - k
\]

is nonnegative iff \(x \in \{-1, 1\}^n \) specifies a cut of size at least \(k \).
Additive approximation

Input: a degree-2 PTF \(f(x) = \text{sign}(q(x)) \)
Output: a good approximation of \(p = \Pr_{x \in \{-1,1\}^n} [f(x) = 1] \)

So, let’s lower our standards: only seek an **additive** approximation \(\hat{p} \) such that \(|p - \hat{p}| \leq \varepsilon \)

Good news: trivial randomized algorithm (sample assignments uniformly) works in \(\text{poly}(n, 1/\varepsilon) \) time!

Not so good news: this algorithm really, really uses randomness – and has nothing to do with degree-2 PTFs.
Feels like the “right” problem for degree-2 PTF satisfying assignments (multiplicative approximation too hard; randomized additive approximation too easy)

Solving this problem for degree-2 PTFs forces us to understand them somehow

We like derandomizing things (and we like understanding degree-2 PTFs)
Main results of this work

Theorem: There is a \(\text{poly}(n, 2^{\text{poly}(1/\varepsilon)}) \)-time deterministic algorithm which, on input any degree-2 PTF \(f(x) = \text{sign}(q(x)) \) over \(\{-1, 1\}^n \), outputs a value \(\hat{p} \) such that \(|p - \hat{p}| \leq \varepsilon \), where \(p = \Pr[f(x) = 1] \).

For “regular” degree-2 PTFs (each individual variable’s influence on \(q \) is a small fraction of the total), the algorithm is an FPTAS:

Theorem: If \(q \) is an \(\varepsilon^9 \)-regular polynomial, the algorithm runs in time \(\text{poly}(n, 1/\varepsilon) \).
Previous work on these types of questions

d = 1 case (LTFs): discussed already.

Can also do deterministic approximate counting using unconditional PRGs for degree-2 (or degree-d) PTFs.

PRG of size S for class C of functions $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$: explicit set of points $X \subset \{-1, 1\}^n$, $|X| = S'$ such that

$$\left| \Pr_{x \in X} [f(x) = 1] - \Pr_{x \in \{-1,1\}^n} [f(x) = 1] \right| \leq \varepsilon \text{ for all } f \text{ in } C.$$

Given such a PRG, can deterministically approximately count satisfying assignments of functions in C in time $\text{poly}(n, S')$.
Unconditional PRGs for LTFs, PTFs

Much recent work on these:

- [DiakonikolasGopalanJaiswalSViola09]: size $n^{\tilde{O}(1/\varepsilon^2)}$ for LTFs (bounded independence)
- [DiakonikolasKaneNelson10]: size $n^{\text{poly}(1/\varepsilon)}$ for degree-2 PTFs (bounded independence)
- [MekaZuckerman10]: size $\text{poly}(n) \cdot \text{quasipoly}(1/\varepsilon)$ for LTFs, size $n^{1/\varepsilon^{O(d)}}$ for degree-d PTFs
- [Kane12]: size $n^{\text{poly}(1/\varepsilon)}$ for degree-d PTFs

For degree-2 PTFs, none of these PRGs give fixed $\text{poly}(n)$-time approximate counting algorithms. (Equivalently, none work for $\varepsilon = o_n(1)$ in $\text{poly}(n)$ time.)

PRGs are a “one hand tied behind the back” approach to deterministic approximate counting – they don’t even look at the input!
Talk overview

- Introduction, motivation, statement of result

Rest of talk: proof of main result.

- From Gaussian to Boolean: suffices to solve Gaussian problem
- Solving the Gaussian problem:
 - transforming input polynomial to a “nice” form
 - counting Gaussian satisfying assignments for “nice” polynomials
The Gaussian problem

Recall main result -- counting Boolean satisfying assignments:

Theorem: There is a $\text{poly}(n, 2^{\text{poly}(1/\varepsilon)})$-time deterministic algorithm which, on input any degree-2 PTF $f(x) = \text{sign}(q(x))$ over $\{-1, 1\}^n$, outputs a value \hat{p} such that $|p - \hat{p}| \leq \varepsilon$, where $p = \Pr_{x \in \{-1,1\}^n} [f(x) = 1]$

Key intermediate result -- counting Gaussian sat assignments:

Theorem: There is a $\text{poly}(n, 1/\varepsilon)$-time deterministic algorithm which, on input any degree-2 PTF $f(x) = \text{sign}(q(x))$ over \mathbb{R}^n, outputs a value \hat{p} such that $|p - \hat{p}| \leq \varepsilon$, where $p = \Pr_{x \sim \mathcal{N}(0,1)^n} [f(x) = 1]$
From Gaussian to Boolean

Once we have the Gaussian counting result,

- can use “invariance principle” [MosselO’DonnellOleszkiewicz05] to get $\text{poly}(n, 1/\varepsilon)$-time algorithm for “regular” degree-2 polynomials over Boolean cube;

- can use “PTF regularity lemma” [DiakonikolasSTanWan10, HarshaKlivansMeka09] to decompose any degree-2 PTF over the cube into $\exp(\text{poly}(1/\varepsilon))$ many degree-2 PTFs almost all of which are $\text{poly}(\varepsilon)$-regular or close to constant.

Follows (what is getting to be a) well-worn path for LTF, PTF problems.
Road map

- Introduction, motivation, statement of result, application to deterministically approximating moments

- From Gaussian to Boolean: suffices to solve Gaussian problem

 - Solving the Gaussian problem:
 - transforming input polynomial to an equivalent polynomial which has a “nice” (decoupled junta) form
 - counting Gaussian satisfying assignments for “nice” polynomials
Constructing a equivalent “decoupled junta” degree-2 PTF

Theorem: There is a $\text{poly}(n, 1/\varepsilon)$-time deterministic algorithm $\text{Construct-Gaussian-Junta}$ which, given any degree-2 polynomial $q(x)$, outputs a degree-2 polynomial $\tilde{q}(x)$ where

$$\tilde{q}(x) = \sum_{i=1}^{K} (\lambda_i x_i^2 + \mu_i x_i) + C,$$

where $K = \tilde{O}(1/\varepsilon^4)$, such that

$$\left| \Pr_{x \sim N(0,1)^n} [q(x) \geq 0] - \Pr_{y \in N(0,1)^K} [\tilde{q}(y) \geq 0] \right| \leq \varepsilon.$$

High-level proof strategy: “critical index”-type analysis (reminiscent of “regularity lemma for LTFs” that’s implicit in [S07]) with a few twists.
High-level sketch of “critical index analysis for LTFs”

Consider a halfspace over \(\{-1, 1\}^n \),

\[
\text{sign}(w \cdot x - \theta), \quad w_1 \geq \cdots \geq w_n \geq 0.
\]

1. If \(w \) is regular (\(w_1 \) small compared to \(\|w\|_2 \)) then for \(x \sim \{-1, 1\}^n \), \(w \cdot x \) is distributed like a Gaussian ☺

2. If \(w \) not regular (\(w_1 \) large compared to \(\|w\|_2 \)), “set \(w_1 \) aside” and consider \((w_2, \ldots, w_n) \): the 2-norm decreased by a lot. Repeat.

If have \(K = \) “many” iterations of step 2, remaining 2-norm of \((w_K, \ldots, w_n) \) is negligible ☺

We do something similar in our \(\mathcal{N}(0, 1)^n \), degree-2 PTF setting.
Useful tool: Chatterjee’s CLT

For \(q(x) = x^T A x + b \cdot x + c \) a degree-2 polynomial, write \(\lambda_{\text{max}}(q) \) to denote the largest-magnitude eigenvalue of \(A \).

Theorem: Let \(q(x) \) be a degree-2 PTF over \(x \sim N(0, 1)^n \). If \(|\lambda_{\text{max}}(q)| \leq \varepsilon \sqrt{\text{Var}[q]} \), then distribution of \(q(x) \) is \(O(\varepsilon) \)-close to the Gaussian distribution \(N(\mathbb{E}[q], \text{Var}[q]) \) in total variation distance, hence

\[
\left| \Pr_{x \sim N(0,1)^n} [q(x) \geq 0] - \Pr_{y \sim N(0,1)} [\sqrt{\text{Var}[q]}y + \mathbb{E}[q] \geq 0] \right| \leq O(\varepsilon)
\]

Follows from recent CLT of [Chatterjee09] (proved via Stein’s method)

“\(|\lambda_{\text{max}}(q)| \leq \varepsilon \sqrt{\text{Var}[q]} \)” condition: analogue of having vector \(\mathcal{W} \) be \(\varepsilon \)-regular in the \(\{-1, 1\}^n \) LTF setting.
Proof sketch

Want to prove:

Theorem: There is a $\text{poly}(n, 1/\varepsilon)$-time deterministic algorithm \textit{Construct-Gaussian-Junta} which, given any degree-2 polynomial $q(x)$, outputs a degree-2 polynomial $\tilde{q}(x) = \sum_{i=1}^{K} (\lambda_i x_i^2 + \mu_i x_i) + C$, where $K = \tilde{O}(1/\varepsilon^4)$, such that

$$\left| \Pr_{x \sim N(0,1)^n} [q(x) \geq 0] - \Pr_{y \in N(0,1)^K} [\tilde{q}(y) \geq 0] \right| \leq \varepsilon.$$

Algorithm starts by (approximately) computing largest eigenvalue/eigenvector pair $\lambda_1, v^{(1)}$.

If $|\lambda_1| \leq \varepsilon \sqrt{\text{Var}[q]}$, can achieve $K = 1$: output poly $\sqrt{\text{Var}[q]} y_1 + \mathbb{E}[q]$.

Typical case is that $|\lambda_1| > \varepsilon \sqrt{\text{Var}[q]}$ (corresponds to having $|w_1| > \varepsilon \|w\|_2$ in the $\{-1, 1\}^n$ LTF setting.)
Proof sketch, cont.

Theorem: There is a $\text{poly}(n, 1/\varepsilon)$-time deterministic algorithm $\text{Construct-Gaussian-Junta}$ which, given any degree-2 polynomial $q(x)$, outputs a degree-2 polynomial $\tilde{q}(x) = \sum_{i=1}^{K} (\lambda_i x_i^2 + \mu_i x_i) + C$, where $K = \tilde{O}(1/\varepsilon^4)$, such that

$$\left| \Pr_{x \sim N(0,1)^n}[q(x) \geq 0] - \Pr_{y \in N(0,1)^K}[\tilde{q}(y) \geq 0] \right| \leq \varepsilon.$$

If $|\lambda_1| > \varepsilon \sqrt{\text{Var}[q]}$:

Define new $N(0, 1)$ variable $y_1 = \nu^{(1)} \cdot x$.

Rewrite $q(x)$ as $(n + 1)$-variable polynomial $\lambda_1 y_1^2 + \mu_1 y_1 + r_1(y_1, x_1, \ldots, x_n)$.

Corresponds to “setting w_1 aside” in the $\{-1, 1\}^n$ LTF setting

Can show

- r_1 (essentially) does not depend on y_1
- $\text{Var}[r_1] \leq (1 - \varepsilon^4) \text{Var}[q]$ (corresponds to 2-norm of (w_2, \ldots, w_n) being “a lot” smaller than $\|w\|_2$ in the $\{-1, 1\}^n$ LTF setting)

Remove from r_1 all terms that contain y_1, and repeat on r_1.

2nd stage:

- If $|\lambda_{\text{max}}(r_1)| \leq \varepsilon \sqrt{\text{Var}[r_1]}$, stop and output the polynomial

$$
\lambda_1 y_1^2 + \mu_1 y_1 + \sqrt{\text{Var}[r_1]} y_2 + \mathbb{E}[r_1]
$$

- If $|\lambda_{\text{max}}(r_1)| > \varepsilon \sqrt{\text{Var}[r_1]}$, continue building the decoupled polynomial:

$$
\lambda_1 y_1^2 + \mu_1 y_1 + \lambda_2 y_2^2 + \mu_2 y_2 + r_2(y_2, x_1, \ldots, x_n)
$$

As before, r_2 essentially does not depend on y_2, and variance again goes down by $(1 - \varepsilon^4)$ factor. Continue to 3rd stage. Etc.
Proof sketch, concluded

If loop exits at some stage \(K' \leq K \overset{\text{def}}{=} \tilde{O}(1/\varepsilon^4) \), done.

Otherwise, have

\[
\sum_{i=1}^{K} \lambda_i y_i^2 + \mu_i y_i + r_K(x_1, \ldots, x_n)
\]

where \(\text{Var}[r_k] \leq \varepsilon \). Can ignore \(r_K \) and incur error at most \(\varepsilon \).

Concludes sketch of theorem:

\textbf{Theorem:} There is a \(\text{poly}(n, 1/\varepsilon) \)-time deterministic algorithm \(\text{Construct-Gaussian-Junta} \) which, given any degree-2 polynomial \(q(x) \), outputs a degree-2 polynomial \(\tilde{q}(x) = \sum_{i=1}^{K} (\lambda_i x_i^2 + \mu_i x_i) + C \), where \(K = \tilde{O}(1/\varepsilon^4) \), such that

\[
\left| \Pr_{x \sim N(0,1)^n} [q(x) \geq 0] - \Pr_{y \in N(0,1)^K} [\tilde{q}(y) \geq 0] \right| \leq \varepsilon.
\]
Almost done...

- Introduction, motivation, statement of result, application to deterministically approximating moments

- From Gaussian to Boolean: suffices to solve Gaussian problem
 - Solving the Gaussian problem:
 - transforming input polynomial to an equivalent “nice” (decoupled junta) form
 - counting Gaussian satisfying assignments for decoupled junta polynomials
Counting Gaussian junta satisfying assignments

Given a Gaussian junta, can count efficiently:

Theorem: There is a $\text{poly}(1/\varepsilon)$-time deterministic algorithm which, on input any degree-2 junta PTF $q(y) = \sum_{i=1}^{K} (\lambda_i y_i^2 + \mu_i y_i) + C$, with $K = \tilde{O}(1/\varepsilon^4)$, outputs a value \hat{p} such that

$$\left| \hat{p} - \Pr_{y \sim N(0,1)^K} [\text{sign}(q(y)) = 1] \right| \leq \varepsilon.$$

Probably many ways to do this. An elementary approach: discretize Gaussians, discretize polynomial, use dynamic programming.
Counting Gaussian junta satisfying assignments

Theorem: There is a $\text{poly}(1/\varepsilon)$-time deterministic algorithm which, on input any degree-2 junta PTF $q(y) = \sum_{i=1}^{K} (\lambda_i y_i^2 + \mu_i y_i) + C$, with $K = \tilde{O}(1/\varepsilon^4)$, outputs a value \hat{p} such that

$$\left| \hat{p} - \Pr_{y \sim N(0,1)^K}[\text{sign}(q(y)) = 1] \right| \leq \varepsilon.$$

1. Round coefficients of q to integer multiples of $\text{poly}(\varepsilon)$; call resulting poly \tilde{q}
 - Using Gaussian concentration and anti-concentration, can show this changes probability by at most $O(\varepsilon)$

2. Discretize each Gaussian random variable:
 $y_i \sim N(0, 1) \Rightarrow \tilde{y}_i$ uniform over $\{t_1, \ldots, t_M\}$, $M = \text{poly}(1/\varepsilon)$
 - Changes probability by at most $O(\varepsilon)$

3. Using dynamic programming, can exactly compute $\Pr[\tilde{q}(\tilde{y}) \geq 0]$ in $\text{poly}(1/\varepsilon)$ time.
Summary

Gave a deterministic EPTAS for counting degree-2 PTF satisfying assignments: \(\text{poly}(n, 2^{\text{poly}(1/\varepsilon)}) \) time. Fully polynomial for Gaussian inputs, also for regular PTFs over Boolean inputs.

After lunch Anindya will speak about recent follow-up work: an efficient deterministic algorithm for counting satisfying assignments of

\[
f(x) = J(\text{sign}(q_1(x)), \ldots, \text{sign}(q_k(x)))
\]

for any \(J : \{-1, 1\}^k \rightarrow \{-1, 1\} \), any \(k = O(1) \).
Thank you