Combinatorial Properties of k-CNF
Connection to Upper and Lower Bounds

Mohan Paturi

University of California, San Diego

August 2015
Outline

1. Introduction
2. Satisfiability Coding Lemma
3. Sparsification Lemma
4. Switching Lemma
Motivation

- Faster Satisfiability Algorithms
- Circuit Lower Bounds
Problem: Prove stronger exponential lower bounds for depth-3 OR-AND-OR (ΣΠΣ) circuits. Also for depth-3 ΣΠΣ_k circuits with bottom fan-in bounded by k
Problem: Prove stronger exponential lower bounds for depth-3 OR-AND-OR (ΣΠΣ) circuits. Also for depth-3 ΣΠΣ_k circuits with bottom fan-in bounded by k.

What was known?

1. $2^{c\sqrt{n}}$ (for $c < 1/8$) for computing parity (Switching Lemma)
2. $2^{0.687\sqrt{n}}$ for computing parity (Top-down method)
Problem: Prove stronger exponential lower bounds for depth-3 OR-AND-OR ($\Sigma \Pi \Sigma$) circuits. Also for depth-3 $\Sigma \Pi \Sigma_k$ circuits with bottom fan-in bounded by k.

What was known?
1. $2^{c\sqrt{n}}$ (for $c < 1/8$) for computing parity (Switching Lemma)
2. $2^{0.687\sqrt{n}}$ for computing parity (Top-down method)

Parity can be computed by $O(n^{\frac{1}{4}}2^{\sqrt{n}})$ size depth-3 circuits of bottom fan-in $O(\sqrt{n})$.
Problem: Prove stronger exponential lower bounds for depth-3 OR-AND-OR (ΣΠΣ) circuits. Also for depth-3 ΣΠΣ_\(k\) circuits with bottom fan-in bounded by \(k\).

What was known?

1. \(2^c\sqrt{n}\) (for \(c < 1/8\)) for computing parity (Switching Lemma)
2. \(2^{0.687\sqrt{n}}\) for computing parity (Top-down method)

Parity can be computed by \(O(n^{1/4}2^{\sqrt{n}})\) size depth-3 circuits of bottom fan-in \(O(\sqrt{n})\).

Better lower bounds?
Connections to Other Circuit Models

- Linear-size log-depth Boolean circuits of fan-in 2 \rightarrow depth-3 circuits of size $2^{O(n/\log \log n)}$ and bottom fan-in $n^{o(1)}$
Connections to Other Circuit Models

- Linear-size log-depth Boolean circuits of fan-in 2 \rightarrow depth-3 circuits of size $2^{O(n/\log \log n)}$ and bottom fan-in $n^{o(1)}$
- Linear-size log-depth series-parallel circuits \rightarrow $\bigvee 2^{O(n/\log d)}$ linear size 2^d-CNF
Connections to Other Circuit Models

- Linear-size log-depth Boolean circuits of fan-in 2 \rightarrow depth-3 circuits of size $2^{O(n/\log \log n)}$ and bottom fan-in $n^{o(1)}$
- Linear-size log-depth series-parallel circuits \rightarrow $\bigvee 2^{O(n/\log d)}$ linear size 2^d-CNF
- NC^1 circuits of depth $k \log n$ \rightarrow depth $d + 1$ unbounded fan-in Boolean circuits of size $2^{n^{k/d}}$ and bottom fan-in $n^{k/d}$
A Lower Bound Problem

- Prove that for a function in NP that it cannot be computed by bottom fan-in k depth-3 circuits of size $2^{n/2}$ for any k
A Lower Bound Problem

- Prove that for a function in \textbf{NP} that it cannot be computed by bottom fan-in k depth-3 circuits of size $2^{n/2}$ for any k.
- An even weaker open problem: proving a size lower bound of $2^{2n/k}$ on depth-3 circuits with bottom fan-in at most k. Or proving a size lower bound of $2^{2\sqrt{n}}$ for depth-3 circuits without any bottom fan-in restriction.
A Lower Bound Problem

- Prove that for a function in \textbf{NP} that it cannot be computed by bottom fan-in k depth-3 circuits of size $2^{n/2}$ for any k.

- An even weaker open problem: proving a size lower bound of $2^{2n/k}$ on depth-3 circuits with bottom fan-in at most k. Or proving a size lower bound of $2^{2\sqrt{n}}$ for depth-3 circuits without any bottom fan-in restriction.

- A more immediate challenge: prove a $2^{n/k}$ size lower bound for computing parity with depth-3 circuits of bottom fan-in k and a $2^{\sqrt{n}}$ size lower bound for circuits without any restriction on bottom fan-in.
Satisfiability

- Input: a formula or circuit F on n variables.
Satisfiability

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
Satisfiability

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
- Examples for F: k-CNF, CNF, formula, AC^0 circuit, NC^1 circuit, polynomial size circuit
Satisfiability

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable.
- Examples for F: k-CNF, CNF, formula, AC^0 circuit, NC^1 circuit, polynomial size circuit.
- Decidable in $|F|2^n$ time.
Satisfiability

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
- Examples for F: k-CNF, CNF, formula, \mathbf{AC}^0 circuit, \mathbf{NC}^1 circuit, polynomial size circuit
- Decidable in $|F|2^n$ time.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^{n(1-\mu)}$ bound for $\mu > 0$?
Satisfiability

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable.
- Examples for F: k-CNF, CNF, formula, AC^0 circuit, NC^1 circuit, polynomial size circuit.
- Decidable in $|F|2^n$ time.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^{n(1-\mu)}$ bound for $\mu > 0$?
- μ is called the satisfiability savings. μ can be a function of the parameters of the class of formulas/circuits and n, the number of variables.
Satisfiability

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
- Examples for F: k-CNF, CNF, formula, \mathbf{AC}^0 circuit, \mathbf{NC}^1 circuit, polynomial size circuit
- Decidable in $|F|2^n$ time.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^{n(1-\mu)}$ bound for $\mu > 0$?
- μ is a called the satisfiability savings. μ can be a function of the parameters of the class of formulas/circuits and n, the number of variables.
- What is the savings for the class of k-CNF formulas?
Satisfiability

- Input: a formula or circuit F on n variables.
- Check if F is satisfiable
- Examples for F: k-CNF, CNF, formula, AC^0 circuit, NC^1 circuit, polynomial size circuit
- Decidable in $|F|2^n$ time.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^{n(1-\mu)}$ bound for $\mu > 0$?
- μ is called the satisfiability savings. μ can be a function of the parameters of the class of formulas/circuits and n, the number of variables.
- What is the savings for the class of k-CNF formulas?
- Earlier (to 1997) results showed that μ is $\Omega(1/2^k)$.
Let C is a $\Sigma\Pi\Sigma_k$ circuit with top fan-in s.

Let C compute the parity function \rightarrow one of the s_k-cnf.

\rightarrow must accept at least $\Omega(2^{n/s})$ many inputs of odd parity and accept no input of even parity.

Argue that a k-cnf cannot accept too many such inputs while avoiding all inputs of even parity.
Let C be a $\Sigma\Pi\Sigma_k$ circuit with top fan-in s

Let C compute the parity function \longrightarrow one of the $s \ k$-CNFs must accept at least $\Omega(2^n/s)$ many inputs of odd parity and accept no input of even parity.
Let C is a $\Sigma \Pi \Sigma_k$ circuit with top fan-in s

Let C compute the parity function \longrightarrow one of the $s \ k$-CNFS must accept at least $\Omega(2^n/s)$ many inputs of odd parity and accept no input of even parity.

Argue that a k-CNF cannot accept too many such inputs while avoiding all inputs of even parity.
Isolated Solutions

A satisfying solution for F is isolated if all its distance 1 neighbors are not solutions.
Isolated Solutions

A satisfying solution for F is isolated if all its distance 1 neighbors are not solutions.

What is the maximum number of isolated solutions for a k-CNF?
Isolated Solutions

- A satisfying solution for F is isolated if all its distance 1 neighbors are not solutions.
- What is the maximum number of isolated solutions for a k-CNF?
- We show that this number is at most $2^n(1-1/k)$
Critical Clauses

- Let F be a k-CNF and x be an isolated satisfying solution of x.
Let F be a k-CNF and x be an isolated satisfying solution of x.

For each variable i and isolated solution x, F must have a clause with exactly one true literal corresponding to the variable i at solution x.
Critical Clauses

- Let F be a k-CNF and x be an isolated satisfying solution of x.
- For each variable i and isolated solution x, F must have a clause with exactly one true literal corresponding to the variable i at solution x.
- Such clause is called a critical clause for the variable i at the solution x.
Compressing Isolated Satisfying Solutions

- Let F be a k-CNF and σ a permutation of $\{1, \cdots, n\}$.
Compressing Isolated Satisfying Solutions

- Let F be a k-CNF and σ a permutation of $\{1, \ldots, n\}$.
- Let $x \in \{0, 1\}^n$ be an isolated satisfying solution of F.
- Compression Function F_σ:

 1. Permute the bits of x according to σ.
 2. For each i, delete the i'th bit of x if all other variables in a critical clause $C_{x, \sigma}(i)$ (for the variable $\sigma(i)$ at x) occur before the variable $\sigma(i)$ in the order σ.
 3. $F_\sigma(x)$ is the resulting compressed string.
Compressing Isolated Satisfying Solutions

- Let F be a k-CNF and σ a permutation of $\{1, \cdots, n\}$.
- Let $x \in \{0, 1\}^n$ be an isolated satisfying solution of F.
- **Compression Function** F_σ:
 1. Permute the bits of x according to σ
Compressing Isolated Satisfying Solutions

- Let F be a k-CNF and σ a permutation of $\{1, \ldots, n\}$.
- Let $x \in \{0, 1\}^n$ be an isolated satisfying solution of F.
- **Compression Function** F_σ:
 1. Permute the bits of x according to σ.
 2. For each i, delete the i'th bit of x if all other variables in a critical clause $C_{x,\sigma(i)}$ (for the variable $\sigma(i)$ at x) occur before the variable $\sigma(i)$ in the order σ.

Paturi

Properties of k-CNF
Compressing Isolated Satisfying Solutions

- Let F be a k-CNF and σ a permutation of $\{1, \cdots, n\}$.
- Let $x \in \{0, 1\}^n$ be an isolated satisfying solution of F.
- **Compression Function** F_σ:
 1. Permute the bits of x according to σ.
 2. For each i, delete the i’th bit of x if all other variables in a critical clause $C_{x, \sigma(i)}$ (for the variable $\sigma(i)$ at x) occur before the variable $\sigma(i)$ in the order σ.
 3. $F_\sigma(x)$ is the resulting compressed string.
We can recover x from $y = F_\sigma(x)$, F, and σ.
F_σ is Lossless

- We can recover x from $y = F_\sigma(x)$, F, and σ.
- Decompression Algorithm:

1. $F_1 = F$
2. \textbf{for} $i = 1, \ldots, n$
3. \hspace{1em} \textbf{if} F_i has a clause of length one with the variable $\sigma(i)$,
4. \hspace{1em} \textbf{then} set the variable $\sigma(i)$ so that the clause is true
5. \hspace{1em} \textbf{else} set the variable $\sigma(i)$ to the next unused bit of y.
6. $F_{i+1} = \text{substitute for } \sigma(i) \text{ in } F \text{ and simplify}$
Satisfiability Coding Lemma

Lemma (Satisfiability Coding Lemma)

If x is an isolated solution of a k-CNF F, then its average (over all permutations σ) compressed length $|F_\sigma(x)|$ is at most $n(1 - 1/k)$.

Proof Sketch: For each variable i with a critical clause at x, the probability (under a random permutation) i appears last among all the variables in its critical clause is at least $1/k$.

Satisfiability Coding Lemma

Lemma (Satisfiability Coding Lemma)

If x is an isolated solution of a k-CNF F, then its average (over all permutations σ) compressed length $|F_\sigma(x)|$ is at most $n(1 - 1/k)$.

Proof Sketch: For each variable i with a critical clause at x, the probability (under a random permutation) i appears last among all the variables in its critical clause is at least $1/k$.

The compression algorithm deletes n/k bits on average.
Maximum Number of Isolated Solutions

Lemma

A k-CNF can have at most $2^n(1-1/k)$ isolated solutions.

Proof Sketch:

- For every isolated solution, the average (over permutations) compressed length is at most $n - n/k$
Maximum Number of Isolated Solutions

Lemma

A k-CNF can have at most $2^{n(1-1/k)}$ isolated solutions.

Proof Sketch:

- For every isolated solution, the average (over permutations) compressed length is at most $n - n/k$.
- There exists a permutation such that the average (over all isolated solutions) compressed length is at most $n - n/k$.
Maximum Number of Isolated Solutions

Lemma

A k-CNF can have at most $2^{n(1-1/k)}$ isolated solutions.

Proof Sketch:

- For every isolated solution, the average (over permutations) compressed length is at most $n - n/k$.
- There exists a permutation such that the average (over all isolated solutions) compressed length is at most $n - n/k$.
- Hence, the number of isolated solutions is at most $2^{n(1-1/k)}$ using a convexity argument.
Maximum Number of Isolated Solutions

Lemma

A k-CNF can have at most $2^{n(1-1/k)}$ isolated solutions.

Proof Sketch:

- For every isolated solution, the average (over permutations) compressed length is at most $n - n/k$
- There exists a permutation such that the average (over all isolated solutions) compressed length is at most $n - n/k$.
- Hence, the number of isolated solutions is at most $2^{n(1-1/k)}$ using a convexity argument.

Fact

If $\Phi : S \rightarrow \{0, 1\}^*$ is a prefix-free encoding (one-to-one function) with average code length l, the $|S| \leq 2^l$.

Lower Bounds for Parity

Theorem

Computing the parity function requires $2^{n/k}$ size $\Sigma\Pi\Sigma_k$ circuits.
Lower Bounds for Parity

Theorem

Computing the parity function requires $2^{n/k}$ size $\Sigma \Pi \Sigma_k$ circuits.

Theorem

Computing the parity function requires $\Omega(n^{1/4}2^{\sqrt{n}})$ size depth-3 circuits.
Problem: clause lengths are not uniform.
Problem: clause lengths are not uniform.

Let $N_l(x)$ be the number of critical clauses of length l at the solution x.

$$\sum_{l} N_l(x) = n$$ for an isolated solution x.

Define weight of x, $w(x) = \frac{1}{|C(x,i)|} = \frac{1}{l} \sum N_l(x)$.

Argue that for a k-cnf F, the number of isolated solutions with weight greater or equal to μ is at most $2^{n-\mu}$.
Parity Lower Bound for General Depth-3 Circuits

- Problem: clause lengths are not uniform.
- Let $N_i(x)$ be the number of critical clauses of length i at the solution x.
- $\sum_i N_i(x) = n$ for an isolated solution x.

\[\text{Define weight of } x, \quad w(x) = \sum_{i=1}^{n} \frac{1}{|C(x, i)|} = \frac{\sum_i N_i(x)}{i}. \]
Parity Lower Bound for General Depth-3 Circuits

- Problem: clause lengths are not uniform.
- Let $N_l(x)$ be the number of critical clauses of length l at the solution x.
- $\sum_l N_l(x) = n$ for an isolated solution x.
- Define weight of x, $w(x) = \sum_{i=1}^n 1/|C(x,i)| = \sum_l N_l(x)/l$.

Properties of k-CNF
Problem: clause lengths are not uniform.

Let $N_l(x)$ be the number of critical clauses of length l at the solution x.

$\sum_l N_l(x) = n$ for an isolated solution x.

Define weight of x, $w(x) = \sum_{i=1}^n 1/|C(x,i)| = \sum_l N_l(x)/l$.

Argue that for a k-CNF F, the number of isolated solutions with weight greater or equal to μ is at most $2^{n-\mu}$.
Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.

For each $x \in S$, there exists a CNF F_x accepting x and x is an isolated solution of F_x.

Many clauses (level-1 OR gates) are needed to accept low-weighted isolated solutions. A clause of length l can only be critical for at most $l^2 n - l$ solution-variable pairs (x, i).

Paturi Properties of k-CNF
Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.

For each $x \in S$, there exists a CNF F_x accepting x and x is an isolated solution of F_x.

Define the weight of x with respect to F_x.
Lower Bound Proof

- Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
- For each $x \in S$, there exists a CNF F_x accepting x and x is an isolated solution of F_x.
- Define the weight of x with respect to F_x.
- Let $\mu = \sqrt{n} + \frac{\log n}{4}$
Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.

For each $x \in S$, there exists a CNF F_x accepting x and x is an isolated solution of F_x.

Define the weight of x with respect to F_x.

Let $\mu = \sqrt{n} + \frac{\log n}{4}$

$S_1 \subseteq S$ be the set of x with $w(x) \geq \mu$. $S_2 = S - S_1$ be the set of x with $w(x) < \mu$,
Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.

For each $x \in S$, there exists a CNF F_x accepting x and x is an isolated solution of F_x.

Define the weight of x with respect to F_x.

Let $\mu = \sqrt{n} + \frac{\log n}{4}$

$S_1 \subseteq S$ be the set of x with $w(x) \geq \mu$. $S_2 = S - S_1$ be the set of x with $w(x) < \mu$,

Number of CNFs (level-2 AND gates) is at least $|S_1|2^{\mu-n}$.
Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.

For each $x \in S$, there exists a CNF F_x accepting x and x is an isolated solution of F_x.

Define the weight of x with respect to F_x. Let $\mu = \sqrt{n} + \frac{\log n}{4}$.

$S_1 \subseteq S$ be the set of x with $w(x) \geq \mu$. $S_2 = S - S_1$ be the set of x with $w(x) < \mu$.

Number of CNFs (level-2 AND gates) is at least $|S_1|2^{\mu-n}$.

Many clauses (level-1 OR gates) are needed to accept low-weighted isolated solutions.
Lower Bound Proof

- Consider a depth-3 circuit computing parity. Let S be the set of odd inputs accepted by the circuit. $|S| = 2^{n-1}$.
- For each $x \in S$, there exists a CNF F_x accepting x and x is an isolated solution of F_x.
- Define the weight of x with respect to F_x.
- Let $\mu = \sqrt{n} + \frac{\log n}{4}$
- $S_1 \subseteq S$ be the set of x with $w(x) \geq \mu$. $S_2 = S - S_1$ be the set of x with $w(x) < \mu$.
- Number of CNFs (level-2 AND gates) is at least $|S_1|2^{\mu-n}$.
- Many clauses (level-1 OR gates) are needed to accept low-weighted isolated solutions.
- A clause of length l can only be critical for at most $l2^{n-l}$ solution-variable pairs (x, i).

Paturi Properties of k-CNF
Hence, the number of clauses in all CNFs together must be at least
Hence, the number of clauses in all CNFs together must be at least

$$\sum_{l=1}^{n} \sum_{x \in S_2} N_l(x)/(l2^{n-l}) = \sum_{x \in S_2} n2^{-n} \sum_{i=1}^{n} \frac{N_l(x) 2^l}{n/l} \geq \sum_{x \in S_2} \mu 2^{-n+n/\mu} = |S_2| \mu 2^{-n+n/\mu}$$
Hence, the number of clauses in all CNFs together must be at least

\[
\sum_{l=1}^{n} \sum_{x \in S_2} \frac{N_l(x)}{(l2^{n-l})} = \sum_{x \in S_2} n2^{-n} \sum_{i=1}^{n} \frac{N_l(x) 2^l}{n} \frac{1}{l} \geq \sum_{x \in S_2} \mu 2^{-n+n/\mu} = |S_2|\mu 2^{-n+n/\mu}
\]

Total number of gates is at least \(|S_1|2^{\mu-n} + |S_2|\mu 2^{-n+n/\mu} \).
Hence, the number of clauses in all CNFs together must be at least

\[
\sum_{l=1}^{n} \sum_{x \in S_2} \frac{N_l(x)}{(l2^{n-l})} = \sum_{x \in S_2} n2^{-n} \sum_{i=1}^{n} \frac{N_l(x) 2^l}{n l} \geq \sum_{x \in S_2} \mu 2^{-n+n/\mu} = |S_2| \mu 2^{-n+n/\mu}
\]

Total number of gates is at least \(|S_1|2^{\mu-n} + |S_2|\mu 2^{-n+n/\mu}.

Minimizing the count subject to the condition \(|S_1| + |S_2| = 2^{n-1}\) will yield the desired bound.
Algorithm PPZ:

1. Let F be a k-CNF and σ a random permutation on variables
2. for $i = 1, \ldots, n$
3. if there is a unit clause for the variable $\sigma(i)$
4. then set the variable $\sigma(i)$ so that the clause true
5. else set the variable $\sigma(i)$ randomly
6. Simplify F
7. if F is satisfied, output the assignment
Analysis

Lemma

Algorithm PPZ outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with $I(x)$ many neighbors which are not solutions.
Lemma

Algorithm **PPZ** outputs x with probability at least $\frac{1}{n} 2^{-n+I(x)/k}$ for any satisfying solution x with $I(x)$ many neighbors which are not solutions.

Proof Sketch:

- E_1 — for at least $I(x)/k$ variables, the critical variable appears as the last variable among the variables in the critical clause.
Algorithm \textbf{PPZ} outputs x with probability at least $\frac{1}{n} 2^{-n + I(x)/k}$ for any satisfying solution x with $I(x)$ many neighbors which are not solutions.

Proof Sketch:

- E_1 — for at least $I(x)/k$ variables, the critical variable appears as the last variable among the variables in the critical clause
- E_2 — values assigned to the variables in the \textbf{for} loop agree with x
Algorithm PPZ outputs x with probability at least $\frac{1}{n} 2^{-n + I(x)/k}$ for any satisfying solution x with $I(x)$ many neighbors which are not solutions.

Proof Sketch:

- E_1 — for at least $I(x)/k$ variables, the critical variable appears as the last variable among the variables in the critical clause
- E_2 — values assigned to the variables in the for loop agree with x
- $P(E_1) \geq 1/n$
Lemma

Algorithm **PPZ** outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with $I(x)$ many neighbors which are not solutions.

Proof Sketch:

- E_1 — for at least $I(x)/k$ variables, the critical variable appears as the last variable among the variables in the critical clause
- E_2 — values assigned to the variables in the for loop agree with x
- $\Pr(E_1) \geq 1/n$
- $\Pr(E_2|E_1) \geq 2^{-n+I(x)/k}$
Algorithm PPZ outputs x with probability at least \(\frac{1}{n}2^{-n+I(x)/k}\) for any satisfying solution x with I(x) many neighbors which are not solutions.

Proof Sketch:

- **E₁** — for at least \(I(x)/k\) variables, the critical variable appears as the last variable among the variables in the critical clause
- **E₂** — values assigned to the variables in the for loop agree with x
- \(P(E₁) \geq 1/n\)
- \(P(E₂|E₁) \geq 2^{-n+I(x)/k}\)
- \(P(x \text{ is output by PPZ}) \geq \frac{1}{n}2^{-n+I(x)/k}\)
Let \(S \) be the set of satisfying solutions of \(F \).
Let S be the set of satisfying solutions of F.

For $x \in S$, define $value(x) = 2^{-n+I(x)}$.
Let \(S \) be the set of satisfying solutions of \(F \).

For \(x \in S \), define \(\text{value}(x) = 2^{-n + l(x)} \).

Fact: \(\sum_{x \in S} \text{value}(x) \geq 1 \).
Let S be the set of satisfying solutions of F.

For $x \in S$, define $\text{value}(x) = 2^{-n+I(x)}$

Fact: $\sum_{x \in S} \text{value}(x) \geq 1$

$$P(x \text{ is output by PPZ}) \geq \sum_{x \in S} \frac{1}{n} 2^{-n+I(x)/k}$$

$$= \frac{1}{n} 2^{-n+n/k} \sum_{x \in S} 2^{(-n+I(x))/k}$$

$$\geq \frac{1}{n} 2^{-n+n/k}$$
Theorem

If $S \neq \emptyset$ is the set of satisfying solutions of a k-CNF F, then PPZ finds a satisfying assignment with probability at least $\frac{1}{n} \left(\frac{2^n}{|S|} \right)^{1 - 1/k}$.
Dense Case

Theorem

If $S \neq \emptyset$ is the set of satisfying solutions of a k-CNF F, then PPZ finds a satisfying assignment with probability at least $\frac{1}{n} \left(\frac{2^n}{|S|} \right)^{1-1/k}$

Proof Sketch: Use the edge isoperimetric inequality for the hypercube to conclude that among all sets $S \subseteq \{0,1\}^n$ of a given size, the subcube of dimension $\log |S|$ minimizes the number of edges between S and \bar{S}.
Further Improvements

- PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?
Further Improvements

- PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?
- PPZ argument only uses the fact that there is at least one critical clause for each variable at z. If there is more than one critical clause per variable we could get a better bound. Let $(x_1 \lor \overline{x}_2 \lor \overline{x}_3)$ and $(x_1 \lor \overline{x}_4 \lor \overline{x}_5)$ be critical clauses for x_1 at $z = 1$. The probability that x_1 is the last variable among the variables in one of its critical clauses is now at least $7/15$ rather than $1/3$. In general, even if z is the only solution, there need not be more than one critical clause per variable.
Further Improvements

- PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?
- PPZ argument only uses the fact that there is at least one critical clause for each variable at z.
- If there is more than one critical clause per variable we could get a better bound. Let $(x_1 \lor \overline{x_2} \lor x_3)$ and $(x_1 \lor \overline{x_4} \lor x_5)$ be critical clauses for x_1 at $z = 1^n$.

Paturi Properties of k-CNF
Further Improvements

- PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?
- PPZ argument only uses the fact that there is at least one critical clause for each variable at z.
- If there is more than one critical clause per variable we could get a better bound. Let $(x_1 \lor \bar{x}_2 \lor x_3)$ and $(x_1 \lor \bar{x}_4 \lor x_5)$ be critical clauses for x_1 at $z = 1^n$.
- The probability that x_1 is the last variable among the variables in one of its critical clauses is now at least $7/15$ rather than $1/3$.
Further Improvements

• PPZ analysis shows that on average we can expect to find n/k unit clauses for an isolated solution z. Can we improve the expected number of unit clauses?

• PPZ argument only uses the fact that there is at least one critical clause for each variable at z.

• If there is more than one critical clause per variable we could get a better bound. Let $(x_1 \lor \overline{x}_2 \lor \overline{x}_3)$ and $(x_1 \lor \overline{x}_4 \lor \overline{x}_5)$ be critical clauses for x_1 at $z = 1^n$.

• The probability that x_1 is the last variable among the variables in one of its critical clauses is now at least $7/15$ rather than $1/3$.

• In general, even if z is the only solution, there need not be more than one critical clause per variable.
Further Improvements — Resolution

Let F contain the clauses $C_1 = (x_1 \lor \bar{x}_2 \lor \bar{x}_3)$, critical for x_1, and $C_2 = (x_2 \lor \bar{x}_4 \lor \bar{x}_5)$, critical for x_2.
Further Improvements — Resolution

- Let F contain the clauses $C_1 = (x_1 \lor \overline{x_2} \lor \overline{x_3})$, critical for x_1, and $C_2 = (x_2 \lor \overline{x_4} \lor \overline{x_5})$, critical for x_2.

- By resolution, we can derive another critical clause $(x_1 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$ for x_1. With two critical clauses for x_1, we can improve the probability of the occurrence of a unit clause for x_1.

Critical clauses alone will not suffice: instead of C_2, if we have $C_3 = (x_2 \lor \overline{x_1} \lor \overline{x_4})$ as a critical clause for x_2, resolution will not help.

In fact, we cannot have any critical clause for x_1 at all without $\overline{x_2}$ in it if $001^n - 2$ is also a satisfying solution.
Further Improvements — Resolution

- Let F contain the clauses $C_1 = (x_1 \lor \bar{x}_2 \lor \bar{x}_3)$, critical for x_1, and $C_2 = (x_2 \lor \bar{x}_4 \lor \bar{x}_5)$, critical for x_2.

- By resolution, we can derive another critical clause $(x_1 \lor \bar{x}_3 \lor \bar{x}_4 \lor \bar{x}_5)$ for x_1. With two critical clauses for x_1, we can improve the probability of the occurrence of a unit clause for x_1.

- Critical clauses alone will not suffice: instead of C_2, if we have $C_3 = (x_2 \lor \bar{x}_1 \lor \bar{x}_4)$ as a critical clause for x_2, resolution will not help.
Further Improvements — Resolution

- Let F contain the clauses $C_1 = (x_1 \lor \bar{x}_2 \lor \bar{x}_3)$, critical for x_1, and $C_2 = (x_2 \lor \bar{x}_4 \lor \bar{x}_5)$, critical for x_2.

- By resolution, we can derive another critical clause $(x_1 \lor \bar{x}_3 \lor \bar{x}_4 \lor \bar{x}_5)$ for x_1. With two critical clauses for x_1, we can improve the probability of the occurrence of a unit clause for x_1.

- Critical clauses alone will not suffice: instead of C_2, if we have $C_3 = (x_2 \lor \bar{x}_1 \lor \bar{x}_4)$ as a critical clause for x_2, resolution will not help.

- In fact, we cannot have any critical clause for x_1 at z without \bar{x}_2 in it if 001^{n-2} is also a satisfying solution.
We assume that z is d-isolated: no other satisfying solution within Hamming distance d. We take $d = \omega_n(1)$.
Further Improvements — d-isolation

- We assume that z is d-isolated: no other satisfying solution within Hamming distance d. We take $d = \omega_n(1)$.
- If 001^{n-2} is not a satisfying solution, there must be another critical clause for x_1 at z.
Further Improvements — d-isolation

- We assume that z is d-isolated: no other satisfying solution within Hamming distance d. We take $d = \omega_n(1)$.
- If 001^{n-2} is not a satisfying solution, there must be another critical clause for x_1 at z.
- There must be an unsatisfied clause at 001^{n-2} involving the literals x_1 or x_2. Let $C_4 = (x_1 \lor x_2 \lor \overline{x_4})$ be such a clause. Resolving C_1 and C_4, we get the critical clause $(x_1 \lor \overline{x_3} \lor \overline{x_4})$ for x_1 at z.
Further Improvements — \(d \)-isolation

- We assume that \(z \) is \(d \)-isolated: no other satisfying solution within Hamming distance \(d \). We take \(d = \omega_n(1) \).
- If \(001^{n-2} \) is not a satisfying solution, there must be another critical clause for \(x_1 \) at \(z \).
- There must be an unsatisfied clause at \(001^{n-2} \) involving the literals \(x_1 \) or \(x_2 \). Let \(C_4 = (x_1 \lor x_2 \lor \bar{x}_4) \) be such a clause. Resolving \(C_1 \) and \(C_4 \), we get the critical clause \((x_1 \lor \bar{x}_3 \lor \bar{x}_4)\) for \(x_1 \) at \(z \).
- We also get another critical clause for \(x_1 \) by considering the nonsatisfying assignment \(010 n^{n-3} \).
A resolvable pair of clauses C_1 and C_2 is s-bounded, if $|C_1|$, $|C_2| \leq s$ and $|\text{resolvent}(C_1, C_2)| \leq s$.
A resolvable pair of clauses C_1 and C_2 is s-bounded, if $|C_1|$, $|C_2| \leq s$ and $|\text{resolvent}(C_1, C_2)| \leq s$.

F_s denote the closure of the k-CNF under s-bounded resolution.
PPSZ Algorithm

- A resolvable pair of clauses \(C_1 \) and \(C_2 \) is \(s \)-bounded, if \(|C_1|, |C_2| \leq s\) and \(|\text{resolvent}(C_1, C_2)| \leq s\).
- \(F_s \) denote the closure of the \(k\text{-CNF} \) under \(s \)-bounded resolution.
- Improved \(k\text{-SAT} \) algorithm: Apply PPZ algorithm to \(F_s \).
For a d-isolated solution, we need to estimate the expected number of variables that appear last among the variables in one of its critical clauses according to a random permutation.
PPSZ Analysis

- For a d-isolated solution, we need to estimate the expected number of variables that appear last among the variables in one of its critical clauses according to a random permutation.
- Construct a critical clause tree for this calculation.
PPSZ Analysis

- For a d-isolated solution, we need to estimate the expected number of variables that appear last among the variables in one of its critical clauses according to a random permutation.
- Construct a critical clause tree for this calculation.
- Cuts of the critical clause tree correspond to critical clauses.
For a d-isolated solution, we need to estimate the expected number of variables that appear last among the variables in one of its critical clauses according to a random permutation.

- Construct a critical clause tree for this calculation.
- Cuts of the critical clause tree correspond to critical clauses.
- Calculate the probability that a variable occurs after a cut in its critical clause tree using a recurrence relation.
Lemma

Let z be a d-isolated solution of a k-CNF and $s \geq k^d$.

$$P(\text{PPSZ outputs } z) \geq 2^{-\left(1 - \frac{\mu_k}{k-1} + \epsilon(d,k)\right)n}.$$
PPSZ Results

Lemma

Let z be a d-isolated solution of a k-CNF and $s \geq k^d$.
$$\Pr(\text{PPSZ outputs } z) \geq 2^{-\left(1 - \frac{\mu_k}{k-1} + \epsilon(d,k)\right)n}.$$

Notes:

1. ϵ goes to 0 as d goes to infinity.
PPSZ Results

Lemma

Let z be a d-isolated solution of a k-CNF and $s \geq k^d$. Then

$$\Pr(\text{PPSZ outputs } z) \geq 2\left(1 - \frac{\mu_k}{k-1} + \epsilon(d,k)\right)n.$$

Notes:

1. ϵ goes to 0 as d goes to infinity.
2. μ_k increases with k and $\mu_\infty = \frac{\pi^2}{6}$.

The number of d-isolated solutions of a k-CNF is at most

$$2\left(1 - \frac{\mu_k}{k-1} + \epsilon(d,k)\right)n.$$
PPSZ Results

Lemma

Let z be a d-isolated solution of a k-CNF and $s \geq k^d$.

\[P(\text{PPSZ outputs } z) \geq 2^{-(1 - \frac{\mu_k}{k-1} + \epsilon(d,k))n}. \]

Notes:

1. ϵ goes to 0 as d goes to infinity.

2. $\mu_k = \sum_{j=1}^{\infty} \frac{1}{j(j + 1/k)}$

3. μ_k increases with k and $\mu_\infty = \frac{\pi^2}{6} = 1.644 \cdots$
PPSZ Results

Lemma

Let z be a d-isolated solution of a k-CNF and $s \geq k^d$.
$P(PPSZ \text{ outputs } z) \geq 2^{-\left(1-\frac{\mu_k}{k-1}+\epsilon(d,k)\right)n}$.

Notes:

1. ϵ goes to 0 as d goes to infinity.
2.

$$\mu_k = \sum_{j=1}^{\infty} \frac{1}{j(j+1/k)}$$

3. μ_k increases with k and $\mu_\infty = \frac{\pi^2}{6} = 1.644 \cdots$

4. The number of d-isolated solutions of a k-CNF is at most $2^{\left(1-\frac{\mu_k}{k-1}+\epsilon(d,k)\right)n}$.
Improved Lower Bounds for Depth-3 Circuits

Theorem

Let E be an error-correcting code of minimum distance $d > \log n$ and at least $2^{n-n/\log n}$ code words. If C is a $\Sigma \Pi \Sigma_k$ circuit computing the characteristic function of E, then C has at least $2^{(\frac{\mu_k}{k-1} - o(1))n}$ gates.
Improved Lower Bounds for Depth-3 Circuits

Theorem

Let E be an error-correcting code of minimum distance $d > \log n$ and at least $2^{n - n/\log n}$ code words. If C is a $\Sigma \Pi \Sigma_k$ circuit computing the characteristic function of E, then C has at least $2^{2^{(\frac{\mu_k}{k-1}-o(1))n}}$ gates.

Theorem

Let E be an error-correcting code of minimum distance $d > \log n$ and at least $2^{n - \sqrt{n}/\log n}$ code words. If C is a $\Sigma \Pi \Sigma$ circuit computing the characteristic function of E, then C has at least $2^{1.282\sqrt{n}}$ gates.
If the k-CNF F has a d-isolated solution for $d = \omega_n(1)$, then it can be found in time $2^{n \left(1 - \frac{\mu_k}{k-1} - o(1) \right)}$ with constant success probability.
If the k-CNF F has a d-isolated solution for $d = \omega_n(1)$, then it can be found in time $2^{n(1-\frac{\mu_k}{k-1}-o(1))}$ with constant success probability.

For the general case, PPSZ obtains the same bound for $k \geq 5$ and slightly weaker bounds for $k = 3$ and $k = 4$. The proof is involved.
If the k-CNF F has a d-isolated solution for $d = \omega_n(1)$, then it can be found in time $2^{n(1 - \frac{\mu_k}{k-1} - o(1))}$ with constant success probability.

For the general case, PPSZ obtains the same bound for $k \geq 5$ and slightly weaker bounds for $k = 3$ and $k = 4$. The proof is involved.

Recently, T. Hertli presented a simpler and nicer proof to extend the PPSZ bound from the d-isolated case to the general case for all k.
Let C be a $\Sigma\Pi\Sigma_k$ circuit of size s computing a balanced function f. Think of as $s = 2^{n-o(n)}$.

Goal: to show that a 'low complexity' function f requires large s.

Let F be a depth-2 subcircuit (k-cnf) such that $|F - 1(1)| = \Omega(2^{n/s}) = \Omega(2^{o(n)})$.

Let d be the VC-dimension of $F - 1$.
Let C be a $\Sigma\Pi\Sigma_k$ circuit of size s computing a balanced function f. Think of as $s = 2^{n-o(n)}$.

Goal: to show that a ‘low complexity’ function f requires large s.

Let F be a depth-2 subcircuit (k-cnf) such that $|1^F - 1| = \Omega(2^{n/s}) = \Omega(2^{o(n)})$. Let d be the VC-dimension of $F - 1$.

Paturi

Properties of k-CNF
Let C be a $\Sigma\Pi\Sigma_k$ circuit of size s computing a balanced function f. Think of as $s = 2^{n-o(n)}$.

Goal: to show that a ‘low complexity’ function f requires large s.

Let F be a depth-2 subcircuit (k-CNF) such that $\left| F^{-1}(1) \right| = \Omega\left(2^n/s \right) = \Omega(2^{o(n)})$.
Let C be a $\Sigma\Pi\Sigma_k$ circuit of size s computing a balanced function f. Think of as $s = 2^{n-o(n)}$.

Goal: to show that a ‘low complexity’ function f requires large s.

Let F be a depth-2 subcircuit (k-CNF) such that $|F^{-1}(1)| = \Omega(2^n/s) = \Omega(2^{o(n)})$.

Let d be the VC-dimension of $F^{-1}(1)$.
How to Prove Stronger Lower Bounds for Depth-3 Circuits

- \(d \geq \log(2^n/s)/\log n \). Without loss of generality, assume that the set \(\{1, 2, \cdots, d\} \) is shattered when you view the elements of \(F^{-1}(1) \) as subsets of \(\{1, 2, \cdots, n\} \).
How to Prove Stronger Lower Bounds for Depth-3 Circuits

- \(d \geq \log(2^n/s)/\log n \). Without loss of generality, assume that the set \(\{1, 2, \cdots, d\} \) is shattered when you view the elements of \(F^{-1}(1) \) as subsets of \(\{1, 2, \cdots, n\} \).

- Select \(2^d \) inputs from \(F^{-1}(1) \) of the form \(yp_1(y)p_2(y)\cdots p_{(n-d)}(y) \) for each \(y \in \{0, 1\}^d \) for some degree \(d \) \(GF(2) \) polynomials \(p_i \) in \(d \) variables. Call this set \(D_F \).
How to Prove Stronger Lower Bounds for Depth-3 Circuits

- $d \geq \log(2^n/s)/\log n$. Without loss of generality, assume that the set \{1, 2, \cdots, d\} is shattered when you view the elements of $F^{-1}(1)$ as subsets of \{1, 2, \cdots, n\}.

- Select 2^d inputs from $F^{-1}(1)$ of the form $y p_1(y) p_2(y) \cdots p_{(n-d)}(y)$ for each $y \in \{0, 1\}^d$ for some degree d GF(2) polynomials p_i in d variables. Call this set D_F.

- F is constant on D_F. We argue that a random degree-2 GF(2) polynomial is constant on D with probability at most $2^{-\Omega(d^2)}$.
We then want to argue that there is at least one degree 2 polynomial that is not constant on every D_F.
We then want to argue that there is at least one degree 2 polynomial that is not constant on every D_F.

The problem is that there are too many such sets D_F (about $2^{O(n^k)}$).
Lemma (Sparsification Lemma, IPZ 1997)

∃ algorithm A $\forall k \geq 2, \epsilon \in (0, 1], \phi \in k$-$\text{CNF}$ with n variables, $A_{k,\epsilon}(\phi)$ outputs $\phi_1, \ldots, \phi_s \in k$-$\text{CNF}$ in $2^{\epsilon n}$ time such that

1. $s \leq 2^{\epsilon n}$; $\text{Sol}(\phi) = \bigcup_i \text{Sol}(\phi_i)$, where $\text{Sol}(\phi)$ is the set of satisfying assignments of ϕ

2. $\forall i \in [s]$ each literal occurs $\leq O\left(\frac{k}{\epsilon}\right)^{3k}$ times in ϕ_i.
Theorem

Almost all degree 2 GF(2) polynomials require $\Omega(2^{n-o(n)})$ size $\Sigma\Pi\Sigma_k$ circuits for $k = o(\log n)$.

Proof Sketch:

1. Sparsify each of level-2 subcircuits to get an equivalent circuit which is an OR of linear size k-CNF’s. The size only goes up by a factor $2^{o(n)}$.

Stronger Lower Bounds for Depth-3 Circuits

Theorem

Almost all degree 2 GF(2) polynomials require \(\Omega(2^{n-o(n)}) \) size \(\Sigma \Pi \Sigma_k \) circuits for \(k = o(\log n) \).

Proof Sketch:

1. Sparsify each of level-2 subcircuits to get an equivalent circuit which is an OR of linear size \(k\text{-CNF}'s \). The size only goes up by a factor \(2^{o(n)} \).
2. There are only \(\binom{O(n^k)}{O(n)} \leq n^{O(n)} \) many linear size \(k\text{-CNFs} \).
Stronger Lower Bounds for Depth-3 Circuits

Theorem

Almost all degree 2 GF(2) polynomials require \(\Omega(2^{n-o(n)}) \) size \(\Sigma \Pi \Sigma_k \) circuits for \(k = o(\log n) \).

Proof Sketch:

1. Sparsify each of level-2 subcircuits to get an equivalent circuit which is an OR of linear size \(k \)-CNF’s. The size only goes up by a factor \(2^{o(n)} \).
2. There are only \((O(n^k)) \leq n^{O(n)} \) many linear size \(k \)-CNFs.
3. We can now complete the previous counting argument.
Switching Lemma

Lemma (Håstad’s Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

$$P(\text{Decision tree height of } F \mid \rho > t) \leq (5pk)^t$$
Switching Lemma

Lemma (Håstad’s Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

$$\Pr(\text{Decision tree height of } F | \rho > t) \leq (5pk)^t$$

Notes:

1. A restriction ρ is a mapping from $\{1, 2, \ldots, n\} \rightarrow \{0, 1, *\}$. If $\rho(i) = *$, then we say that variable i is unset.
Switching Lemma

Lemma (Håstad’s Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

$$P(\text{Decision tree height of } F \upharpoonright \rho > t) \leq (5pk)^t$$

Notes:

1. A restriction ρ is a mapping from $\{1, 2, \ldots, n\} \rightarrow \{0, 1, \ast\}$. If $\rho(i) = \ast$, then we say that variable i is unset.
2. $F \upharpoonright \rho$ is the k-CNF obtained by restricting F to ρ.

Switching Lemma

Lemma (Håstad’s Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

$$\Pr(\text{Decision tree height of } F \upharpoonright \rho > t) \leq (5pk)^t$$

Notes:

1. A restriction ρ is a mapping from $\{1, 2, \ldots, n\} \rightarrow \{0, 1, \ast\}$. If $\rho(i) = \ast$, then we say that variable i is unset.
2. $F \upharpoonright \rho$ is the k-CNF obtained by restricting F to ρ.
3. Switching Lemma \longrightarrow strong correlation bounds for approximating parity function by small depth circuits.
Switching Lemma

Lemma (Håstad’s Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

$$\mathbb{P}(\text{Decision tree height of } F \upharpoonright \rho > t) \leq (5pk)^t$$

Notes:

1. A restriction ρ is a mapping from $\{1, 2, \ldots, n\} \rightarrow \{0, 1, *\}$. If $\rho(i) = *$, then we say that variable i is unset.
2. $F \upharpoonright \rho$ is the k-CNF obtained by restricting F to ρ.
3. Switching Lemma \rightarrow strong correlation bounds for approximating parity function by small depth circuits.
4. Switching Lemma \rightarrow a satisfiability algorithm for small depth circuits.
Switching Lemma

Lemma (Håstad’s Switching Lemma)

Let F be a k-CNF and ρ be a random restriction with pn unset variables. Then

$$P(\text{Decision tree height of } F \upharpoonright \rho > t) \leq (5pk)^t$$

Notes:

1. A restriction ρ is a mapping from $\{1, 2, \ldots, n\} \rightarrow \{0, 1, *\}$. If $\rho(i) = *$, then we say that variable i is unset.

2. $F \upharpoonright \rho$ is the k-CNF obtained by restricting F to ρ.

3. Switching Lemma \rightarrow strong correlation bounds for approximating parity function by small depth circuits.

4. Switching Lemma \rightarrow a satisfiability algorithm for small depth circuits.

5. Requires a nontrivial extension of the Switching Lemma.
Small Depth Circuits and Satisfiability Algorithm

- An \((n, m, d)\)-circuit is a Boolean circuit on \(n\) variables with \(d\) alternating layers of AND/OR gates where each layer has at most \(m = cn\) gates.
Small Depth Circuits and Satisfiability Algorithm

- An \((n, m, d)\)-circuit is a Boolean circuit on \(n\) variables with \(d\) alternating layers of AND/OR gates where each layer has at most \(m = cn\) gates.
- An \((n, m, d, k)\)-circuit is an \((n, m, d)\)-circuit where each gate at level \(d\) (bottom level) has fan-in bounded by \(k\) (instead of limiting the number of gates at level \(d\)).
Small Depth Circuits and Satisfiability Algorithm

- An \((n, m, d)\)-circuit is a Boolean circuit on \(n\) variables with \(d\) alternating layers of AND/OR gates where each layer has at most \(m = cn\) gates.

- An \((n, m, d, k)\)-circuit is an \((n, m, d)\)-circuit where each gate at level \(d\) (bottom level) has fan-in bounded by \(k\) (instead of limiting the number of gates at level \(d\)).

Theorem (Satisfiability Algorithm for Small Depth Circuits)

There is a Las Vegas algorithm for deciding the satisfiability of an \((n, cn, d)\)-circuit \(C\) with expected time at most \(\text{poly}(n) |C| 2^{n(1 - \mu_{c,d})}\), where the savings

\[
\mu_{c,d} \geq \frac{1}{(O(\log c + d \log d))^{d-1}}
\]
Correlation

- Let f and g be two Boolean functions on n variables. Let $q = \mathbb{P}_{x \in \{0,1\}^n}(f(x) = g(x))$
Correlation

- Let f and g be two Boolean functions on n variables. Let
 \[q = \mathbb{P}_{x \in \{0,1\}^n}(f(x) = g(x)) \]
- The correlation between f and g is defined as
 \[\text{Cor}(f, g) = 2q - 1. \]
Correlation

- Let f and g be two Boolean functions on n variables. Let $q = P_{x \in \{0,1\}^n}(f(x) = g(x))$
- The correlation between f and g is defined as $Cor(f, g) = 2q - 1$.
- If \mathcal{F} is a class of Boolean functions, we define the correlation between f and \mathcal{F} as $Cor(f, \mathcal{F}) = \text{maximum correlation between } f \text{ and some function } g \in \mathcal{F}$.
Let f and g be two Boolean functions on n variables. Let
\[q = \mathbb{P}_{x \in \{0,1\}^n}(f(x) = g(x)) \]

The correlation between f and g is defined as
\[\text{Cor}(f, g) = 2q - 1. \]

If \mathcal{F} is a class of Boolean functions, we define the correlation between f and \mathcal{F} as $\text{Cor}(f, \mathcal{F}) = \text{maximum correlation between } f \text{ and some function } g \in \mathcal{F}.$

If \mathcal{F} is closed under complementation, then
\[0 \leq \text{Cor}(f, \mathcal{F}) \leq 1. \]
Correlation Bounds for Small Depth Circuits

Theorem

The correlation of parity with any \((n, m, d)\)-circuit is at most

\[2^{-\mu_{c,d}n} = 2^{-n/(O(\log c + d \log d))^{d-1}} \]
The correlation of parity with any \((n, m, d)\)-circuit is at most

\[2^{-\mu_{c,d} n} = 2^{-n/(O(\log c+d \log d))^{d-1}}\]

For linear size circuits where \(c\) and \(d\) are constants, the savings \(\mu\) is constant and the correlation bound \(2^{-\Theta(n)}\) is strongly exponential.
Correlation Bounds for Small Depth Circuits

Theorem

The correlation of parity with any \((n, m, d)\)-circuit is at most

\[2^{-\mu_{c,d} n} = 2^{-n/(O(\log c + d \log d))^{d-1}} \]

1. For linear size circuits where \(c\) and \(d\) are constants, the savings \(\mu\) is constant and the correlation bound \(2^{-\Theta(n)}\) is strongly exponential.

2. Nontrivial savings and correlation bounds for circuit of size up to \(2^{O(n^{1/(d-1)})}\).
Further Improvements could be Hard

- If the satisfiability of an \((n, m, d)\)-circuit can be decided in time \(2^{n(1-\frac{1}{O(\log m) o(d)})}\), then \(\text{NEXP} \subsetneq \text{NC}^1\).
Further Improvements could be Hard

If the satisfiability of an \((n, m, d)\)-circuit can be decided in time \(2^{n \left(1 - \frac{1}{O(\log m)^{o(d)}}\right)}\), then \(\text{NEXP} \subset \text{NC}^1\).
Partitions

- A set of functions $g_1, \ldots, g_l : \{0, 1\}^n \to \{0, 1\}$ partitions $\{0, 1\}^n$ if $(g_i^{-1}(1))_{1 \leq i \leq l}$ is a partition of $\{0, 1\}^n$.
Partitions

- A set of functions $g_1, \ldots, g_l : \{0, 1\}^n \rightarrow \{0, 1\}$ partitions $\{0, 1\}^n$ if $(g_i^{-1}(1))_{1 \leq i \leq l}$ is a partition of $\{0, 1\}^n$.
- The i'th region of the partition is $g_i^{-1}(1)$. We identify the region with the function g_i.

Paturi

Properties of k-CNF
Partitions

- A set of functions $g_1, \ldots, g_l : \{0, 1\}^n \rightarrow \{0, 1\}$ partitions $\{0, 1\}^n$ if $(g_i^{-1}(1))_{1 \leq i \leq l}$ is a partition of $\{0, 1\}^n$.
- The i'th region of the partition is $g_i^{-1}(1)$. We identify the region with the function g_i.
- g_i are of the form $G \land \rho$, where G is k-CNF and ρ a restriction. We denote the region \mathcal{R} by (G, ρ).
Partitions

- A set of functions $g_1, \ldots, g_l : \{0, 1\}^n \rightarrow \{0, 1\}$ partitions $\{0, 1\}^n$ if $(g_i^{-1}(1))_{1 \leq i \leq l}$ is a partition of $\{0, 1\}^n$.

- The i'th region of the partition is $g_i^{-1}(1)$. We identify the region with the function g_i.

- g_i are of the form $G \land \rho$, where G is k-CNF and ρ a restriction. We denote the region \mathcal{R} by (G, ρ).

- Two circuits are equivalent in a region \mathcal{R} if $\mathcal{R} \implies (C \equiv D)$.

Partitions

- A set of functions $g_1, \ldots, g_l : \{0, 1\}^n \to \{0, 1\}$ partitions $\{0, 1\}^n$ if $(g_i^{-1}(1))_{1 \leq i \leq l}$ is a partition of $\{0, 1\}^n$.
- The i'th region of the partition is $g_i^{-1}(1)$. We identify the region with the function g_i.
- g_i are of the form $G \land \rho$, where G is k-CNF and ρ a restriction. We denote the region R by (G, ρ).
- Two circuits are equivalent in a region R if $R \implies (C \equiv D)$.
- A set $\mathcal{P} = \{(R_i = (G_i, \rho_i), C_i)\}$ is a **partitioning** for a circuit C if R_i partition $\{0, 1\}^n$ and C_i is equivalent to C in region R_i for all i.

Paturi
Properties of k-CNF
Canonical Decision Tree

- \textit{height}(T) of a decision tree \(T \) is the length of the longest path.

Canonical Decision Tree

- \(\text{height}(T) \) of a decision tree \(T \) is the length of the longest path.
- **Canonical decision tree** \(\text{tree}(F) \) for a \(\text{CNF} \) \(F \) is as follows:
Canonical Decision Tree

- $\text{height}(T)$ of a decision tree T is the length of the longest path.
- **Canonical decision tree** $\text{tree}(F)$ for a CNF F is as follows:
 1. Fix an ordering of clauses in F
Canonical Decision Tree

- *height(T)* of a decision tree *T* is the length of the longest path.
- **Canonical decision tree** *tree(F)* for a CNF *F* is as follows:
 1. Fix an ordering of clauses in *F*
 2. If a clause is empty, return 0
Canonical Decision Tree

- $height(T)$ of a decision tree T is the length of the longest path.
- **Canonical decision tree** $tree(F)$ for a CNF F is as follows:
 1. Fix an ordering of clauses in F
 2. If a clause is empty, return 0
 3. If there are no clauses, return 1
height(T) of a decision tree T is the length of the longest path.

Canonical decision tree tree(F) for a CNF F is as follows:
1. Fix an ordering of clauses in F
2. If a clause is empty, return 0
3. If there are no clauses, return 1
4. Let C be the first clause. Query the variables in C in order
Canonical Decision Tree

- $\text{height}(T)$ of a decision tree T is the length of the longest path.
- **Canonical decision tree** $\text{tree}(F)$ for a CNF F is as follows:
 1. Fix an ordering of clauses in F
 2. If a clause is empty, return 0
 3. If there are no clauses, return 1
 4. Let C be the first clause. Query the variables in C in order
 5. Restrict F based on the query results and recurse.
Canonical Decision Tree

- $height(T)$ of a decision tree T is the length of the longest path.
- **Canonical decision tree** $tree(F)$ for a CNF F is as follows:
 1. Fix an ordering of clauses in F
 2. If a clause is empty, return 0
 3. If there are no clauses, return 1
 4. Let C be the first clause. Query the variables in C in order
 5. Restrict F based on the query results and recurse.
Canonical decision tree $\text{tree}(\Phi)$ for a sequence of \((F_1, \ldots, F_l)\) of CNF’s is as follows:
Canonical Decision Tree for a Sequence of Formulas

- Canonical decision tree \(\text{tree}(\Phi) \) for a sequence of \((F_1, \ldots, F_l)\) of \(\text{CNF}’\)s is as follows:
 1. First construct the canonical decision tree for \(F_1\).
Canonical Decision Tree for a Sequence of Formulas

- Canonical decision tree $\text{tree} (\Phi)$ for a sequence of (F_1, \ldots, F_l) of CNF’s is as follows:
 1. First construct the canonical decision tree for F_1.
 2. Along each path, restrict F_2, \ldots, F_l by the results of queries and recurse.
Canonical Decision Tree for a Sequence of Formulas

- Canonical decision tree $\text{tree}(\Phi)$ for a sequence of (F_1, \ldots, F_l) of CNF’s is as follows:
 1. First construct the canonical decision tree for F_1.
 2. Along each path, restrict F_2, \ldots, F_l by the results of queries and recurse.
 3. Label the leaves with the tuples of the leaves from each of the trees.
Canonical Decision Tree for a Sequence of Formulas

- **Canonical decision tree** $\text{tree}(\Phi)$ for a sequence of (F_1, \ldots, F_l) of CNF’s is as follows:
 1. First construct the canonical decision tree for F_1.
 2. Along each path, restrict F_2, \ldots, F_l by the results of queries and recurse.
 3. Label the leaves with the tuples of the leaves from each of the trees.

- We say that a clause **contributes** variables to a path if any variable in the clause are queried when the clause gets its turn.
Extended Switching Lemma

Lemma (Extended Switching Lemma)

Let $\Phi = (F_1, \ldots, F_m)$ be a sequence of k-CNF’s (or k-DNF’s) on n variables. For $p \leq 1/13$, let ρ be a random restriction that leaves pn variables unset. The probability that the decision tree for Φ has a path of length $> t$ where each F_i contributes at least one node to the path is at most $(13pk)^t$.
Lemma (Switching Algorithm)

Let $\Phi = (F_1, \ldots, F_m)$ be a sequence of k-DNF’s on n variables. There exits a randomized algorithm which takes Φ as input and outputs a partitioning $\mathcal{P} = \{(R_i, C_i)\}_{1 \leq i \leq s}$ for Φ such that C_i are k-CNF’s in at most $n/100k$ variables, and with high probability the algorithm runs in time at most $\text{poly}(n) \cdot \text{size}(\Phi)^s$.

Paturi
Properties of k-CNF
Lemma (Switching Algorithm)

Let $\Phi = (F_1, \ldots, F_m)$ be a sequence of k-DNF’s on n variables. There exits a randomized algorithm which takes Φ as input and outputs a partitioning $\mathcal{P} = \{(R_i, C_i)\}_{1 \leq i \leq s}$ for Φ such that C_i are k-CNF’s in at most $n/100k$ variables, and with high probability

$$s \leq \frac{2n}{100k} 2^{n - \frac{n}{100k}} + 3^{-k} m$$
Lemma (Switching Algorithm)

Let $\Phi = (F_1, \ldots, F_m)$ be a sequence of k-DNF’s on n variables. There exists a randomized algorithm which takes Φ as input and outputs a partitioning $\mathcal{P} = \{(R_i, C_i)\}_{1 \leq i \leq s}$ for Φ such that C_i are k-CNF’s in at most $\frac{n}{100k}$ variables, and with high probability

1. $s \leq \frac{2n}{100k} 2^n - \frac{n}{100k} + 3^{-k} m$
2. the algorithm runs in time at most $\text{poly}(n) \text{size}(\Phi)s$.
Algorithm for Depth-3 Circuits

- Satisfiability Algorithm for \((n, m = cn, 3)\)-circuits (AND-OR-AND) running in time \(2^{n \left(1 - \frac{1}{O(\log c)^2}\right)}\).
Algorithm for Depth-3 Circuits

- Satisfiability Algorithm for \((n, m = cn, 3)\)-circuits (AND-OR-AND) running in time \(2^{n(1 - \frac{1}{O(\log c)^2})}\).
- Reduce the \((n, m, 3)\)-circuit to a small family of \((n, m, 3, k)\)-circuits \(C\) where \(k = O(\log c)\). Overhead is minimal.
Algorithm for Depth-3 Circuits

- Satisfiability Algorithm for \((n, m = cn, 3)\)-circuits (AND-OR-AND) running in time \(2^{n(1 - \frac{1}{O(\log c)^2})}\).
- Reduce the \((n, m, 3)\)-circuit to a small family of \((n, m, 3, k)\)-circuits \(C\) where \(k = O(\log c)\). Overhead is minimal.
- Apply the Switching Algorithm to the family of \(\Phi = (F_1, \ldots, F_m)\) \(k\)-DNF’s to obtain a partitioning into about \(2^n(1 - \frac{1}{100k})\) regions where \(\Phi\) is equivalent to a sequence of \(k\)-CNF’s in at most \(n/100k\) variables and each region is defined by a \(k\)-CNF in the same set of variables.
Algorithm for Depth-3 Circuits

- Satisfiability Algorithm for \((n, m = cn, 3)\)-circuits (AND-OR-AND) running in time \(2^{n \left(1 - \frac{1}{O(\log c)^2}\right)}\).
- Reduce the \((n, m, 3)\)-circuit to a small family of \((n, m, 3, k)\)-circuits \(\mathcal{C}\) where \(k = O(\log c)\). Overhead is minimal.
- Apply the Switching Algorithm to the family of \(\Phi = (F_1, \ldots, F_m)\) \(k\)-DNF’s to obtain a partitioning into about \(2^n(1 - \frac{1}{100k})\) regions where \(\Phi\) is equivalent to a sequence of \(k\)-CNF’s in at most \(n/100k\) variables and each region is defined by a \(k\)-CNF in the same set of variables.
- For each region, collapse the levels to obtain a single \(k\)-CNF and take the conjunction with the defining \(k\)-CNF of the region.
Algorithm for Depth-3 Circuits

- Satisfiability Algorithm for \((n, m = cn, 3)\)-circuits (AND-OR-AND) running in time \(2^{n(1 - \frac{1}{O(\log c)^2})}\).
- Reduce the \((n, m, 3)\)-circuit to a small family of \((n, m, 3, k)\)-circuits \(C\) where \(k = O(\log c)\). Overhead is minimal.
- Apply the Switching Algorithm to the family of \(\Phi = (F_1, \ldots, F_m)\) \(k\)-DNF’s to obtain a partitioning into about \(2^{n(1 - \frac{1}{100k})}\) regions where \(\Phi\) is equivalent to a sequence of \(k\)-CNF’s in at most \(n/100k\) variables and each region is defined by a \(k\)-CNF in the same set of variables.
- For each region, collapse the levels to obtain a single \(k\)-CNF and take the conjunction with the defining \(k\)-CNF of the region.
- Apply a \(k\)-SAT algorithm to each \(k\)-CNF.
Thank You