Information theory in combinatorics

January 14, 2015

1 Basic definitions

Logarithms are in base 2.

Entropy: \(H(X) = \sum_x \Pr[X = x] \log(1/\Pr[X = x]) \).

For \(0 \leq p \leq 1 \) we shorthand \(H(p) = p \log(1/p) + (1 - p) \log(1/(1 - p)) \).

Conditional entropy: \(H(X|Y) = \sum_y \Pr[Y = y] H(X|Y = y) = H(X,Y) - H(Y) \).

Chain rule: \(H(X_1, \ldots, X_n) = H(X_1) + H(X_2|X_1) + \ldots + H(X_n|X_1, \ldots, X_{n-1}) \).

Independence: If \(X_1, \ldots, X_n \) are independent then \(H(X_1, \ldots, X_n) = \sum H(X_i) \).

Basic inequalities:

- \(H(X) \geq 0 \).
- \(H(X|Y) \leq H(X) \) and \(H(X|Y, Z) \leq H(X|Y) \).
- If \(X \) is supported on a universe of size \(n \) then \(H(X) \leq \log n \), with equality if \(X \) is uniform.

2 Shearer’s lemma

Shearer’s lemma is a generalization of the basic inequality \(H(X_1, \ldots, X_n) \leq \sum H(X_i) \). For \(S \subseteq [n] \) we shorthand \(X_S = (X_i : i \in S) \).

Lemma 2.1 (Shearer). Let \(X_1, \ldots, X_n \) be random variables. Let \(S_1, \ldots, S_m \subseteq [n] \) be subsets such that each \(i \in [n] \) belongs to at least \(k \) sets. Then

\[
 k \cdot H(X_1, \ldots, X_n) \leq \sum_{j=1}^{m} H(X_S).
\]

Proof. By the chain rule

\[
 H(X_1, \ldots, X_n) = H(X_1) + H(X_2|X_1) + \ldots + H(X_n|X_1, \ldots, x_{n-1}).
\]
If \(S_j = \{i_1, \ldots, i_{s_j}\} \) with \(i_1 < \ldots < i_{s_j} \) then
\[
H(X_{S_j}) = H(X_{i_1}) + H(X_{i_2|X_{i_1}}) + \ldots + H(X_{i_{s_j}|X_{i_1}, \ldots, X_{i_{s_j-1}}})
\leq H(X_{i_1|X_1, \ldots, X_{i_1-1}}) + H(X_{i_2|X_1, \ldots, X_{i_2-1}}) + \ldots
\]
The lemma follows since each term \(H(X_{i_1|X_1, \ldots, X_{i_1-1}}) \) appears \(k \) times in the LHS and at least \(k \) times in the RHS.

The following is an equivalent version, which is sometimes more convenient.

Lemma 2.2 (Shearer; distribution). Let \(X_1, \ldots, X_n \) be random variables. Let \(S \subseteq [n] \) be a random variable, such that \(\Pr[X_i \in S] \geq \mu \) for all \(i \in [n] \). Then
\[
\mu \cdot H(X_1, \ldots, X_n) \leq \mathbb{E}_S[H(X_S)].
\]

\[3\]

3 Number of graph homomorphisms

Example 3.1. Let \(P \subseteq \mathbb{R}^3 \) be a set of points whose projection on each of the \(XY, YZ, XZ \) planes have at most \(n \) points. How many points can \(P \) have? We can have \(|P| = n^{3/2} \) if \(P \) is a grid of size \(\sqrt{n} \times \sqrt{n} \times \sqrt{n} \). We will show that this is tight by applying Shearer’s lemma. Let \((X,Y,Z) \) be a uniform point in \(P \). Then \(H(X,Y,Z) = \log |P| \). On the other hand, by Shearer’s lemma applied to the sets \(\{\{1,2\}, \{1,3\}, \{2,3\}\} \),
\[
2H(X,Y,Z) \leq H(X,Y) + H(X,Z) + H(Y,Z) \leq 3 \log n.
\]

Hence \(\log |P| \leq H(X,Y,Z) \leq \frac{3}{2} \log n \).

This is an instance of a more general phenomena. Let \(G,T \) be undirected graphs. A homomorphism of \(T \) to \(G \) is \(\sigma : V(T) \rightarrow V(G) \) such that \((u,v) \in E(T) \Rightarrow (\sigma(u), \sigma(v)) \in E(G) \). Let \(\text{Hom}(T,G) \) be the family of all homomorphisms from \(T \) to \(G \). Our goal will be to bound \(|\text{Hom}(T,G)| \).

A fractional independent set of \(T \) is a mapping \(\psi : V(T) \rightarrow [0,1] \) such that for each edge \((u,v) \in E(T) \), \(\psi(u) + \psi(v) \leq 1 \). The fractional independent set number of \(T \) is the maximum size (eg \(\sum \psi(v) \)) of a fractional independent set, denoted \(\alpha^f(T) \). It is given by a linear program, whose dual is the following. A fractional cover of \(T \) is a mapping \(\phi : E(T) \rightarrow [0,1] \) such that for each vertex \(v \in V(T) \), \(\sum_{(u,v) \in E(T)} \phi(u,v) \geq 1 \). The fractional cover number of \(T \) is the minimum size (eg \(\sum \phi(v) \)) of a fractional cover of \(T \). It is equal to \(\alpha^f(T) \) by linear programming duality.

Theorem 3.2 (Alon [2], Freidgut-Kahn [6]). \(|\text{Hom}(T,G)| \leq (2|E(G)|)^{\alpha^f(T)}\).

This implies as a special case the previous example (up to constants). Let \(G \) be a tri-partite graph with parts \(X,Y,Z \). For every point \((x,y,z) \in P \) add the edges \((x,y), (y,z), (x,z) \) to \(G \). Then \(|E(G)| \leq 9n \). Let \(T = \Delta \), where \(\alpha^f(\Delta) = 3/2 \). Then
\[
6|P| \leq |\text{Hom}(\Delta,G)| \leq (6n)^{3/2}.
\]

One can also show that the bound is essentially tight for fixed \(T \), as there exist graphs \(G \) for which \(|\text{Hom}(T,G)| \geq (|E(G)|/|E(T)|)^{\alpha^f(T)} \). We will not show this here.
Proof. Let $\sigma : T \to G$ be a uniform homomorphism in $\text{Hom}(T,G)$. If v_1, \ldots, v_n are the vertices of T, then set $X_i = \sigma(v_i)$. We have $H(X_1, \ldots, X_n) = \log |\text{Hom}(T,G)|$. Let ϕ be a fractional cover of T with $\sum \phi(e) = \alpha^*(T)$. Let $S \in E(T)$ be chosen with probability $\Pr[S = \{ u, v \}] = \phi(u,v)/\alpha^*(T)$. Note that $S \subset [n]$, with $\Pr[i \in S] \geq 1/\alpha^*(T)$. Also, $H(X_S) \leq \log(2|E(G)|)$ since if $S = \{ u, v \}$ then (X_u, X_v) is distributed over directed edges of G. By Shearer’s lemma,

$$\log |\text{Hom}(T,G)| = H(X_1, \ldots, X_n) \leq \alpha^*(T) \cdot \mathbb{E}_S[H(X_S)] \leq \alpha^*(T) \cdot \log(2|E(G)|).$$

\square

4 Number of independent sets

Let G be a d-regular graph on n vertices. How many independent sets can G have? Let $\mathcal{I}(G)$ denote the family of all independent sets $I \subset V(G)$.

Theorem 4.1 (Kahn [8]). If G is bi-partite then

$$|\mathcal{I}(G)| \leq (2^{d+1} - 1)^{\frac{n}{2d}}.$$

This is tight: take G to be the union of $n/2d$ copies of $K_{d,d}$. The result was extended to general d-regular graphs by Zhao [11].

Proof. Assume $V(G) = [n]$, and let $A \cup B = [n]$ be a partition so that $E(G) \subset A \times B$, where we assume $|A| \geq |B|$. Let $I \subset [n]$ be a uniform independent set, and set $X_i = 1_{i \in I}$. Then $\log |\mathcal{I}(G)| = H(X_1, \ldots, X_n)$. We shorthand $X_A = \{ X_i : i \in A \}$, $X_B = \{ X_i : i \in B \}$. We have

$$H(X_1, \ldots, X_n) = H(X_A) + H(X_B|X_A).$$

For each $b \in B$ let $N(b) \subset A$ be the neighbors of b. Let $Q_b = [I \cap N(b) = \emptyset]$ be the event that non of the neighbors of b are in I, and let $q_b = \Pr[Q_b]$. We first bound the second term,

$$H(X_B|X_A) \leq \sum_{b \in B} H(X_b|X_A) \leq \sum_{b \in B} H(X_b|X_{N(b)}) \leq \sum_{b \in B} H(X_b|Q_b).$$

Note that $H(X_b|Q_b) = q_b \cdot H(X_b|Q_b = 1) \leq q_b$, since $Q_b \Rightarrow X_b = 0$ and $X_b \in \{0, 1\}$, hence

$$H(X_B|X_A) \leq \sum_{b \in B} q_b.$$

Next we bound $H(X_A)$. Note that the sets $N(b)$ cover each element of A exactly d times, hence by Shearer’s lemma,

$$H(X_A) \leq \frac{1}{d} \sum_{b \in B} H(X_{N(b)}).$$
We can bound
\[H(X_{N(b)}) = H(X_{N(b)}|Q_b) + H(Q_b) \leq (1 - q_b) \log(2^d - 1) + H(q_b). \]
Combining these estimates, we obtain
\[H(X_1, \ldots, X_n) \leq \sum_{b \in B} q_b + \frac{1}{d} \sum_{b \in B} \left(H(q_b) + (1 - q_b) \log(2^d - 1) \right) \]
\[= \frac{n}{2d} \log(2^d - 1) + \frac{1}{d} \sum_{b \in B} \left(H(q_b) + q_b \log \frac{2^d}{2^d - 1} \right). \]
Differentiation gives that \(H(x) + x \log \frac{2^d}{2^d - 1} \) is maximized at \(x_0 = \frac{2^d}{2^d - 1} \), hence
\[H(X_1, \ldots, X_n) \leq \frac{n}{2d} \left(\log(2^d - 1) + H(x_0) + x_0 \log \frac{2^d}{2^d - 1} \right) = \frac{n}{2d} \log(2^{d+1} - 1). \]

\section{Weighted version, and applications}

The following is a combinatorial version of Shearer’s lemma. A hypergraph \(H = (V, E) \) is simply a family of subsets \(E \subset 2^V \).

\textbf{Lemma 5.1} (Shearer; hypergraphs). \textit{Let \(H \) be a hypergraph. Let \(S_1, \ldots, S_m \subset V \) be subsets of vertices, such that each \(v \in V \) belongs to at least \(k \) subsets. Define the projected hypergraph \(H_i \) with \(V(H_i) = S_i \) and \(E(H_i) = \{ e \cap S_i : e \in E \} \). Then
\[
|E(H)|^k \leq \prod_{i=1}^m |E(H_i)|.
\]
}\textit{Proof.} Let \(|V(H)| = n, X_1, \ldots, X_n \in \{0, 1\} \) be the indicator of a uniform edge \(e \in E \). Then \(H(X_1, \ldots, X_n) = \log|E(H)| \) and \(H(X_{V(H_i)}) \leq \log|E(H_i)| \), since \(X_{V(H_i)} \) is a random variable supported on \(E(H_i) \). \qed

Freidgut proved a weighted version of Shearer’s lemma. Let \(w_i : E(H_i) \to \mathbb{R}_{\geq 0} \) be some nonnegative weight function. For \(e \in E \) let \(e_i = e \cap S_i \in E(H_i) \).

\textbf{Theorem 5.2} (Weighted Shearer lemma, Freidgut [5]). \textit{Under the same conditions,
\[
\left(\sum_{e \in E(H)} \prod_{i=1}^m w_i(e_i) \right)^k \leq \prod_{i=1}^m \sum_{e_i \in E(H_i)} w_i(e_i)^k.
\]
}\textit{Corollary 5.3.} For any \(n \times n \) matrices \(A, B, C \),
\[
\text{Tr}(ABC)^2 \leq \text{Tr}(A^t) \cdot \text{Tr}(B^t) \cdot \text{Tr}(C^t).
\]
Proof. We need to prove:
\[
\left(\sum A_{i,j} B_{j,k} C_{k,i} \right)^2 \leq \sum A_{i,j}^2 \cdot \sum B_{j,k}^2 \cdot \sum C_{k,i}^2.
\]
Clearly, we may assume all entries of \(A, B, C\) are nonnegative.

Let \(H\) be a complete tri-partite hypergraph with 3 parts \(I, J, K\) of size \(n\) each. Let \(H_1, H_2, H_3\) be the projected graphs to \(I \cup J, J \cup K, I \cup K\), respectively. Each vertex of \(H\) belongs to two of the projected graphs. Define weights (on 2-edges) by
\[
w(i, j) = A_{i,j}, w(j, k) = B_{j,k}, w(k, i) = C_{k,i}.
\]
Then
\[
\sum_{e \in E(H)} w_1(e_1)w_2(e_2)w_3(e_3) = \sum A_{i,j} B_{j,k} C_{k,i}
\]
and (for example)
\[
\sum_{e \in E(H_1)} w_1(e_1)^2 = \sum A_{i,j}^2.
\]

\[\square\]

6 Read-\(k\) functions

Let \(x \in \{0, 1\}^n\) be uniform bits. Let \(f_1, \ldots, f_m : \{0, 1\}^n \to \{0, 1\}\) be boolean functions, where each \(f_i\) depends only on variables in some set \(S_i \subset [n]\). Assume furthermore that \(\Pr[f_i = 1] = p\). If the sets \(S_1, \ldots, S_m\) are pairwise disjoint then \(f_i(x)\) are independent, and in particular
\[
\Pr[f_1(x) = \ldots = f_m(x) = 1] = p^m.
\]
Shearer’s lemma allows us to extend this to the case where there is limited intersections.

Definition 6.1 (read-\(k\) functions). The functions \(f_1, \ldots, f_m\) are said to be read-\(k\) if each \(x_i\) participates in at most \(k\) functions. That is, \(|\{j : i \in S_j\}| \leq k\) for all \(i \in [n]\).

Lemma 6.2. If \(f_1, \ldots, f_m\) are read-\(k\) with \(\Pr[f_i = 1] = p\) then
\[
\Pr[f_1(x) = \ldots = f_m(x) = 1] \leq p^{m/k}.
\]

Proof. Let \(q = \Pr[f_1(x) = \ldots = f_m(x) = 1]\). We may assume wlog that each \(x_i\) is contained in exactly \(k\) sets. Let \(A = \{x \in \{0, 1\}^n : f_1(x) = \ldots = f_m(x) = 1\}\) and \(A_i = \{x \in \{0, 1\}^{S_i} : f_i(x) = 1\}\). We have \(|A| = q2^n\) and \(|A_i| = p2^{|S_i|}\). Let \((X_1, \ldots, X_n) \in A\) be uniformly distributed. By Shearer’s lemma,
\[
k \cdot H(X_1, \ldots, X_n) \leq \sum H(X_{A_i}).
\]
The lemma follows since $H(X_1, \ldots, X_n) = \log |A| = \log q + n$ and $H(X_{A_i}) \leq \log |A_i| = \log p + |S_i|$. Hence

$$k(\log q + n) \leq m \cdot \log p + \sum |S_i| = m \cdot \log p + kn.$$

\[\square\]

For example, if $G = G(n, 1/2)$ is a random graph on n vertices, and E_v is some event which depends only on the edges touching a vertex v, then

$$\Pr[\forall v E_v] \leq \prod \Pr[E_v]^{1/2}.$$

The power $1/2$ is tight. For example, choose a maximal matching M on $\{1, \ldots, n\}$ (even) and let E_v be the event “the unique edge in M which touches v appears in G”.

We prove here an analog of the Chernoff bound for read-k functions. Recall that if $Y_1, \ldots, Y_m \in \{0, 1\}$ are independent, with $\Pr[Y_i = 1] = p$, then Chernoff bound tells us that

$$\Pr[Y_1 + \ldots + Y_m \geq (p + \varepsilon)m] \leq \exp(-2\varepsilon^2 m).$$

Theorem 6.3 (Gavinsky-Lovett-Saks-Srinivasan [7]). If f_1, \ldots, f_m are read-k with $\Pr[f_i = 1] = p$ then

$$\Pr[f_1(x) + \ldots + f_m(x) \geq (p + \varepsilon)m] \leq \exp(-2\varepsilon^2 m/k).$$

The proof uses the Kullback-Leibler divergence between distributions.

Definition 6.4. Let μ, μ' be two distributions on the same domain. The KL-divergence between them is defined as

$$D_{\text{KL}}(\mu \mid \mid \mu') = \sum \mu(x) \log \frac{\mu(x)}{\mu'(x)}.$$

If X, X' are random variables distributed like μ, μ' then $D_{\text{KL}}(X \mid \mid X') = D_{\text{KL}}(\mu \mid \mid \mu')$.

Fact 6.5.

(i) $D_{\text{KL}}(X \mid \mid X') \geq 0$.

(ii) For any function ϕ, $D_{\text{KL}}(\phi(X) \mid \mid \phi(X')) \leq D_{\text{KL}}(X \mid \mid X')$.

(iii) If X is supported on a set A, and U is uniform on A, then $D_{\text{KL}}(X \mid \mid U) = H[U] - H[X]$.

(iv) Let U be uniform over a set A. Let $A' \subset A$ with $|A'| = p|A|$. Let X be any random variable of A with $\Pr[X \in A'] = q$. Then

$$D_{\text{KL}}(X \mid \mid U) \geq D_{\text{KL}}(q \mid \mid p),$$

where $D_{\text{KL}}(q \mid \mid p) = q \log \frac{q}{p} + (1 - q) \log \frac{1 - q}{1 - p}$.
Lemma 6.6 (Shearer lemma for KL divergence). Let X_1, \ldots, X_n be random variables. Let U_1, \ldots, U_n be independent random variables, where U_i is uniform over a set containing the support of X_i. Let $S_1, \ldots, S_m \subseteq [n]$ be such that each $i \in [n]$ belongs to at most k sets. Then
\[k \cdot D_{KL}(X_1, \ldots, X_n \mid \mid U_1, \ldots, U_n) \geq \sum D_{KL}(X_{S_i} \mid \mid U_{S_i}). \]

Proof. We may assume w.l.o.g. that each $i \in [n]$ belongs to exactly k sets. Hence by Shearer’s lemma, $k \cdot H(X_1, \ldots, X_n) \leq \sum H(X_{S_i})$. Now apply fact (iii).
\[
k \cdot D_{KL}(X_1, \ldots, X_n \mid \mid U_1, \ldots, U_n) = kH(U_1, \ldots, U_n) - kH(X_1, \ldots, X_n)
= k \sum H(U_i) - kH(X_1, \ldots, X_n)
\]
and
\[
\sum D_{KL}(X_{S_i} \mid \mid U_{S_i}) = \sum H(U_{S_i}) - H(X_{S_i}) = k \sum H(U_i) - \sum H(X_{S_i}).
\]

Proof of Theorem 6.3. Let
\[A = \{ x \in \{0,1\}^n : f_1(x) + \ldots + f_m(x) \geq (p+\varepsilon)m \}. \]
Let $X \in A$ be uniformly distributed, and let $U \in \{0,1\}^n$ be uniform. We have
\[
\log \Pr[f_1(x) + \ldots + f_m(x) \geq (p+\varepsilon)m] = \log \frac{|A|}{2^n} = H[X] - H[U] = -D_{KL}(X \mid \mid U).
\]
Let X_{S_i}, U_{S_i} be the restrictions of X, U to S_i, respectively. Then by Shearer’s lemma for KL divergence,
\[k \cdot D_{KL}(X \mid \mid U) \geq \sum D_{KL}(X_{S_i} \mid \mid U_{S_i}). \]
Let $A_i = \{0,1\}^{S_i}$ and let $A'_i = \{ x \in A_i : f_i(x) = 1 \}$. Then $|A'_i| = p|A_i|$, and U_{S_i} is uniform on A_i. Let $q_i = \Pr[X_i \in A_i]$. Hence by fact (iv),
\[D_{KL}(X_{S_i} \mid \mid U_{S_i}) \geq D_{KL}(q_i \mid \mid p). \]
By convexity of the KL divergence function, we have
\[D_{KL}(X \mid \mid U) \geq \frac{1}{k} \sum_{i=1}^{m} D_{KL}(q_i \mid \mid p) \geq \frac{m}{k} D_{KL}(q \mid \mid p), \]
where $q = (q_1 + \ldots + q_m)/m$. By assumption, any X satisfies $f_i(X) = 1$ for at least $(p+\varepsilon)m$ indices $i \in [m]$, hence
\[q_1 + \ldots + q_m = \sum \Pr[X_i \in A_i] = \sum \mathbb{E}[1_{X_i \in A_i}] = \sum \mathbb{E}[f_i(X)] = \mathbb{E}\left[\sum f_i(X)\right] \geq (p+\varepsilon)m. \]
Hence $q \geq p + \varepsilon$, and we conclude that
\[
\log \Pr[f_1(x) + \ldots + f_m(x) \geq (p+\varepsilon)m] \leq -D_{KL}(X \mid \mid U) \leq -(m/k) \cdot D_{KL}(p+\varepsilon \mid \mid p).
\]
The bound
\[\Pr[f_1(x) + \ldots + f_m(x) \geq (p+\varepsilon)m] \leq \exp(-2\varepsilon^2 m/k) \]
follows from $2^{-D_{KL}(p+\varepsilon \mid \mid p)} \leq \exp(-2\varepsilon^2)$. \qed
7 Moore bound in irregular graphs

Let G be a d-regular graph on n vertices with girth g. We assume here throughout that $g = 2r + 1$ is odd, although the results can be extended to even girth. Moore’s bound gives a lower bound on n:

$$n \geq 1 + d \sum_{i=0}^{r-1} (d-1)^i.$$

The proof is simple: fix a vertex $v \in V(G)$. Let $n_i(v)$ be the number of vertices of distance i from v, for $i = 0, \ldots, r$. The number of non backtracking paths of length $i \geq 1$ from v is $n_i(v) = d(d-1)^{i-1}$, and they all must lead to distinct vertices by the girth assumption. Hence, $n \geq n_0(v) + \ldots + n_r(v)$.

Alon, Hoory and Linial extended this bound to the case where the average degree is d.

Theorem 7.1 (Alon-Hoory-Linial [3]). Let G be a graph on n vertices with average degree d and girth $g = 2r + 1$. Then

$$n \geq 1 + d \sum_{i=0}^{r-1} (d-1)^i.$$

We present an information theoretic proof due to Ajesh Babu and Radhakrishnan [1]. In the proof, we may assume that the minimum degree is 2, as removing vertices of degree 1 can only increase the average degree, and does not change the girth.

Proof. Let $d_v = \deg(v)$. Let π be a distribution on vertices given by $\pi(v) = \frac{d_v}{2|E|}$. We will prove: $\mathbb{E}_{v \sim \pi}[n_i(v)] \geq d(d-1)^{i-1}$, and the theorem follows. To prove that, let $v \sim \pi$ and sample a uniform non backtracking path of length i from v, which we denote $v = v_0, v_1, \ldots, v_i$. That is, v_1 is a uniform neighbor of v, and for $j \geq 1$, v_{j+1} is a uniform neighbor of v_j other than v_{j-1}. We make two observations: each vertex v_j is distributed according to π; and each edge (v_j, v_{j+1}) is a uniform directed edge in G. Now,

$$\log \mathbb{E}[n_i(v)] \geq \mathbb{E}[\log n_i(v)]$$

$$\geq H[v_1, \ldots, v_i | v]$$

$$= H[v_1 | v] + H[v_2 | v, v_1] + \ldots + H[v_i | v, v_1, \ldots, v_{i-1}]$$

$$= \mathbb{E} \left[\log d_v + \sum_{j=1}^{i-1} \log (d_{v_j} - 1) \right]$$

$$= \mathbb{E} \left[\log \left\{ \frac{d_v}{d_v(d_v - 1)^{i-1}} \right\} \right]$$

$$= \frac{1}{dn} \sum_v d_v \log \left\{ \frac{d_v}{d_v(d_v - 1)^{i-1}} \right\}$$

$$\geq \frac{1}{d} \cdot d \log \left\{ d(d-1)^{i-1} \right\} = \log \left\{ d(d-1)^{i-1} \right\},$$

where the last inequality follows from the convexity of the function $x \log(x(x-1)^{i-1})$ for $x \geq 2$. \qed
8 Brégman theorem: bounding the permanent

Let \(A \) be an \(n \times n \) matrix with 0, 1 entries. The permanent of \(A \) is \(\sum_{\pi \in S_n} A_{i, \pi(i)} \). Minc conjectured, and Brégman proved, the following theorem.

Theorem 8.1 (Brégman’s theorem [4]). Let \(d_1, \ldots, d_n \) be the row sums of \(A \). Then

\[
\text{per}(A) \leq \prod (d_i!)^{1/d_i}.
\]

It is tight, eg if \(d_1 = \ldots = d_n = d \) and \(A \) consists of \(n/d \) blocks of size \(d \times d \) of all ones. We present an entropy based proof due to Radhakrishnan [9].

Proof. Let \(P = \{ \pi \in S_n : A_{i, \pi(i)} = 1 \ \forall i \in [n] \} \). Then \(|P| = \text{per}(A)\). Let \(\pi \in P \) be uniformly chosen, and consider the random variable \((\pi(1), \ldots, \pi(n))\). We have

\[
\log |P| = H(\pi(1), \ldots, \pi(n)) = H(\pi(1)) + H(\pi(2)|\pi(1)) + \ldots + H(\pi(n)|\pi(1), \ldots, \pi(n-1)).
\]

Consider the \(i \)-th term in the sum. Let \(D_i = \{ j : A_{i,j} = 1 \} \) with \(|D_i| = d_i\), and consider some fixing of \(\pi(1) = x_1, \ldots, \pi(i-1) = x_{i-1} \). Then \(\pi(i) \) can take any value in \(D_i \setminus \{ x_1, \ldots, x_{i-1} \} \), and hence \(H(\pi(i)|\pi(1) = x_1, \ldots, \pi(i-1) = x_{i-1}) \leq \log |D_i \setminus \{ x_1, \ldots, x_{i-1} \}| \). It is not clear how to evaluate this directly. The trick is to enumerate the rows in a random order.

For \(\sigma \in S_n \) and consider the random variable \(\pi(\sigma(1)), \ldots, \pi(\sigma(n)) \). We have

\[
H(\pi) = H(\pi(\sigma(1))) + H(\pi(\sigma(2))|\pi(\sigma(1))) + \ldots + H(\pi(\sigma(n))|\pi(\sigma(1)), \ldots, \pi(\sigma(n-1)))
\]

Averaging over uniformly chosen \(\sigma \in S_n \), we get

\[
H(\pi) = \mathbb{E}_\sigma \sum_{i=1}^n H(\pi(\sigma(i))|\pi(\sigma(1)), \ldots, \pi(\sigma(i-1))).
\]

(note: we think of \(\sigma \) as a fixed permutation, and not a random variable. Equivalently, we can condition also on \(\sigma \) in the entropy calculations). Letting \(k_{\sigma,i} = \sigma^{-1}(i) \), we can reorder the terms as

\[
H(\pi) = \sum_{i=1}^n \mathbb{E}_\sigma H(\pi(i)|\pi(\sigma(1)), \ldots, \pi(\sigma(k_{\sigma,i} - 1)))
\]

\[
\leq \sum_{i=1}^n \mathbb{E}_{\pi,\sigma} \log |D_i \setminus \{ \pi(\sigma(1)), \ldots, \pi(\sigma(k_{\sigma,i} - 1)) \}|
\]

\[
= \sum_{i=1}^n \mathbb{E}_{\pi,\sigma} \log |\pi^{-1}(D_i) \setminus \{ \sigma(1), \ldots, \sigma(k_{\sigma,i} - 1) \}|.
\]

Fix \(\pi \), and consider the \(i \)-th term. For all \(\pi \in P \) we have \(\pi(i) \in D_i \), and hence \(i \in \pi^{-1}(D_i) \). Consider the ordering of \(\pi^{-1}(D_i) \) induced by \(\sigma \). The set \(\pi^{-1}(D_i) \cap \{ \sigma(1), \ldots, \sigma(k_{\sigma,i} - 1) \} \)
is the set of all elements of $\pi^{-1}(D_i)$ which appear before i; moreover, as σ is uniform, the ordering of $\pi^{-1}(D_i)$ by σ is uniform, and hence

$$\Pr_{\sigma}[\pi^{-1}(D_i) \setminus \{\sigma(1), \ldots, \sigma(k_{\sigma,i} - 1)\}] = j = \frac{1}{d_i} \quad \forall j = 1, \ldots, d_i.$$

We thus conclude

$$H(\pi) \leq \sum_{i=1}^{n} \sum_{j=1}^{d_i} \frac{\log j}{d_i} = \log \prod_{i=1}^{n} (d_i!)^{1/d_i}.$$

\[\square\]

9 Spencer theorem

Let A be an $n \times n$ matrix with 0,1 entries. If $x \in \{-1, 1\}^n$ is chosen uniformly, then whp $|\langle Ax \rangle| \leq O(\sqrt{n})$; however the largest entry can be of the order of $\sqrt{n \log n}$. While this is true for most x, Spencer proved that there exist x for which $|\langle Ax \rangle| \leq O(\sqrt{n})$ for all $i \in [n]$.

Theorem 9.1 (Spencer [10]). For any $n \times n$ matrix A with 0,1 entries, there exists $x \in \{-1, 1\}^n$ such that $\|Ax\|_\infty \leq O(\sqrt{n})$.

The main idea is to find a partial coloring: a partial solution $x \in \{-1, 0, 1\}^n$ such that $\|Ax\|_\infty \leq O(\sqrt{n})$, and such that a constant fraction of the coordinates of x are in $\{-1, 1\}$. Then, we recurse upon the uncolored (set to zero) variables. The error terms form a geometric sequence (almost), and hence sum to $O(\sqrt{n})$. Here we will just describe this partial coloring lemma.

Lemma 9.2 (partial coloring lemma). For any $n \times n$ matrix A with 0,1 entries, there exists $x \in \{-1, 0, 1\}^n$ such that

1. $\|Ax\|_\infty \leq O(\sqrt{n})$.

2. At least $n/4$ (say) of the coordinates of x are in $\{-1, 1\}$.

Proof. Let $C \geq 1$ be a constant to be determined later. We will find $x', x'' \in \{-1, 1\}^n$ such that $\|Ax' - Ax''\|_\infty \leq C\sqrt{n}$, and such that x', x'' disagree on $n/4$ of the coordinates. Then setting $x = (x' - x'')/2$ gives the required solution. To this end, let $X \in \{-1, 1\}^n$ be uniformly chosen, and consider the random variables $Y_i(X) = \langle AX_i \rangle/C\sqrt{n}$ for $i \in [n]$. Standard estimates show that $\Pr[Y_i \geq t] \leq \exp(-\Omega(C^2t^2))$, and in particular if we choose C a large enough constant, we get $H(Y_i) \leq 1/4$. Hence

$$H(Y_1, \ldots, Y_n) \leq \sum_{i=1}^{n} H(Y_i) \leq n/4.$$

In particular, there must be some values y_1, \ldots, y_n such that $\Pr[Y_1 = y_1, \ldots, Y_n = y_n] \geq 2^{-n/4}$. Let $S = \{x \in \{-1, 1\}^n : Y_i(x) = y_i \forall i \in [n]\}$. Then $|S| \geq 2^{3n/4}$, and for any $x', x'' \in S$ we have $\|Ax' - Ax''\|_\infty \leq C\sqrt{n}$. To conclude the lemma, observe that any subset of $\{0, 1\}^n$ of size $2^{3n/4}$ must contain two points which disagree on at least $n/4$ coordinates. \[\square\]
References

