Adventures in Linear Algebra++ and unsupervised learning.

Sanjeev Arora

Princeton University
Computer Science + Center for Computational Intractability
Linear Algebra ++

Set of problems and techniques that extend classical linear algebra.

Often are (or seem) NP-hard; currently solved via nonlinear programming heuristics.

For provable bounds need to make assumptions about the input.
Is NP-hardness an obstacle for theory?

New York Times corpus (want thematic structure)

NP-hard instances (encodings of SAT)

Learning Topic Models

Tractable subset??

(“Going beyond worst-case.”
“Replacing heuristics with algorithms with provable bounds”)
Classical linear algebra

- Solving linear systems: \(Ax = b \)

- **Matrix factorization/rank** \(M = AB; \)

 (\(A \) has much fewer columns than \(M \))

- **Eigenvalues/eigenvectors.** ("Nice basis")

 \[
 M = \sum_i \lambda_i u_i u_i^T = \sum_i \lambda_i u_i \otimes u_i
 \]
Classical Lin. Algebra: least square variants

• Solving linear systems: \(Ax = b \)

\[
\min_{x} ||Ax - b||^2 \quad \text{(Least squares fit)}
\]

• Matrix factorization/rank \(M = AB; \)
 (A has much fewer columns than M)

\[
\min ||M - AB||^2 \quad \text{A has r columns} \rightarrow \text{rank-}r\text{-SVD}
\]

(“PCA” [Hotelling, Pearson, 1930s]) (“Finding a better basis”)
Semi-classical linear algebra

\[
Ax = b \quad \text{s.t. } x \geq 0. \quad \text{(LP)}
\]

Can be solved via LP if A is random/incoherent/RIP (Candes, Romberg, Tao; 06) ("\(l_1\)-trick")

Goal in several machine learning settings: Matrix factorization analogs of above: Find \(M = AB\) with such constraints on A, B (NP-hard in worst case)

(Buzzwords: Sparse PCA, Nonnegative matrix factorization, Sparse coding, Learning PCFGs,...)
Example: k-means =

Least-square rank-k matrix factorization
- each column of B has one nonzero entry and it is 1
(sparsity + nonneg + integrality)
Matrix factorization: Nonlinear variants

Given \(M \) produced as follows: Generate low-rank \(A, B \), apply nonlinear operator \(f \) on each entry of \(AB \).

Goal: Recover \(A, B \)

“Nonlinear PCA” [Collins, Dasgupta, Schapire’03]

<table>
<thead>
<tr>
<th>Deep Learning</th>
<th>(f(x) = \text{sgn}(x)) or (\text{sigmoid}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic Modeling</td>
<td>(f(x) = \text{output 1 with Prob. } x). (Also, columns of (B) are iid.)</td>
</tr>
<tr>
<td>Matrix completion</td>
<td>(f(x) = \text{output } x) with prob. (p), else 0</td>
</tr>
</tbody>
</table>

Possible general approach? Convex relaxation via nuclear norm minimization [Candes, Recht’09] [Davenport, Plan, van den Berg, Wooters’12]
Tensor variants of spectral methods

Spectral decomposition:

\[M = \sum_{i} \lambda_i u_i u_i^T = \sum_{i} \lambda_i u_i \otimes u_i \]

Analogue decomposition for n x n x n tensors may not exist.

But if it does, and it is “nondegenerate”, can be found in poly time. Many ML applications via inverse moment problems.

See [Anandkumar, Ge, Hsu, Kakade, Telgarsky’13] and talks of Rong and Anima later.
Applications to unsupervised learning...
Main paradigm for unsupervised Learning

Given: Data
Assumption: Is generated from a prob. distribution that’s described by small # of parameters. ("Model").

HMMs, Topic Models, Bayes nets, Sparse Coding, ...

Learning ≅ Find good fit to parameter values (usually, “Max-Likelihood”)

Difficulty: NP-hard in many cases. Nonconvex; solved via heuristics
Recent success stories.....
Ex 1: Inverse Moment Problem

$X \in \mathbb{R}^n$: Generated by a distribution D with vector of unknown parameters A.

\[
\begin{align*}
M_1 &= E[X] = f_1(A) \\
M_2 &= E[XX^T] = f_2(A) \\
M_3 &= E[X \otimes^3] = f_3(A)
\end{align*}
\]

For many distributions, A may in principle be determined by these moments, but finding it may be NP-hard.

Under reasonable “nondegeneracy” assumptions, can be solved via tensor decomposition.

HMMs [Mossel-Roth06, Hsu-Kakade 09]; Topic Models [Anandkumar et al.’12]; many other settings [AGHKT’13]
Ex2: Topic Models

Given corpus of documents uncover their underlying thematic structure.
"Bag of words" Assumption in Text Analysis

Document Corpus = Matrix
(i^{th} column = i^{th} document)

<table>
<thead>
<tr>
<th>Word</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>3</td>
</tr>
<tr>
<td>Snow</td>
<td>1</td>
</tr>
<tr>
<td>Soccer</td>
<td>0</td>
</tr>
<tr>
<td>Walnut</td>
<td>5</td>
</tr>
</tbody>
</table>
Hidden Variable Explanation

- Document = Mixture of Topics

\[\begin{align*}
\text{Banana} & \quad 3 \\
\text{Snow} & \quad 1 \\
\text{Soccer} & \quad 0 \\
\text{Walnut} & \quad 5 \\
\end{align*} \]

\[= 0.8 \]

\[+ 0.2 \]

\[\begin{align*}
\text{3\%} & \quad 3\% \\
\text{0\%} & \quad 0\% \\
\text{0\%} & \quad 0\% \\
\text{5\%} & \quad 5\% \\
\text{4\%} & \quad 4\% \\
\text{0\%} & \quad 0\% \\
\end{align*} \]
Nonnegative Matrix Factorization

Given nxm nonnegative matrix M write it as $M = AB$; A, B are nonneg. A is $n \times r$; B is $r \times m$

$[A, Ge, Kannan, Moitra’12]$ $n^{f(r)}$ time worst case (also matching complexity lowerbound);

$\text{Poly}(n)$ time if M is separable.

$[A., Ge, Moitra’12]$ Use it to do topic modeling with separable topic matrix in $\text{poly}(n)$ time
(Very practical; fastest current code uses it ;
"Separable" Topic Matrices

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Snow</th>
<th>Soccer</th>
<th>Walnut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>4%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notion also useful in vision, linguistics [Cohen, Collins ACL’14]
Ex 3: Dictionary Learning
(aka Sparse Coding)

• Simple “dictionary elements” build complicated objects.

• Each object composed of small # of dictionary elements (sparsity assumption)

• Given the objects, can we learn the dictionary?

Given: Samples y_i generated as $A x_i$, where x_i’s k-sparse, iid from some distrib.

Goal: Learn matrix A, and x_i’s
Why dictionary learning? [Olshausen Field ’96]

natural image patches

Dictionary learning

Gabor-like Filters

Other uses: Image Denoising, Compression, etc.
“Energy minimization” heuristic

\[
\min_{B,x_1,x_2,\ldots} \sum_i ||y_i - Bx_i||_2^2
\]

\(x_i\)'s are \(k\)-sparse

• Alternating Minimization (kSVD):
 Fix one, improve the other; REPEAT

• Approximate gradient descent (“neural”)

[A., Ge, Ma, Moitra’14] Under some plausible assumptions, these heuristics find global optimum.

Lots of other work, including an approach using SDP hierarchies.
[Barak, Kelner, Steurer’14]
Deep learning: learn multilevel representation of data (nonlinear)

(inspired e.g. by 7-8 levels of visual cortex)

Successes: speech recognition, image recognition, etc.

[Krizhevsky et al NIPS’12.]
600K variables; Millions of training images. 84% success rate on IMAGENET (multiclass prediction).

(Current best: 94% [Szegedy et al’14])

1 iff $\sum_i w_i x_i > \Theta$
Understanding “randomly-wired” deep nets

Inspirations: Random error correcting codes, expanders, etc...

[A., Bhaskara, Ge, Ma, ICML’14] Provable learning in Hinton’s generative model. Proof of hypothesized “autoencoder” property.

- No nonlinear optimization.
- Combinatorial algorithm that leverages correlations.

“Inspired and guided” Google’s leading deep net code
[Szegedy et al., Sept 2014]
Example of a useful ingredient

Perturbation bounds for top eigenvector (Davis-Kahan, Wedin)

v_1: top eigenvector for A
v_1': top eigenvector for $A + E$

If $|Ev_1| <<$ difference of top two eigenvals of A, then $v_1' \approx v_1$
Open Problems (LinAL++)

• **NP-hardness** of various LinAl++ problems?
• Generic $n^{f(r)}$ time algorithm for rank-r matrix decomposition problems (linear/nonlinear)? (Least square versions seem most difficult.)
• Efficient gradient-like algorithms for LinAL++ problems, especially nonlinear PCA? (OK to make more assumptions)
• Application of LinAl++ algorithms to combinatorial optimization?
• Efficient dictionary learning beyond sparsity \sqrt{n}?
Open Problems (ML)

• Analyse other local-improvement heuristics.
• More provable bounds for deep learning.
• Rigorous analysis of nonconvex methods (variational inference, variational bayes, belief propagation..)
• Complexity theory of avg case problems (say interreducibility in Lin Al++)?
Variants of matrix factorization (finding better bases)

Rank: Given an $n \times m$ matrix M rewrite it (if possible) as $M = AB$ \quad (A: $n \times r$; B: $r \times m$)

“Least squares” version: $\min |M - AB|^2$ \quad (rank-r SVD)

Nonnegative matrix factorization: M, A, B have nonneg entries
Solvable in n^r time; [AGKM’12, M’13]; in poly time for separable M

Sparse PCA: Rows of A are sparse. (Dictionary learning is a special case.) Solvable under some condns.

Least squares versions of above are open (k-means is a subcase...