Molecular errors, cryptic sequences, and evolvability

Joanna Masel
Ecology & Evolutionary Biology, University of Arizona
Gene expression

1. **DNA**
2. **Transcription**
3. **pre-mRNA**
4. **Splicing**
5. **mRNA**
6. **Translation**
7. **Unfolded protein**
8. **Folding**
9. **Final protein**
Errors can occur at any stage
Outline

1. Evolution of error rates under a speed vs. accuracy tradeoff
2. Molecular errors pre-screen future variants, and so promote evolvability
3. Genetic polymorphism is not required for evolvability
4. Protein coding sequences can evolve de novo from pre-screened noncoding sequences
Consequences of errors are either bad or relatively harmless, rarely in between.
Distribution of fitness effects of new mutations

vesicular stomatic virus

yeast

Eyre-Walker & Keightley 2007
Stop codon readthrough: case study of molecular errors

Diagram showing the process from DNA to final protein, highlighting the failure points in transcription, splicing, and translation due to stop codon readthrough, leading to misfolded final protein.
Readthrough at error rate ρ
Mutation bias favors misfolding
Selection for a stable fold even after a readthrough error

1 locus

Mutation

Selection
Readthrough errors happen at many loci. Some are sensitive.
Individual genotype
= error rate, #sensitive loci
Costs and benefits of proofreading

Expression of deleterious proteins

\[\approx (1 - \rho)^{\gamma L_{\text{del}}} \]
\[\approx 1 - s \rho \frac{L_{\text{del}}}{L_{\text{tot}}} \]
Costs and benefits of proofreading

Cost of accuracy

\[(1 - \delta \log(\rho))^{-1} \]

Expression of deleterious proteins

\[\approx (1 - \rho)^{L_{\text{del}}} \sim 1 - s \rho^{L_{\text{del}}/L_{\text{tot}}} \]

Rajon & Masel (2011)
Costs and benefits of proofreading

\[\text{Cost of accuracy} \]
\[(1 - \delta \log(\rho))^{-1} \]

\[\text{Expression of deleterious proteins} \]
\[\approx (1 - \rho)^{\gamma L_{\text{del}}} \]
\[\approx 1 - s \rho^{\frac{L_{\text{del}}}{L_{\text{tot}}}} \]

Fitness vs. \[\log(\rho) \]

Optimal value of \(\rho \)

Rajon & Masel (2011)
Coevolution of ρ and L_{del}

Rajon & Masel (2011)
Coevolution of ρ and L_{del}

Rajon & Masel (2011)
Coevolution of ρ and L_{del}

Rajon & Masel (2011)
Two attractors in large populations

Rajon & Masel (2011)
Two strategies are quite different

2 strategies:

- ⬜: allowing deleterious sequences, but hiding them
- ⬜: eliminating deleterious sequence by expressing them

or ⬜ versus ⬜?

Rajon & Masel (2011)
Two attractors for a range of population sizes (i.e. range of limits to weak selection)

Rajon & Masel (2011)
Larger bistable range with more loci

Rajon & Masel (2011)
Model applies to many kinds of molecular errors

<table>
<thead>
<tr>
<th>Error</th>
<th>Global solution</th>
<th>Local solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop codon readthrough</td>
<td>Accurate ribosome & release factors</td>
<td>Benign 3’UTR</td>
</tr>
</tbody>
</table>

Rajon & Masel (2011)
Outline

1. Evolution of error rates under a speed vs. accuracy tradeoff
2. Molecular errors pre-screen future variants, and so promote evolvability
3. Genetic polymorphism is not required for evolvability
4. Protein coding sequences can evolve de novo from pre-screened noncoding sequences
Effect on quantitative trait proportional to expression
Point mutation in stop codon → full expression of previously cryptic sequence (that won’t misfold if error rate was high)
Environmental change in optimal trait value
Populations with high error rates evolve faster

Rajon & Masel (2011)
New mutations

vesicular stomatotic virus

yeast

Eyre-Walker & Keightley 2007
Cryptic variants

Pre-adapting selection

Fitness
vesicular stomatic virus

Fitness
yeast

Masel 2006, Rajon & Masel 2011
Evolvability comes from tapping into cryptic variants

• Molecular errors in the present mimic mutations in the future
• Strongly deleterious sequences are pre-purged in favor of benign ones
• Benign sequences are co-optable for adaptation
Benefits go to any “high error” locally benign cryptic sequences

More examples

• Promiscuous enzyme activities
• Rare protein-protein interactions (PPIs) that lose crypticity when proteins see each other more often

Aside: “cryptic” PPIs (deliberately bad Y2H data)
are biologically meaningful

They predict gene noise and plasticity better than
“real” PPIs (best practice affinity capture mass spec)
“Stickiness” trumps “hubness”

Brettner & Masel (2012)
Outline

1. Evolution of error rates under a speed vs. accuracy tradeoff
2. Molecular errors pre-screen future variants, and so promote evolvability
3. Genetic polymorphism is not required for evolvability
4. Protein coding sequences can evolve de novo from pre-screened noncoding sequences
Let’s look at cryptic sequences with and without genetic diversity
Consider only benign sequences, with different phenotypic effect sizes (i.e. in parameter regime where misfolded cryptic sequences are purged)
Relaxed selection \rightarrow cryptic genetic diversity
Co-opted variants can be adaptive in a new environment.
Genotype space / neutral network
Multiple cryptic loci provide more adaptive options, even in the absence of genetic diversity across population.
Two ways to access more novel phenotypes: genetic polymorphism or neighborhood richness

1 locus, 3 genotypes, each accessing one new phenotype

3 loci, 1 genotype can access 3 phenotypes
Two ways to access more novel phenotypes: genetic polymorphism or neighborhood richness

Clonal population with a rich mutational neighborhood. The population only has a single genotype – it occupies a single node in the genotype network – but it can reach a diverse array of potentially adaptive phenotypes through new mutations.

Diverse population with poor mutational neighborhoods. The population is genetically diverse as it occupies several nodes in the genotype network, but each genotype can only reach a small subset of all possible new phenotypes through mutation. The population as a whole can reach many new phenotypes, but this ability would be lost were the population to become clonal.

Rajon & Masel 2013
Each cryptic sequence affects multiple traits

Rajon & Masel 2013
Effects are dampened while cryptic

\[L_{tot} \text{ sequences} \]

\[\rho \beta_{i11} \quad \rho \beta_{i12} \quad \rho \beta_{ij1} \quad \rho \beta_{ij2} \quad \rho \beta_{i31} \quad \rho \beta_{iL_{tot}2} \]

Trait 1

\[\downarrow \]

Trait 2

Rajon & Masel 2013
During co-option, crypticity is lost
Multiple sequences define neighborhood richness

L_{tot} sequences

\[\beta_{i11}, \beta_{i12}, \beta_{ij1}, \beta_{ij2}, \beta_{i31}, \beta_{iL_{tot}2} \]
Multiple genotypes increase accessible phenotypes still further
Quantify phenotypic diversity due to neighborhood richness

d_G: mean distance between individuals with the same initial genotype
Compare to total phenotypic diversity

\(d_G\): mean distance between individuals with the same initial genotype

\(d_P\): mean distance between two individuals in the population

Rajon & Masel 2013
With one locus, all genetic diversity, no neighborhood richness

\[\frac{d_G}{d_P} \]

\[\log_{10}(\rho) \]

\[L_{tot} = 1 \]

Rajon & Masel 2013
With 10 loci, more phenotypic diversity, dominated by neighborhood richness.
Compensatory evolution drives high neighborhood richness
“Spread” across a genotype space is not required for the high evolvability of polygenic traits in asexuals

Clonal population with a rich mutational neighborhood. The population only has a single genotype – it occupies a single node in the genotype network – but it can reach a diverse array of potentially adaptive phenotypes through new mutations.

Diverse population with poor mutational neighborhoods. The population is genetically diverse as it occupies several nodes in the genotype network, but each genotype can only reach a small subset of all possible new phenotypes through mutation. The population as a whole can reach many new phenotypes, but this ability would be lost were the population to become clonal.

Rajon & Masel 2013
What do we need for evolvability?

- A minimum level of selection on cryptic sequences, to purge the misfolded options
- Selection as weak as possible above that minimum, to allow maximum compensatory evolution

- This balance is exactly what we get in one attractor of our speed vs. accuracy model!
Outline

1. Evolution of error rates under a speed vs. accuracy tradeoff
2. Molecular errors pre-screen future variants, and so promote evolvability
3. Genetic polymorphism is not required for evolvability
4. Protein coding sequences can evolve de novo from pre-screened noncoding sequences
Stop codon readthrough can be coopted for de novo C-terminal pieces of genes

- Conversion of non-coding to coding confirmed by homologous phylogenetic comparisons
 - 75 events in Saccharomyces
 - 67 events in mouse/rat

Giacomelli, Hancock & Masel (2007)
Complete genes evolve *de novo* too. How is this possible?

1. Accidental, low level transcription, transcript rapidly degraded
2. Transcript escapes degradation
3. Transcript occasionally exported to cytoplasm, where it associates with ribosomes and “accidental” ORFs may be translated at low levels
4. New, functional coding gene

Errors at each stage give a “preview” of the next one, allowing pre-adaptation to occur

We tested whether penultimate stage 3 is common
Ribosome Profiling

Nuclease Digestion

mRNA "footprints" polyadenylated and prepared; subsequent DNA library sequenced

Ingolia et al. 2009
Are “non-coding” transcripts associated with ribosomes?

• Used ribosomal footprints that exactly mapped to unique genome site

 Ingolia et al. 2009

• 217/404 “non-coding” transcripts showed ribosomal association

 Wilson & Masel 2011
Many individual “non-coding” transcripts have ORF-like ribosome densities

Found a new "protein-coding gene"

Wilson & Masel (2011)
Ribosomal footprint locations match a 28aa ORF

Wilson & Masel (2011)
Summary of ribosome profiling results

• Looks like a new coding sequence, but we don’t know if polypeptide is functional
• Looks like de novo evolution
• Proof of principle of powerful method to annotate short de novo proteins
• Penultimate stage of gene birth is widespread

Wilson & Masel (2011)
Conclusions

• Molecular errors are common and important (eg PPIs)
• 2 solutions to many molecular errors
 – low error rate via a proofreading mechanism for all sites
 – high error rate, but robustness to each separate error
• High error rates pre-screen future variants, and so promote evolvability
• With multiple loci, genetic diversity is not required for evolvability
• De novo genes may have been prescreened by widespread ribosomal association to “non-coding” sequences
Broader picture

- Waste and mess and errors are not just a typical biological nuisance
- Without waste and mess, creative evolutionary innovations may not be possible
- Looking for a clean molecular machine can miss the essence of biology
Thanks!

NIH
Pew Charitable Trusts
John Templeton Foundation

Etienne Rajon Ben Wilson Mike Giacomelli Leandra Brettner
Now hiring postdocs