

Tall-and-skinny QRs and SVDs in MapReduce

Yangyang Hou	Joe Nichols - U. of Minn
Purdue, CS	James Demmel
Austin Benson	UC Berkeley
Stanford University	Joe Ruthruff
Paul G. Constantine	Jeremy Templeton
Col. School. Mines	Sandia CA
Mainly funded by Sandia National Labs	
CSAR project, recently by NSF CAREER,	
and Purdue Research Foundation.	

Yangyang Hou Purdue, CS
Austin Benson
Stanford University
Paul G. Constantine Col. School. Mines

Joe Nichols - U. of Minn James Demmel UC Berkeley Joe Ruthruff Jeremy Templeton

Sandia CA

Mainly funded by Sandia National Labs CSAR project, recently by NSF CAREER, and Purdue Research Foundation.

David F. Gleich

Computer Science Purdue University

David Gleich • Purdue Simons PDAIO

Big simulation data

Nonlinear heat transfer model in random media

Each run takes 5 hours on 8 processors, outputs 4M (node) by 9 (time-step) simulation

We did 8192 runs (128 samples of bubble locations, 64 bubble radii) 4.5 TB of data in Exodus II (NetCDF)
https://www.opensciencedatacloud.org/ publicdata/heat-transfer/

Non-insulator regime

Non-insulator regime

s	$R(s, \bar{\tau})$	$\mathcal{E}(s, \bar{\tau})$
0.08	16	$1.00 \mathrm{e}-04$
0.23	15	$2.00 \mathrm{e}-04$
0.39	14	$4.00 \mathrm{e}-04$
0.55	13	$6.00 \mathrm{e}-04$
0.70	13	$8.00 \mathrm{e}-04$
0.86	12	$1.10 \mathrm{e}-03$
1.01	11	$1.50 \mathrm{e}-03$
1.17	10	$2.10 \mathrm{e}-03$
1.33	9	$3.10 \mathrm{e}-03$
1.48	8	$4.50 \mathrm{e}-03$
1.64	8	$6.50 \mathrm{e}-03$
1.79	7	$8.20 \mathrm{e}-03$
1.95	7	$1.07 \mathrm{e}-02$
2.11	6	$1.23 \mathrm{e}-02$
2.26	6	$1.39 \mathrm{e}-02$

Constantine, Gleich, Hou \& Templeton arXiv 2013.

Dynamic Mode Decomposition

Dynamic mode decomposition of a rectangular supersonic screeching jet

Joseph W. Nichols

$$
\text { July 20, } 2012
$$

Is this BIG Data?

BIG Data has two properties

- too big for one hard drive
- 'skewed' distribution

BIG Data = "Big Internet Giant" Data
BIG Data = "Big In'Gineering" Data
"Engineering"

A matrix $\boldsymbol{A}: m \times n, m \geq n$ is tall and skinny when $O\left(n^{2}\right)$ work and storage is "cheap" compared to m.
-- Austin Benson

Quick review of QR

Let $\boldsymbol{A}: m \times n, m \geq n$, real

$\boldsymbol{A}=\mathbf{Q} \boldsymbol{R}$

\mathbf{Q} is $m \times n$ orthogonal $\left(\mathbf{Q}^{\boldsymbol{T}} \mathbf{Q}=\boldsymbol{I}\right)$
\boldsymbol{R} is $n \times n$ upper triangular

David Gleich • Purdue Simons PDAIO

Tall-and-skinny SVD and RSVD

Let $\boldsymbol{A}: m \times n, m \geq n$, real $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$
\boldsymbol{U} is $m \times n$ orthogonal
$\boldsymbol{\Sigma}$ is $m \times n$ nonneg, diag.
\boldsymbol{V} is $n \times n$ orthogonal

There are good MPI implementations.

What's left to do?

David Gleich • Purdue Simons PDAIO

Moving data to an MPI cluster may be infeasible or costly

How to store tall-and-skinny matrices in Hadoop

$\boldsymbol{A}: m \times n, \mathrm{~m} \gg \mathrm{n}$

Key is an arbitrary row-id Value is the $1 \times n$ array for a row (or bxn block)

Each submatrix A_{i} is an the input to a map task.

Still, isn't this easy to do?

Current MapReduce algs use the normal equations

$$
\mathbf{A}=\mathbf{Q} \mathbf{R} \quad \mathbf{A}^{T} \mathbf{A} \xrightarrow{\text { Cholesky }} \mathbf{R}^{T} \mathbf{R} \quad \mathbf{Q}=\mathbf{A R}^{-1}
$$

Map
$A_{i j}$ to $A_{i}^{\top} A_{i}$
A_{2} Reduce
$R^{\top} R=\operatorname{Sum}\left(A_{i}^{\top} A_{i}\right)$
Map 2
$A_{i j}$ to $A_{i} R^{-1}$

Two problems
R inaccurate if A illconditioned

Q not numerically orthogonal (Householder assures this)

Numerical stability was a problem for prior approaches

Four things that are better

1. A simple algorithm to compute R accurately. (but doesn't help get Q orthogonal).
2. "Fast algorithm" to get Q numerically orthogonal in most cases.
3. Multi-pass algorithm to get Q numerically orthogonal in virtually all cases.
4. A direct algorithm for a numerically orthogonal Q in all cases.

Constantine \& Gleich MapReduce 2011
Benson, Gleich \& Demmel IEEE BigData 2013

Numerical stability was a problem for prior approaches

Previous methods couldn't ensure that the matrix Q was orthogonal

MapReduce is great for TSQR! You don't need $A^{\top} A$

Data A tall and skinny (TS) matrix by rows

Input 500,000,000-by-50 matrix
Each record 1-by-50 row
HDFS Size 183.6 GB

Time to compute read A 253 sec . write A 848 sec . Time to compute R in $\operatorname{qr}(\mathrm{A}) 526 \mathrm{sec} . \mathrm{w} / \mathrm{Q}=\mathrm{AR}^{-1} 1618 \mathrm{sec}$.
Time to compute Q in $\operatorname{gr}(\mathrm{A}) 3090 \mathrm{sec}$. (numerically stable)
git clone https://github. com/arbenson/mrtsqr

Communication avoiding QR (Demmel et al. 2008)

Serial QR factorizations (Demmel et al. 2008)

$$
\begin{aligned}
& A=\left[\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right] \\
& A_{1}={\text { Compute QR of } \boldsymbol{A}_{1},}^{Q_{1} \boldsymbol{R}_{1} ;\left[\begin{array}{l}
R_{1} \\
A_{2}
\end{array}\right]=Q_{2} R_{2} ;\left[\begin{array}{l}
R_{2} \\
A_{3}
\end{array}\right]=Q_{3} \boldsymbol{R}_{3} ;\left[\begin{array}{l}
R_{3} \\
A_{4}
\end{array}\right]=Q_{4} \boldsymbol{R}_{4}} \\
& \boldsymbol{r e a d} \boldsymbol{A}_{2}, \text { update QR, } . .
\end{aligned}
$$

Communication avoiding QR (Demmel et al. 2008) on MapReduce (Constantine and Gleich, 2011)

Too many maps cause too much data to one reducer!

S_{1} Reducer 1-1

S_{2}
Reducer 1-2
Serial TSQR
$\xrightarrow{\text { reduce }} R_{2,3} \xrightarrow{\text { emit }}$
S_{3}
Reducer 1-3
Serial TSQR

Getting Q

Numerical stability was a problem for prior approaches

Previous methods couldn't ensure that the matrix Q was orthogonal

Iterative refinement helps

Iterative refinement is like using Newton's method to solve $\mathrm{Ax}=\mathrm{b}$. It's folklore that "two iterations of iterative refinement are enough"

What if iterative refinement is too slow?

Mapper 2

Estimate the "norm" by \boldsymbol{S}
Based on recent work by "random matrix" community on approximating QR with a random subset of rows. Also assumes that you can get a subset of rows "cheaply" - possible, but nontrivial in Hadoop.

Numerical stability was a problem for prior approaches

Previous methods couldn't ensure that the matrix Q was orthogonal

Recreate Q by storing the history of the factorization

3. Distribute the pieces of $\boldsymbol{Q}_{\boldsymbol{*} 1}$ and form the true \mathbf{Q}

4. Output local $\underline{\mathbf{Q}}$ and
\boldsymbol{R} in separate files

Theoretical lower bound on runtime for a few cases on our small cluster

Rows	Cols	Old	R-only + no IR	R-only + PIR	R-only $+\mathbb{R}$	Direct TSQR	All values in seconds
4.0B	4	1803	1821	1821	2343	2525	
2.5B	10	1645	1655	1655	2062	2464	Only two params needed - read and write bandwidth for the cluster - in order to derive a performance model of the algorithm. This simple model is almost within a factor of two of the true runtime. (10-node cluster, 60 disks)
0.6B	25	804	812	812	1000	1237	
0.5B	50	1240	1250	1250	1517	2103	
Rows	Cols	Old	R-only + no IR	R-only $+\mathrm{PIR}$	R-only $+\mathbb{R}$	$\begin{aligned} & \text { Direct } \\ & \text { TSQR } \end{aligned}$	
4.0B	4	2931	3460	3620	4741	6128	
2.5B	10	2508	2509	3354	4034	4035	
0.6B	25	1098	1104	1476	2006	1910	
0.5B	50	921	1618	1960	2655	3090	

Papers

Constantine \& Gleich, MapReduce 2011
Benson, Gleich \& Demmel, BigData'13

Constantine \& Gleich, ICASSP 2012
Constantine, Gleich, Hou \& Templeton, arXiv 2013

Code

https://github.com/arbenson/mrtsar
https://github.com/dgleich/simform

Questions?

BIG

Bloody Imposing Graphs
Building Impressions of Groundtruth Blockwise Independent Guesses

Best Implemented at Google

