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Junta approximations

How can we simplify a function f : {0,1}n → R?

R

In this talk:
How well can we approximate f by a function g of few variables?

Def.: g approximates f within ε in Lp, if

‖f − g‖p = (E[|f (x)− g(x)|p])1/p ≤ ε

(in this talk, the uniform distribution)
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Friedgut’s Theorem

Definition (Average sensitivity)
The average sensitivity, or total influence, of f : {0,1}n → {0,1} is

Infl(f ) =
n∑

i=1

Pr
x∈{0,1}n

[f (x) 6= f (x ⊕ ei)].

Theorem (Friedgut ’98)
For any function f : {0,1}n → {0,1} of average sensitivity Infl(f ) and
every ε > 0, there is a function g depending on 2O(Infl(f )/ε) variables
such that ‖f − g‖1 ≤ ε.
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Junta approximations of real-valued functions

We investigate classes of real-valued functions f : {0,1}n → [0,1]:
submodular functions: f (x ∨ y) + f (x ∧ y) ≤ f (x) + f (y)

XOS functions: f (x) = maxi
∑

j aijxj

subadditive functions: f (x ∨ y) ≤ f (x) + f (y)

self-bounding functions: f (x) ≥
∑

i(f (x)− f (x ⊕ ei))+

Why these classes?
Nice mathematical properties
Role in game theory as valuation functions on bundles of goods

[Balcan-Harvey ’11] Can we learn valuations from random examples?
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Submodular functions

Submodularity = property of diminishing returns.

Let the marginal value of element j be ∂j f (S) = f (S ∪ {j})− f (S).
(we identify f (S) = f (1S))

j

S

T
Definition: f is submodular, if for S ⊂ T

j cannot add more value to T than S.

∂j f (S) ≥ ∂j f (T )

Equivalently: f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B).
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Subadditive and Fractionally Subadditive functions

Definition: f is subadditive, if f (A ∪ B) ≤ f (A) + f (B) for all A,B.

T
Definition: f is fractionally subadditive,

if f (T ) ≤
∑
αi f (Si)

whenever 1T ≤
∑
αi1Si .S1,S2, . . .

Definition: f is an XOS function,
if f is a maximum over linear functions: f (x) = maxi

∑
j aijxj (aij ≥ 0)

Fact (for monotone functions with f (∅) = 0)
Submodular ⊂ Fract. Subadditive = XOS ⊂ Subadditive Functions
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Self-bounding functions

Definition: A function f : Dn → R+ is a-self-bounding, if

n∑
i=1

(f (x)−min
yi∈D

f (x1, . . . , xi−1, yi , xi+1, . . . , xn)) ≤ af (x).

Theorem: [Boucheron, Lugosi, Massart, 2000]
1-Lipschitz 1-self-bounding functions under product distributions are
concentrated around E[f ] with standard deviation O(

√
E[f ]) and

Pr[f (X ) < E[f ]− t ] < e−t2/2E[f ], Pr[f (X ) > E[f ] + t ] > e−t2/(2E[f ]+t).

Fact
XOS ⊂ 1-Self-bounding functions.
Submodular ⊂ 2-Self-bounding functions.
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Overview of our function classes

monotone
submodular

submodular XOS

subadditive

self-boundinga-self-bounding
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Related work (learning of submodular functions)

[Balcan-Harvey ’11]
initiated the study of learning of submodular functions
gave a learning algorithm for product distributions, using
concentration properties of Lipschitz submodular functions
proved a negative result for general distributions
(no efficient learning within factors better than n1/3)

[Gupta-Hardt-Roth-Ullman ’11]
learning of submodular fn. with applications in differential privacy
decomposition into nO(1/ε2) ε-Lipschitz functions.

[Cheraghchi-Klivans-Kothari-Lee ’12]
learning based on Fourier analysis of submodular functions
submodular fns are ε-approximable by polynomials of degree 1/ε2

learning for uniform distributions, using nO(1/ε2) random examples
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Related work (cont’d)

[Rashodnikova-Yaroslavtsev’13, Blais-Onak-Servedio-Yaroslavtsev’13]
learning/testing of discrete submodular functions (k possible
values), using kO(k log k/ε)poly(n) value queries

ε-approximation by a junta of size (k log 1
ε )Õ(k)

[Feldman-Kothari-V. ’13]
ε-approximation of submodular functions by decision trees of
depth O(1/ε2), and hence juntas of size 2O(1/ε2)

PAC-learning using 2poly(1/ε)poly(n) random examples
(vs. [CKKL’12] npoly(1/ε) examples but in the agnostic setting)

QUESTIONS:
Why is this restricted to submodular functions?
Is the junta of size 2O(1/ε2) related to Friedgut’s Theorem?
What are the best juntas that we can achieve?
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Our results
[to appear in FOCS’13]

Result 1:
XOS and self-bounding functions can be ε-approximated in L2 by
juntas of size 2O(1/ε2)

This follows from a "real-valued Friedgut’s theorem"

Result 2:
Submodular fns can be ε-approximated by O( 1

ε2
log 1

ε )-juntas
Proof avoids Fourier analysis, uses concentration properties +
"boosting lemma" from [Goemans-V. ’04]

Applications to learning:
Submodular, XOS and monotone self-bounding functions can be
PAC-learned in time 2poly(1/ε)poly(n) within L2-error ε
Submodular functions can be "PMAC"-learned in time
2poly(1/ε)poly(n) within multiplicative error 1 + ε
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Overview of our junta approximations

monotone
submodular

Õ(1/ε2)

submodular
Õ(1/ε2)

XOS
2O(1/ε2)

self-bounding
2O(1/ε2)a-self-bounding

2O(a2/ε2)

subadditive
X
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No junta approximation for subadditive functions

Example: any function f : {0,1}n → {1
2 ,1} is subadditive.

1
2

1

1

1
2

1

1
2

1
2

1

∀A,B; f (A ∪ B) ≤ 1 ≤ f (A) + f (B)

Therefore, we can encode any function whatsoever,
e.g. a parity function, which cannot be approximated by a junta.
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Plan

Remaining plan of the talk:

1 Friedgut’s theorem for real-valued functions
2 ⇒ junta approximations for XOS and self-bounding functions
3 Improved junta approximation for submodular functions
4 Conclusions
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Friedgut’s Theorem

Friedgut’s Theorem: for boolean functions f : {0,1}n → {0,1}
average sensitivity Infl(f )⇒ ε-approx. by a junta of size 2O(Infl(f )/ε)

Infl(f ) =
∑n

i=1 Prx∈{0,1}n [f (x) 6= f (x ⊕ ei)] =
∑

S⊆[n] |S |̂f 2(S)

What should it say for real-valued functions?

Natural extension of average sensitivity:
Infl2(f ) =

∑
S⊆[n] |S |̂f 2(S) =

∑n
i=1 Ex∈{0,1}n [(f (x)− f (x ⊕ ei))2]

But Friedgut’s Theorem for this notion of average sensitivity is FALSE!
as observed by [O’Donnell-Servedio ’07]

Feldman-Vondrák Approximations by Juntas 15 / 29



Friedgut’s Theorem

Friedgut’s Theorem: for boolean functions f : {0,1}n → {0,1}
average sensitivity Infl(f )⇒ ε-approx. by a junta of size 2O(Infl(f )/ε)

Infl(f ) =
∑n

i=1 Prx∈{0,1}n [f (x) 6= f (x ⊕ ei)] =
∑

S⊆[n] |S |̂f 2(S)

What should it say for real-valued functions?

Natural extension of average sensitivity:
Infl2(f ) =

∑
S⊆[n] |S |̂f 2(S) =

∑n
i=1 Ex∈{0,1}n [(f (x)− f (x ⊕ ei))2]

But Friedgut’s Theorem for this notion of average sensitivity is FALSE!
as observed by [O’Donnell-Servedio ’07]

Feldman-Vondrák Approximations by Juntas 15 / 29



Counterexample to Friedgut’s Theorem?

Counterexample for f : {0,1}n → [−1,1]: (from [O’Donnell-Servedio ’07])

∑n
i=1 xi

n
n
2

n−
√

n
2

n+
√

n
20

−1

+1

∀x , i ; |f (x)− f (x ⊕ ei)| ≤ 1√
n

Infl2(f ) =
∑n

i=1 E[(f (x)− f (x ⊕ ei)
2)] = O(1)

so there should be an ε-approximate junta of size 2O(1/ε)?
but we need Ω(n) variables to approximate within a constant ε
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How to fix Friedgut’s Theorem?

[O’Donnell-Servedio ’07] prove a variant of Friedgut’s theorem
for discretized functions f : {0,1}n → [−1,1] ∩ δZ.

We don’t know how to discretize while preserving submodularity etc.

∑
xi

n
n
2

n−
√

n
2

n+
√

n
20

−1

+1

Note: If we define Inflκ(f ) =
∑n

i=1 E[|f (x)− f (x ⊕ ei)|κ], then

Infl1(f ) = n ·Θ(1/
√

n) = Θ(
√

n).
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Friedgut’s Theorem for real-valued functions

Theorem
Let f : {0,1}n → R. Then there exists a polynomial g of degree
O(Infl2(f )/ε2) depending on 2O(Infl2(f )/ε2)poly(Infl1(f )/ε) variables such
that ‖f − g‖2 ≤ ε.

Notes:
we could replace Infl1(f ) by Inflκ(f ) for κ < 2, but not Infl2(f )

for boolean functions, Infl1(f ) = Infl2(f ), so it doesn’t matter
we will show that for submodular, XOS and self-bounding
functions, Infl1(f ) and Infl2(f ) are small
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Proof of Real-valued Friedgut

Follow Friedgut’s proof:
Fourier analysis, hypercontractive inequality...

Let
d = 2Infl2(f )/ε2

α = (ε2(κ− 1)d/Inflκ(f ))κ/(2−κ), κ = 4/3
J = {i ∈ [n] : Inflκi (f ) ≥ α}
J = {S ⊆ J, |S| ≤ d}

Goal:
∑

S /∈J f̂ 2(S) ≤ ε2.
Then, g(x) =

∑
S∈J f̂ (S)χS(x) is an ε-approximation to f .
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Proof cont’d

The bound on
∑

S /∈J f̂ 2(S) has two parts:
1

∑
|S|>d f̂ 2(S) ≤ 1

d
∑
|S |̂f 2(S) = 1

d Infl2(f ) ≤ ε2/2
— by the definition of d

2
∑

S 6⊆J,|S|≤d f̂ 2(S) ≤
∑

i /∈J
∑
|S|≤d ,i∈S f̂ 2(S)

≤ (κ− 1)1−d ∑
i /∈J ‖T√κ−1(∂i f )‖22

— this part requires the hypercontractive inequality:

‖T√κ−1(f )‖2 ≤ ‖f‖κ

where Tρ is the noise operator (T̂ρf (S) = ρ|S| f̂ (S)).

The difference: we need a bound on
∑

i /∈J ‖∂i f‖2κ =
∑

i /∈J(Inflκi (f ))2/κ,
which does not follow from Infl2(f ) for real-valued functions.

Finishing the proof:
∑

i /∈J(Inflκi (f ))2/κ ≤ α2/κ−1 ∑ Inflκi (f ) ≤ (κ−1)dε2.

Feldman-Vondrák Approximations by Juntas 20 / 29



Proof cont’d

The bound on
∑

S /∈J f̂ 2(S) has two parts:
1

∑
|S|>d f̂ 2(S) ≤ 1

d
∑
|S |̂f 2(S) = 1

d Infl2(f ) ≤ ε2/2
— by the definition of d

2
∑

S 6⊆J,|S|≤d f̂ 2(S) ≤
∑

i /∈J
∑
|S|≤d ,i∈S f̂ 2(S)

≤ (κ− 1)1−d ∑
i /∈J ‖T√κ−1(∂i f )‖22

— this part requires the hypercontractive inequality:

‖T√κ−1(f )‖2 ≤ ‖f‖κ

where Tρ is the noise operator (T̂ρf (S) = ρ|S| f̂ (S)).

The difference: we need a bound on
∑

i /∈J ‖∂i f‖2κ =
∑

i /∈J(Inflκi (f ))2/κ,
which does not follow from Infl2(f ) for real-valued functions.

Finishing the proof:
∑

i /∈J(Inflκi (f ))2/κ ≤ α2/κ−1 ∑ Inflκi (f ) ≤ (κ−1)dε2.

Feldman-Vondrák Approximations by Juntas 20 / 29



Proof cont’d

The bound on
∑

S /∈J f̂ 2(S) has two parts:
1

∑
|S|>d f̂ 2(S) ≤ 1

d
∑
|S |̂f 2(S) = 1

d Infl2(f ) ≤ ε2/2
— by the definition of d

2
∑

S 6⊆J,|S|≤d f̂ 2(S) ≤
∑

i /∈J
∑
|S|≤d ,i∈S f̂ 2(S)

≤ (κ− 1)1−d ∑
i /∈J ‖T√κ−1(∂i f )‖22

— this part requires the hypercontractive inequality:

‖T√κ−1(f )‖2 ≤ ‖f‖κ

where Tρ is the noise operator (T̂ρf (S) = ρ|S| f̂ (S)).

The difference: we need a bound on
∑

i /∈J ‖∂i f‖2κ =
∑

i /∈J(Inflκi (f ))2/κ,
which does not follow from Infl2(f ) for real-valued functions.

Finishing the proof:
∑

i /∈J(Inflκi (f ))2/κ ≤ α2/κ−1 ∑ Inflκi (f ) ≤ (κ−1)dε2.

Feldman-Vondrák Approximations by Juntas 20 / 29



Application to self-bounding functions

Recall: f is self-bounding if

n∑
i=1

(f (x)−minxi f (x)) ≤ f (x).

By double counting,

Infl1(f ) =
n∑

i=1

E[|f (x)− f (x ⊕ ei)|] = 2
n∑

i=1

E[f (x)−min
xi

f (x)] ≤ 2E[f (x)].

For f : {0,1}n → [0,1], we get Infl2(f ) ≤ Infl1(f ) = O(1).

Corollary (of real-valued Friedgut)
For any self-bounding (or submodular or XOS) function
f : {0,1}n → [0,1] and ε > 0, there is a polynomial g of degree
d = O(1/ε2) over 2O(d) variables such that ‖f − g‖2 ≤ ε.
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For any self-bounding (or submodular or XOS) function
f : {0,1}n → [0,1] and ε > 0, there is a polynomial g of degree
d = O(1/ε2) over 2O(d) variables such that ‖f − g‖2 ≤ ε.
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Lower bound for XOS functions

Friedgut’s Theorem: it is known that 2Ω(1/ε) variables are necessary.

Example: tribes function→ lower bound for XOS functions as well.

f (x) = max

 1
|A1|

∑
i∈A1

xi ,
1
|A2|

∑
i∈A2

xi , . . . ,
1
|Ab|

∑
i∈Ab

xi

 .

b = 21/ε disjoint blocks Aj of size |Aj | = 1/ε
any junta smaller than 21/ε−1 misses 21/ε−1 blocks
and cannot approximate f within ε
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Better juntas for submodular functions

Theorem
For every submodular function f : {0,1}n → [0,1] and ε > 0, there is a
function g depending on O( 1

ε2
log 1

ε ) variables, such that ‖f − g‖2 ≤ ε.

Notes:
this is tight up to the log factor; consider f (x) = ε2

∑1/ε2
i=1 xi

in this sense, submodular functions are close to linear functions,
while XOS/self-bounding functions are "more complicated"
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About the proof

Inductive step: submodular function f of n variables
−→ a function of O( 1

ε2
log n

ε ) variables, approximating f within 1
2ε

n n1 = 1
ε2 log n

ε n2 = 1
ε2 log

n1
ε

nt = O( 1
ε2 log 1

ε
)

the process stops when nt = O( 1
ε2

log 1
ε )

errors form a geometric series, converging to ε
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How to reduce n to |J| = 1
ε2

log n
ε

For simplicity: assume f : {0,1}n → [0,1] monotone submodular.

Idea: build J by including variables xi1 , xi2 , xi3 , . . . that contribute
significantly to the current set:

Ex∈{0,1}J [∂i f (x)] = Ex∈{0,1}J [f (x ⊕ ei)− f (x)] > α.

Hopefully:
1 we cannot include too many variables, because the function is

bounded by [0,1]

2 f is α-Lipschitz in the variables that are not selected, and hence
we can use concentration to argue that they can be ignored

BUT: f is α-Lipschitz in the remaining variables only "in expectation";
we need a statement for most points in {0,1}J and for all j /∈ J
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The Boosting Lemma

Lemma (Goemans,V. 2004)
Let F ⊆ {0,1}n be down-closed (x ≤ y ∈ F ⇒ x ∈ F) and

σ(p) = Pr
x∼µp

[x ∈ F ] =
∑
F∈F

p|F |(1− p)n−|F |.

Then σ(p) = (1− p)φ(p) where φ(p) is a non-decreasing function of p.

Example:

F F
µ1/2

µ1/k

σ(1
2) ≥ 1

2k =⇒ σ( 1
k ) ≥ (1− 1

k )k ' 1
e
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How we find the small junta

Algorithm: (for f monotone submodular)
Initialize J := ∅, α ' ε2, δ ' 1/ log n

ε .
Let J(δ) = each element of J independently with prob. δ.
As long as ∃i /∈ J such that

Pr[∂i f (1J(δ)) > α] > 1/e,

include i in J.

Using the boosting lemma:
If we did not include i in the final set J, then Prx∼J(δ)[∂i f (x) > α] ≤ 1/e,
and hence Prx∼J(1/2)[∂i f (x) > α] ≤ (1/2)1/δ ' ε/n.
Union bound⇒ Prx∼J(1/2)[∃i /∈ J; ∂i f (x) > α] ≤ ε.
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Finishing the proof

Accuracy of the junta:
We found a set J such that with probability 1− ε over x ∈ {0,1}J ,
the function gx (y) = f (x , y) is ε2-Lipschitz in y
By concentration, gx is ε-approximated by its expectation.
Hence, f is 2ε-approximated by its averaging-projection on {0,1}J .

Size of the junta:
every time we include i ∈ J, we have Ex∼J(δ)[∂i f (x)] > α/e
so we increase E[f (J(δ))] by αδ/e
this can repeat at most O( 1

αδ ) = O( 1
ε2

log n
ε ) times.
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Concluding comments and questions

Self-bounding functions are ε-approximated by 2O(1/ε2)-juntas
Submodular functions are ε-approximated by Õ(1/ε2)-juntas
We also have a (1 + ε)-multiplicative approximation except for
ε-fraction of {0,1}n, for monotone submodular functions, by a
junta of size Õ(1/ε2).
We don’t know if such a junta exists for non-monotone
submodular functions

More on our learning algorithms and results: Vitaly Feldman on Oct 30.
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