Tensors and Optimization

Ravi Kannan

September 16, 2013

Reducing MAX- r-CSP to Tensor Optimization

- MAX-3-SAT: Clause: $\left(\bar{x}_{i}+x_{j}+x_{k}\right)$. Given a list of 3-clauses on n variables, find the assignment maximizing the number of clauses satisfied.

Reducing MAX- r-CSP to Tensor Optimization

- MAX-3-SAT: Clause: $\left(\bar{x}_{i}+x_{j}+x_{k}\right)$. Given a list of 3-clauses on n variables, find the assignment maximizing the number of clauses satisfied.
- Set up $8 n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \ldots, A^{(8)}$, where

Reducing MAX- r-CSP to Tensor Optimization

- MAX-3-SAT: Clause: $\left(\bar{x}_{i}+x_{j}+x_{k}\right)$. Given a list of 3-clauses on n variables, find the assignment maximizing the number of clauses satisfied.
- Set up $8 n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \ldots, A^{(8)}$, where
- $A_{i j k}^{(1)}=$ number of clauses satisfied by the assignment $\left(x_{i}, x_{j}, x_{k}\right)=(1,1,1)$

Reducing MAX- r-CSP to Tensor Optimization

- MAX-3-SAT: Clause: $\left(\bar{x}_{i}+x_{j}+x_{k}\right)$. Given a list of 3-clauses on n variables, find the assignment maximizing the number of clauses satisfied.
- Set up $8 n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \ldots, A^{(8)}$, where
- $A_{i j k}^{(1)}=$ number of clauses satisfied by the assignment $\left(x_{i}, x_{j}, x_{k}\right)=(1,1,1)$
- $A_{i j k}^{(2)}=$ number of clauses satisfied by the assignment $\left(x_{i}, x_{j}, x_{k}\right)=(0,1,1) \ldots \ldots$

Reducing MAX-r-CSP to Tensor Optimization

- MAX-3-SAT: Clause: $\left(\bar{x}_{i}+x_{j}+x_{k}\right)$. Given a list of 3-clauses on n variables, find the assignment maximizing the number of clauses satisfied.
- Set up $8 n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \ldots, A^{(8)}$, where
- $A_{i j k}^{(1)}=$ number of clauses satisfied by the assignment $\left(x_{i}, x_{j}, x_{k}\right)=(1,1,1)$
- $A_{i j k}^{(2)}=$ number of clauses satisfied by the assignment $\left(x_{i}, x_{j}, x_{k}\right)=(0,1,1) \ldots \ldots$
- Each clause contributes to 7 of the 8 tensors.

Reducing MAX-r-CSP to Tensor Optimization

- MAX-3-SAT: Clause: $\left(\bar{x}_{i}+x_{j}+x_{k}\right)$. Given a list of 3-clauses on n variables, find the assignment maximizing the number of clauses satisfied.
- Set up $8 n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \ldots, A^{(8)}$, where
- $A_{i j k}^{(1)}=$ number of clauses satisfied by the assignment $\left(x_{i}, x_{j}, x_{k}\right)=(1,1,1)$
- $A_{i j k}^{(2)}=$ number of clauses satisfied by the assignment $\left(x_{i}, x_{j}, x_{k}\right)=(0,1,1) \ldots \ldots$
- Each clause contributes to 7 of the 8 tensors.
- Maximize $\sum_{i j k} A_{i j k}^{(1)} x_{i} x_{j} x_{k}+\sum_{i j k} A_{i j k}^{(2)}\left(1-x_{i}\right) x_{j} x_{k}+\cdots$.

Reducing MAX-r-CSP to Tensor Optimization

- MAX-3-SAT: Clause: $\left(\bar{x}_{i}+x_{j}+x_{k}\right)$. Given a list of 3-clauses on n variables, find the assignment maximizing the number of clauses satisfied.
- Set up $8 n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \ldots, A^{(8)}$, where
- $A_{i j k}^{(1)}=$ number of clauses satisfied by the assignment $\left(x_{i}, x_{j}, x_{k}\right)=(1,1,1)$
- $A_{i j k}^{(2)}=$ number of clauses satisfied by the assignment $\left(x_{i}, x_{j}, x_{k}\right)=(0,1,1) \ldots \ldots$
- Each clause contributes to 7 of the 8 tensors.
- Maximize $\sum_{i j k} A_{i j k}^{(1)} x_{i} x_{j} x_{k}+\sum_{i j k} A_{i j k}^{(2)}\left(1-x_{i}\right) x_{j} x_{k}+\cdots$.
- Can be done for all MAX-r-CSP problems. (Get $2^{r} r$-tensors. But for this talk, $r=3$.) Goodbye MAX-CSP. Only Tensor Optimization.

Planted Clique Problem

- Given $G(n, 1 / 2)+p$ (planted) clique, find clique.

Planted Clique Problem

- Given $G(n, 1 / 2)+p$ (planted) clique, find clique.
- If $p \geq \Omega(\sqrt{n})$, spectral methods work. Alon, Krivelevich, Sudakov. ($p \in O\left(n^{0.5-\varepsilon}\right)$? Still open.)
$A_{i j k}= \begin{cases}1 & \text { if number of edges in } G \text { among }(i, j),(j, k),(k, i) \text { is odd } \\ -1 & \text { otherwise. }\end{cases}$

Planted Clique Problem

- Given $G(n, 1 / 2)+p$ (planted) clique, find clique.
- If $p \geq \Omega(\sqrt{n})$, spectral methods work. Alon, Krivelevich, Sudakov. ($p \in O\left(n^{0.5-\varepsilon}\right)$? Still open.)
$A_{i j k}= \begin{cases}1 & \text { if number of edges in } G \text { among }(i, j),(j, k),(k, i) \text { is odd } \\ -1 & \text { otherwise. }\end{cases}$
- Frieze, K. Arg-Max ${ }_{|x|=1} \sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}$, gives the planted clique provided $p \in \Omega^{*}\left(n^{1 / 3}\right)$.

Planted Clique Problem

- Given $G(n, 1 / 2)+p$ (planted) clique, find clique.
- If $p \geq \Omega(\sqrt{n})$, spectral methods work. Alon, Krivelevich, Sudakov. ($p \in O\left(n^{0.5-\varepsilon}\right)$? Still open.)
$A_{i j k}= \begin{cases}1 & \text { if number of edges in } G \text { among }(i, j),(j, k),(k, i) \text { is odd } \\ -1 & \text { otherwise. }\end{cases}$
- Frieze, K. Arg-Max ${ }_{|x|=1} \sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}$, gives the planted clique provided $p \in \Omega^{*}\left(n^{1 / 3}\right)$.
- Brubaker, Vempala r-tensor problem gives planted clique provided $p \in \Omega^{*}\left(n^{1 / r}\right)$.

Planted Clique Problem

- Given $G(n, 1 / 2)+p$ (planted) clique, find clique.
- If $p \geq \Omega(\sqrt{n})$, spectral methods work. Alon, Krivelevich, Sudakov. ($p \in O\left(n^{0.5-\varepsilon}\right)$? Still open.)
$A_{i j k}= \begin{cases}1 & \text { if number of edges in } G \text { among }(i, j),(j, k),(k, i) \text { is odd } \\ -1 & \text { otherwise. }\end{cases}$
- Frieze, K. Arg-Max ${ }_{|x|=1} \sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}$, gives the planted clique provided $p \in \Omega^{*}\left(n^{1 / 3}\right)$.
- Brubaker, Vempala r-tensor problem gives planted clique provided $p \in \Omega^{*}\left(n^{1 / r}\right)$.
- Planted Gaussian problem: $A n \times n$ i.i.d. $N(0,1)$ entries. B has i.i.d $N(\mu, 1)$ entries in (hidden) $p \times p$ sub-matrix and 0 o.w. Given $A+B$, find B. [Spectral methods for $p \mu \geq c \sqrt{n}$.]

Planted Clique Problem

- Given $G(n, 1 / 2)+p$ (planted) clique, find clique.
- If $p \geq \Omega(\sqrt{n})$, spectral methods work. Alon, Krivelevich, Sudakov. ($p \in O\left(n^{0.5-\varepsilon}\right)$? Still open.)
$A_{i j k}= \begin{cases}1 & \text { if number of edges in } G \text { among }(i, j),(j, k),(k, i) \text { is odd } \\ -1 & \text { otherwise. }\end{cases}$
- Frieze, K. Arg-Max ${ }_{|x|=1} \sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}$, gives the planted clique provided $p \in \Omega^{*}\left(n^{1 / 3}\right)$.
- Brubaker, Vempala r-tensor problem gives planted clique provided $p \in \Omega^{*}\left(n^{1 / r}\right)$.
- Planted Gaussian problem: $A n \times n$ i.i.d. $N(0,1)$ entries. B has i.i.d $N(\mu, 1)$ entries in (hidden) $p \times p$ sub-matrix and 0 o.w. Given $A+B$, find B. [Spectral methods for $p \mu \geq c \sqrt{n}$.]
- Planted Dense sub-graph problems.

Tensor Optimization - What norms?

- Problem: Maximize $\sum_{i j k} A_{i j k} y_{i} y_{j} y_{k}$, where, there are some constraints of the form $y_{i} \in\{0,1\}$ and $y_{i}=1-y_{j}$.

Tensor Optimization - What norms?

- Problem: Maximize $\sum_{i j k} A_{i j k} y_{i} y_{j} y_{k}$, where, there are some constraints of the form $y_{i} \in\{0,1\}$ and $y_{i}=1-y_{j}$.
- Notation: $A(x, y, z)=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$.

Tensor Optimization - What norms?

- Problem: Maximize $\sum_{i j k} A_{i j k} y_{i} y_{j} y_{k}$, where, there are some constraints of the form $y_{i} \in\{0,1\}$ and $y_{i}=1-y_{j}$.
- Notation: $A(x, y, z)=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$.
- Suppose we can approximate A by a "simpler to optimize" (low rank) tensor B so that

$$
\operatorname{Max}_{|x|=|y|=|z|=1}|A(x, y, z)-B(x, y, z)|=\|A-B\| \leq \Delta .
$$

Tensor Optimization - What norms?

- Problem: Maximize $\sum_{i j k} A_{i j k} y_{i} y_{j} y_{k}$, where, there are some constraints of the form $y_{i} \in\{0,1\}$ and $y_{i}=1-y_{j}$.
- Notation: $A(x, y, z)=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$.
- Suppose we can approximate A by a "simpler to optimize" (low rank) tensor B so that

$$
\operatorname{Max}_{|x|=|y|=|z|=1}|A(x, y, z)-B(x, y, z)|=\|A-B\| \leq \Delta .
$$

- Then, solving the problem with B instead of A ensures error is at most $\Delta|x||y||z|$.

Tensor Optimization - What norms?

- Problem: Maximize $\sum_{i j k} A_{i j k} y_{i} y_{j} y_{k}$, where, there are some constraints of the form $y_{i} \in\{0,1\}$ and $y_{i}=1-y_{j}$.
- Notation: $A(x, y, z)=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$.
- Suppose we can approximate A by a "simpler to optimize" (low rank) tensor B so that

$$
\operatorname{Max}_{|x|=|y|=|z|=1}|A(x, y, z)-B(x, y, z)|=\|A-B\| \leq \Delta .
$$

- Then, solving the problem with B instead of A ensures error is at most $\Delta|x||y||z|$.
- Moral of this: Enough to ensue that A is well approximated by B in spectral norm.

Any tensor can be approximated

- Notation: $x \otimes y \otimes z$ is the tensor with entries $x_{i} y_{j} z_{k}$. It is a rank 1 tensor. $\|A\|_{F}^{2}=$ sum of squares of all entries.

Any tensor can be approximated

- Notation: $x \otimes y \otimes z$ is the tensor with entries $x_{i} y_{j} z_{k}$. It is a rank 1 tensor. $\|A\|_{F}^{2}=$ sum of squares of all entries.
- Lemma For any r-tensor A, there are $1 / \varepsilon^{2}$ rank 1 tensors whose sum B satisfies

$$
\|A-B\| \leq \varepsilon\|A\|_{F}
$$

Any tensor can be approximated

- Notation: $x \otimes y \otimes z$ is the tensor with entries $x_{i} y_{j} z_{k}$. It is a rank 1 tensor. $\|A\|_{F}^{2}=$ sum of squares of all entries.
- Lemma For any r-tensor A, there are $1 / \varepsilon^{2}$ rank 1 tensors whose sum B satisfies

$$
\|A-B\| \leq \varepsilon\|A\|_{F}
$$

- Proof: Start with $B=0$. If Lemma not already satisfied, there are x, y, z such that $|(A-B)(x, y, z)| \geq \varepsilon\|A\|_{F}$. Take $c x \otimes y \otimes z$ as the next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]

Any tensor can be approximated

- Notation: $x \otimes y \otimes z$ is the tensor with entries $x_{i} y_{j} z_{k}$. It is a rank 1 tensor. $\|A\|_{F}^{2}=$ sum of squares of all entries.
- Lemma For any r-tensor A, there are $1 / \varepsilon^{2}$ rank 1 tensors whose sum B satisfies

$$
\|A-B\| \leq \varepsilon\|A\|_{F}
$$

- Proof: Start with $B=0$. If Lemma not already satisfied, there are x, y, z such that $|(A-B)(x, y, z)| \geq \varepsilon\|A\|_{F}$. Take $c x \otimes y \otimes z$ as the next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]
- To make this constructive, need to find x, y, z. NP-hard : Hillar, Lim in "Most Tensor Problems are NP-Hard".

Any tensor can be approximated

- Notation: $x \otimes y \otimes z$ is the tensor with entries $x_{i} y_{j} z_{k}$. It is a rank 1 tensor. $\|A\|_{F}^{2}=$ sum of squares of all entries.
- Lemma For any r-tensor A, there are $1 / \varepsilon^{2}$ rank 1 tensors whose sum B satisfies

$$
\|A-B\| \leq \varepsilon\|A\|_{F}
$$

- Proof: Start with $B=0$. If Lemma not already satisfied, there are x, y, z such that $|(A-B)(x, y, z)| \geq \varepsilon\|A\|_{F}$. Take $c x \otimes y \otimes z$ as the next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]
- To make this constructive, need to find x, y, z. NP-hard : Hillar, Lim in "Most Tensor Problems are NP-Hard".
- Theorem dela Vega, K., Karpinski, Vempala For any r-tensor A, we can find in $O^{*}\left(n^{1 / \varepsilon^{2}}\right)$ time $4 / \varepsilon^{2}$ rank 1 tensors whose sum B satisfies whp: $\|A-B\| \leq \varepsilon\|A\|_{F}$.

Any tensor can be approximated

- Notation: $x \otimes y \otimes z$ is the tensor with entries $x_{i} y_{j} z_{k}$. It is a rank 1 tensor. $\|A\|_{F}^{2}=$ sum of squares of all entries.
- Lemma For any r-tensor A, there are $1 / \varepsilon^{2}$ rank 1 tensors whose sum B satisfies

$$
\|A-B\| \leq \varepsilon\|A\|_{F}
$$

- Proof: Start with $B=0$. If Lemma not already satisfied, there are x, y, z such that $|(A-B)(x, y, z)| \geq \varepsilon\|A\|_{F}$. Take $c x \otimes y \otimes z$ as the next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]
- To make this constructive, need to find x, y, z. NP-hard : Hillar, Lim in "Most Tensor Problems are NP-Hard".
- Theorem dela Vega, K., Karpinski, Vempala For any r-tensor A, we can find in $O^{*}\left(n^{1 / \varepsilon^{2}}\right)$ time $4 / \varepsilon^{2}$ rank 1 tensors whose sum B satisfies whp: $\|A-B\| \leq \varepsilon\|A\|_{F}$.
- No Free Lunch: Cannot put $\|\cdot\|_{F}$ in Ihs or $\|\cdot\|$ on rhs.

Norm Maximization for tensors

Central Problem: Find x, y, z unit vectors to maximize $\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$.

Norm Maximization for tensors

Central Problem: Find x, y, z unit vectors to maximize $\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$.
(1) If we knew the optimizing y, z, then the optimizing x is easy to find: it is just the vector $A(\cdot, y, z)$ (whose i th component is $\left.A\left(e_{i}, y, z\right)\right)$ scaled to length 1.

Norm Maximization for tensors

Central Problem: Find x, y, z unit vectors to maximize $\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$.
(1) If we knew the optimizing y, z, then the optimizing x is easy to find: it is just the vector $A(\cdot, y, z)$ (whose i th component is $\left.A\left(e_{i}, y, z\right)\right)$ scaled to length 1.
(2) Now, $A\left(e_{i}, y, z\right)=\sum_{j, k} A_{i j k} y_{j} z_{k}$. The sum can be estimated by having just a few terms. But, an important question is: how do we make sure the variance is not too high, since the entries can have disparate values?

Norm Maximization for tensors

Central Problem: Find x, y, z unit vectors to maximize $\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$.
(1) If we knew the optimizing y, z, then the optimizing x is easy to find: it is just the vector $A(\cdot, y, z)$ (whose i th component is $\left.A\left(e_{i}, y, z\right)\right)$ scaled to length 1.
(2) Now, $A\left(e_{i}, y, z\right)=\sum_{j, k} A_{i j k} y_{j} z_{k}$. The sum can be estimated by having just a few terms. But, an important question is: how do we make sure the variance is not too high, since the entries can have disparate values?
(3) Length squared sampling works! [Stated here without proof.]

Norm Maximization for tensors

Central Problem: Find x, y, z unit vectors to maximize $\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$.
(1) If we knew the optimizing y, z, then the optimizing x is easy to find: it is just the vector $A(\cdot, y, z)$ (whose i th component is $\left.A\left(e_{i}, y, z\right)\right)$ scaled to length 1 .
(2) Now, $A\left(e_{i}, y, z\right)=\sum_{j, k} A_{j j k} y_{j} z_{k}$. The sum can be estimated by having just a few terms. But, an important question is: how do we make sure the variance is not too high, since the entries can have disparate values?
(Length squared sampling works ! [Stated here without proof.]
(9) This gives us many candidate x 's. How do we check which one is good? For each x, recursively solve the matrix problem (SVD!) to determine its value!

Norm Maximization - Some Detail

- Estimate $\sum_{j k} A_{i j k} y_{j} z_{k}$ for all i. (Really for all y, z.)

Norm Maximization - Some Detail

- Estimate $\sum_{j k} A_{i j k} y_{j} z_{k}$ for all i. (Really for all y, z.)
- Pick a set S of $O(1)$ pairs (j, k) in i.i.d. trials, in each with probabilities: $\frac{\sum_{i} A_{j k}^{2}}{\|A\|_{F}^{2}}$.

Norm Maximization - Some Detail

- Estimate $\sum_{j k} A_{i j k} y_{j} z_{k}$ for all i. (Really for all y, z.)
- Pick a set S of $O(1)$ pairs (j, k) in i.i.d. trials, in each with probabilities: $\frac{\sum_{i} A_{j k}^{2}}{\|A\|_{F}^{2}}$.
- For each $(j, k) \in S$, enumerate all possible values of y_{j}, z_{k} (in discrete steps). [Only POLY ${ }^{(1)}=$ POLY many sets of values.]

Norm Maximization - Some Detail

- Estimate $\sum_{j k} A_{i j k} y_{j} z_{k}$ for all i. (Really for all y, z.)
- Pick a set S of $O(1)$ pairs (j, k) in i.i.d. trials, in each with probabilities: $\frac{\sum_{i} A_{j k}^{2}}{\|A\|_{F}^{2}}$.
- For each $(j, k) \in S$, enumerate all possible values of y_{j}, z_{k} (in discrete steps). [Only POLY ${ }^{(1)}=\mathrm{POLY}$ many sets of values.]
- Treat $\sum_{(j, k) \in S} A_{i j k} y_{j} z_{k}$ as an estimate of $\sum_{\text {all }(j, k)} A_{i j k} y_{j} z_{k}$.

For what CSP's is this good?

- First, 2-CSP: MAX-2-SAT. Or MAX-CUT. n number of variables or vertices and m number of clauses or edges. A has $\|A\|_{F}^{2}=m$.

For what CSP's is this good?

- First, 2-CSP: MAX-2-SAT. Or MAX-CUT. n number of variables or vertices and m number of clauses or edges. A has $\|A\|_{F}^{2}=m$.
- Error $=\|A-B| ||x||1-x| \leq \varepsilon\| A \|_{F} \sqrt{n} \sqrt{n} \leq \varepsilon \sqrt{m} n$.

For what CSP's is this good?

- First, 2-CSP: MAX-2-SAT. Or MAX-CUT. n number of variables or vertices and m number of clauses or edges. A has $\|A\|_{F}^{2}=m$.
- Error $=\|A-B| ||x||1-x| \leq \varepsilon\| A \|_{F} \sqrt{n} \sqrt{n} \leq \varepsilon \sqrt{m} n$.
- But all MAX-CSP problems can be easily solved with error at most $O(m)$.

For what CSP's is this good?

- First, 2-CSP: MAX-2-SAT. Or MAX-CUT. n number of variables or vertices and m number of clauses or edges. A has $\|A\|_{F}^{2}=m$.
- Error $=||A-B|||x||1-x| \leq \varepsilon\|A\|_{F} \sqrt{n} \sqrt{n} \leq \varepsilon \sqrt{m} n$.
- But all MAX-CSP problems can be easily solved with error at most $O(m)$.
- So, no use unless $m \in \Omega\left(n^{2}\right)$. Dense. Similar argument for higher r.

Generalizing Metrics, Dense problems

- Scaling A : Let D_{i} be the sum of the i th row. [Degree if A is the adjacency matrix.]

Generalizing Metrics, Dense problems

- Scaling A : Let D_{i} be the sum of the i th row. [Degree if A is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{i j}=\frac{A_{i j}}{\sqrt{D_{i} D_{j}}}$.

Generalizing Metrics, Dense problems

- Scaling A : Let D_{i} be the sum of the i th row. [Degree if A is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{i j}=\frac{A_{i j}}{\sqrt{D_{i} D_{j}}}$.
- Define $\bar{D}=\sum_{i} D_{i} / n$. Our scaling $B_{i j}=\frac{A_{i j}}{\sqrt{\left(D_{i}+\bar{D}\right)\left(D_{j}+\bar{D}\right)}}$.

Generalizing Metrics, Dense problems

- Scaling A : Let D_{i} be the sum of the i th row. [Degree if A is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{i j}=\frac{A_{i j}}{\sqrt{D_{i} D_{j}}}$.
- Define $\bar{D}=\sum_{i} D_{i} / n$. Our scaling $B_{i j}=\frac{A_{i j}}{\sqrt{\left(D_{i}+\bar{D}\right)\left(D_{j}+\bar{D}\right)}}$.
- A is core-dense if $\|B\|_{F} \in O(1)$.

Generalizing Metrics, Dense problems

- Scaling A : Let D_{i} be the sum of the i th row. [Degree if A is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{i j}=\frac{A_{i j}}{\sqrt{D_{i} D_{j}}}$.
- Define $\bar{D}=\sum_{i} D_{i} / n$. Our scaling $B_{i j}=\frac{A_{i j}}{\sqrt{\left(D_{i}+\bar{D}\right)\left(D_{j}+\bar{D}\right)}}$.
- A is core-dense if $\|B\|_{F} \in O(1)$.
- Dense matrices, Metrics (triangle inequality), powers of metrics all are core-dense!

Generalizing Metrics, Dense problems

- Scaling A : Let D_{i} be the sum of the i th row. [Degree if A is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{i j}=\frac{A_{i j}}{\sqrt{D_{i} D_{j}}}$.
- Define $\bar{D}=\sum_{i} D_{i} / n$. Our scaling $B_{i j}=\frac{A_{i j}}{\sqrt{\left(D_{i}+\bar{D}\right)\left(D_{j}+\bar{D}\right)}}$.
- A is core-dense if $\|B\|_{F} \in O(1)$.
- Dense matrices, Metrics (triangle inequality), powers of metrics all are core-dense!
- Theorem PTAS's for all core-dense MAX-r-CSP's.

Moment Tensors

- $x_{1}, x_{2}, \ldots, x_{n}$ (dependent) r.v.s. with $E x_{i}=0$.

Moment Tensors

- $x_{1}, x_{2}, \ldots, x_{n}$ (dependent) r.v.s. with $E x_{i}=0$.
- $A_{i j}=E\left(x_{i} x_{j}\right)$ - Variance-Covariance matrix.

Moment Tensors

- $x_{1}, x_{2}, \ldots, x_{n}$ (dependent) r.v.s. with $E x_{i}=0$.
- $A_{i j}=E\left(x_{i} x_{j}\right)$ - Variance-Covariance matrix.
- $A_{i j k}=E\left(x_{i} x_{j} x_{k}\right)$ - third moments tensor. So, $E\left((u \cdot x)^{3}\right)=A(u, u, u)$.

Moment Tensors

- $x_{1}, x_{2}, \ldots, x_{n}$ (dependent) r.v.s. with $E x_{i}=0$.
- $A_{i j}=E\left(x_{i} x_{j}\right)$ - Variance-Covariance matrix.
- $A_{i j k}=E\left(x_{i} x_{j} x_{k}\right)$ - third moments tensor. So, $E\left((u \cdot x)^{3}\right)=A(u, u, u)$.
- Frieze, Jerrum, K.,: If $E\left(x_{i}\right)=0$ and x_{i} are 4-way independent and R is a orthonormal transformation, the local maxima of $F(u)=E\left[\left(u^{T} R x\right)^{4}\right]$ over $|u|=1$ are precisely the rows of R^{-1} corresponding to i with $E\left(x_{i}^{4}\right)>3$. Yields an algorithm for ICA. Moral Some tensors are nice and we can do the maximization.

Moment Tensors

- $x_{1}, x_{2}, \ldots, x_{n}$ (dependent) r.v.s. with $E x_{i}=0$.
- $A_{i j}=E\left(x_{i} x_{j}\right)$ - Variance-Covariance matrix.
- $A_{i j k}=E\left(x_{i} x_{j} x_{k}\right)$ - third moments tensor. So, $E\left((u \cdot x)^{3}\right)=A(u, u, u)$.
- Frieze, Jerrum, K.,: If $E\left(x_{i}\right)=0$ and x_{i} are 4-way independent and R is a orthonormal transformation, the local maxima of $F(u)=E\left[\left(u^{T} R x\right)^{4}\right]$ over $|u|=1$ are precisely the rows of R^{-1} corresponding to i with $E\left(x_{i}^{4}\right)>3$. Yields an algorithm for ICA. Moral Some tensors are nice and we can do the maximization.
- Ananathkumar, Hsu, Kakade Third moment tensor used for Topic Modeling.

Epilogue

- These results can also be achieved (for a narrower class) by Sherali-Adams schemes. Yoshida, Zhou (2013).

Epilogue

- These results can also be achieved (for a narrower class) by Sherali-Adams schemes. Yoshida, Zhou (2013).
- Low-rank Approximation of polynomials : A r-tensor A represents a r-homogeneous polynomial : $\sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}$. A rank 1 tensor $a \otimes b \otimes c$ represents a product of 3 linear polynomials $(a \cdot x)(b \cdot x)(c \cdot x)$.

Epilogue

- These results can also be achieved (for a narrower class) by Sherali-Adams schemes. Yoshida, Zhou (2013).
- Low-rank Approximation of polynomials : A r-tensor A represents a r-homogeneous polynomial : $\sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}$. A rank 1 tensor $a \otimes b \otimes c$ represents a product of 3 linear polynomials $(a \cdot x)(b \cdot x)(c \cdot x)$.
- Any homogeneous polynomial can be approximated by the sum of a small number of products of linear polynomials.... Stronger Results Schrijver.

Epilogue

- These results can also be achieved (for a narrower class) by Sherali-Adams schemes. Yoshida, Zhou (2013).
- Low-rank Approximation of polynomials : A r-tensor A represents a r-homogeneous polynomial : $\sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}$. A rank 1 tensor $a \otimes b \otimes c$ represents a product of 3 linear polynomials $(a \cdot x)(b \cdot x)(c \cdot x)$.
- Any homogeneous polynomial can be approximated by the sum of a small number of products of linear polynomials.... Stronger Results Schrijver.
- OPEN: Use Tensors for other Optimization Problems. Suppose we can find spectral norm of 3-tensors to within a factor of $1+\varepsilon$ for any constant $\varepsilon>0$. [Not ruled out by NP-harness proofs.] Can one beat the best approximation factor for say Max-Cut obtained by SDP (a quadratic method) ?

