Tensors and Optimization

Ravi Kannan

September 16, 2013

Ravi Kannan

Tensors and Optimization

September 16, 2013 1 / 11

э

イロト イヨト イヨト イヨト

• MAX-3-SAT: Clause: $(\bar{x}_i + x_j + x_k)$. Given a list of 3-clauses on *n* variables, find the assignment maximizing the number of clauses satisfied.

- MAX-3-SAT: Clause: $(\bar{x}_i + x_j + x_k)$. Given a list of 3-clauses on *n* variables, find the assignment maximizing the number of clauses satisfied.
- Set up 8 $n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \ldots, A^{(8)}$, where

- MAX-3-SAT: Clause: $(\bar{x}_i + x_j + x_k)$. Given a list of 3-clauses on *n* variables, find the assignment maximizing the number of clauses satisfied.
- Set up 8 $n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \dots, A^{(8)}$, where
 - $A_{ijk}^{(1)}$ = number of clauses satisfied by the assignment $(x_i, x_j, x_k) = (1, 1, 1)$

- MAX-3-SAT: Clause: $(\bar{x}_i + x_j + x_k)$. Given a list of 3-clauses on *n* variables, find the assignment maximizing the number of clauses satisfied.
- Set up 8 $n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \ldots, A^{(8)}$, where
 - $A_{ijk}^{(1)}$ = number of clauses satisfied by the assignment $(x_i, x_j, x_k) = (1, 1, 1)$ • $A^{(2)}$ = number of clauses satisfied by the assignment
 - $A_{ijk}^{(2)}$ = number of clauses satisfied by the assignment $(x_i, x_j, x_k) = (0, 1, 1)....$

- MAX-3-SAT: Clause: $(\bar{x}_i + x_j + x_k)$. Given a list of 3-clauses on *n* variables, find the assignment maximizing the number of clauses satisfied.
- Set up 8 $n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \dots, A^{(8)}$, where
 - $A_{ijk}^{(1)}$ = number of clauses satisfied by the assignment $(x_i, x_j, x_k) = (1, 1, 1)$
 - $A_{ijk}^{(2)}$ = number of clauses satisfied by the assignment $(x_i, x_j, x_k) = (0, 1, 1).....$
 - Each clause contributes to 7 of the 8 tensors.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- MAX-3-SAT: Clause: $(\bar{x}_i + x_j + x_k)$. Given a list of 3-clauses on *n* variables, find the assignment maximizing the number of clauses satisfied.
- Set up 8 $n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \dots, A^{(8)}$, where
 - $A_{ijk}^{(1)}$ = number of clauses satisfied by the assignment $(x_{ij}, x_j, x_k) = (1, 1, 1)$
 - $A_{ijk}^{(2)}$ = number of clauses satisfied by the assignment $(x_i, x_j, x_k) = (0, 1, 1).....$
 - Each clause contributes to 7 of the 8 tensors.
- Maximize $\sum_{ijk} A^{(1)}_{ijk} x_i x_j x_k + \sum_{ijk} A^{(2)}_{ijk} (1 x_i) x_j x_k + \cdots$

- MAX-3-SAT: Clause: $(\bar{x}_i + x_j + x_k)$. Given a list of 3-clauses on *n* variables, find the assignment maximizing the number of clauses satisfied.
- Set up 8 $n \times n \times n$ tensors: $A^{(1)}, A^{(2)}, \dots, A^{(8)}$, where
 - $A_{ijk}^{(1)}$ = number of clauses satisfied by the assignment $(x_{ij}, x_j, x_k) = (1, 1, 1)$
 - $A_{ijk}^{(2)}$ = number of clauses satisfied by the assignment $(x_i, x_j, x_k) = (0, 1, 1).....$
 - Each clause contributes to 7 of the 8 tensors.
- Maximize $\sum_{ijk} A^{(1)}_{ijk} x_i x_j x_k + \sum_{ijk} A^{(2)}_{ijk} (1 x_i) x_j x_k + \cdots$
- Can be done for all MAX-*r*-CSP problems. (Get 2^r *r*-tensors. But for this talk, *r* = 3.) Goodbye MAX-CSP. Only Tensor Optimization.

• Given G(n, 1/2) + p (planted) clique, find clique.

- Given G(n, 1/2) + p (planted) clique, find clique.
- If p ≥ Ω(√n), spectral methods work. Alon, Krivelevich, Sudakov. (p ∈ O(n^{0.5-ε})? Still open.)

 $A_{ijk} = \begin{cases} 1 & \text{if number of edges in } G \text{ among } (i,j), (j,k), (k,i) \text{ is odd} \\ -1 & \text{otherwise.} \end{cases}$

- Given G(n, 1/2) + p (planted) clique, find clique.
- If p ≥ Ω(√n), spectral methods work. Alon, Krivelevich, Sudakov. (p ∈ O(n^{0.5-ε})? Still open.)

 $A_{ijk} = \begin{cases} 1 & \text{if number of edges in } G \text{ among } (i,j), (j,k), (k,i) \text{ is odd} \\ -1 & \text{otherwise.} \end{cases}$

• Frieze, K. Arg-Max_{|x|=1} $\sum_{ijk} A_{ijk} x_i x_j x_k$, gives the planted clique provided $p \in \Omega^*(n^{1/3})$.

- Given G(n, 1/2) + p (planted) clique, find clique.
- If p ≥ Ω(√n), spectral methods work. Alon, Krivelevich, Sudakov.
 (p ∈ O(n^{0.5-ε})? Still open.)

 $A_{ijk} = \begin{cases} 1 & \text{if number of edges in } G \text{ among } (i,j), (j,k), (k,i) \text{ is odd} \\ -1 & \text{otherwise.} \end{cases}$

- Frieze, K. Arg-Max_{|x|=1} $\sum_{ijk} A_{ijk} x_i x_j x_k$, gives the planted clique provided $p \in \Omega^*(n^{1/3})$.
- Brubaker, Vempala *r*-tensor problem gives planted clique provided *p* ∈ Ω^{*}(*n*^{1/r}).

- Given G(n, 1/2) + p (planted) clique, find clique.
- If p ≥ Ω(√n), spectral methods work. Alon, Krivelevich, Sudakov.
 (p ∈ O(n^{0.5-ε})? Still open.)

 $A_{ijk} = \begin{cases} 1 & \text{if number of edges in } G \text{ among } (i,j), (j,k), (k,i) \text{ is odd} \\ -1 & \text{otherwise.} \end{cases}$

- Frieze, K. Arg-Max_{|x|=1} $\sum_{ijk} A_{ijk} x_i x_j x_k$, gives the planted clique provided $p \in \Omega^*(n^{1/3})$.
- Brubaker, Vempala *r*-tensor problem gives planted clique provided *p* ∈ Ω^{*}(*n*^{1/r}).
- Planted Gaussian problem: $A n \times n$ i.i.d. N(0, 1) entries. B has i.i.d $N(\mu, 1)$ entries in (hidden) $p \times p$ sub-matrix and 0 o.w. Given A + B, find B. [Spectral methods for $p\mu \ge c\sqrt{n}$.]

- Given G(n, 1/2) + p (planted) clique, find clique.
- If p ≥ Ω(√n), spectral methods work. Alon, Krivelevich, Sudakov. (p ∈ O(n^{0.5-ε})? Still open.)

 $A_{ijk} = \begin{cases} 1 & \text{if number of edges in } G \text{ among } (i,j), (j,k), (k,i) \text{ is odd} \\ -1 & \text{otherwise.} \end{cases}$

- Frieze, K. Arg-Max_{|x|=1} $\sum_{ijk} A_{ijk} x_i x_j x_k$, gives the planted clique provided $p \in \Omega^*(n^{1/3})$.
- Brubaker, Vempala *r*-tensor problem gives planted clique provided $p \in \Omega^*(n^{1/r})$.
- Planted Gaussian problem: $A n \times n$ i.i.d. N(0, 1) entries. B has i.i.d $N(\mu, 1)$ entries in (hidden) $p \times p$ sub-matrix and 0 o.w. Given A + B, find B. [Spectral methods for $p\mu \ge c\sqrt{n}$.]
- Planted Dense sub-graph problems.

Problem: Maximize ∑_{ijk} A_{ijk} y_i y_j y_k, where, there are some constraints of the form y_i ∈ {0, 1} and y_i = 1 − y_i.

イロト 不得 トイヨト イヨト

- Problem: Maximize ∑_{ijk} A_{ijk} y_i y_j y_k, where, there are some constraints of the form y_i ∈ {0, 1} and y_i = 1 − y_i.
- Notation: $A(x, y, z) = \sum_{ijk} A_{ijk} x_i y_j z_k$.

- Problem: Maximize ∑_{ijk} A_{ijk} y_i y_j y_k, where, there are some constraints of the form y_i ∈ {0, 1} and y_i = 1 − y_i.
- Notation: $A(x, y, z) = \sum_{ijk} A_{ijk} x_i y_j z_k$.
- Suppose we can approximate *A* by a "simpler to optimize" (low rank) tensor *B* so that

$$\operatorname{Max}_{|x|=|y|=|z|=1} |A(x,y,z) - B(x,y,z)| = ||A - B|| \leq \Delta.$$

- Problem: Maximize ∑_{ijk} A_{ijk} y_i y_j y_k, where, there are some constraints of the form y_i ∈ {0, 1} and y_i = 1 − y_i.
- Notation: $A(x, y, z) = \sum_{ijk} A_{ijk} x_i y_j z_k$.
- Suppose we can approximate *A* by a "simpler to optimize" (low rank) tensor *B* so that

$$\operatorname{Max}_{|x|=|y|=|z|=1} |A(x,y,z) - B(x,y,z)| = ||A - B|| \le \Delta.$$

 Then, solving the problem with *B* instead of *A* ensures error is at most Δ|*x*||*y*||*z*|.

- Problem: Maximize ∑_{ijk} A_{ijk} y_i y_j y_k, where, there are some constraints of the form y_i ∈ {0, 1} and y_i = 1 − y_i.
- Notation: $A(x, y, z) = \sum_{ijk} A_{ijk} x_i y_j z_k$.
- Suppose we can approximate *A* by a "simpler to optimize" (low rank) tensor *B* so that

$$\operatorname{Max}_{|x|=|y|=|z|=1} |A(x,y,z) - B(x,y,z)| = ||A - B|| \le \Delta.$$

- Then, solving the problem with B instead of A ensures error is at most Δ|x||y||z|.
- Moral of this: Enough to ensue that *A* is well approximated by *B* in spectral norm.

Notation: x ⊗ y ⊗ z is the tensor with entries x_iy_jz_k. It is a rank 1 tensor. ||A||²_F = sum of squares of all entries.

- Notation: x ⊗ y ⊗ z is the tensor with entries x_iy_jz_k. It is a rank 1 tensor. ||A||²_F = sum of squares of all entries.
- Lemma For any *r*-tensor A, there are 1/ε² rank 1 tensors whose sum B satisfies

 $||\boldsymbol{A} - \boldsymbol{B}|| \leq \varepsilon ||\boldsymbol{A}||_{\boldsymbol{F}}.$

- Notation: x ⊗ y ⊗ z is the tensor with entries x_iy_jz_k. It is a rank 1 tensor. ||A||²_F = sum of squares of all entries.
- Lemma For any *r*-tensor *A*, there are 1/ε² rank 1 tensors whose sum *B* satisfies

$$||\boldsymbol{A}-\boldsymbol{B}|| \leq \varepsilon ||\boldsymbol{A}||_{\boldsymbol{F}}.$$

• Proof: Start with B = 0. If Lemma not already satisfied, there are x, y, z such that $|(A - B)(x, y, z)| \ge \varepsilon ||A||_F$. Take $cx \otimes y \otimes z$ as the next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]

- Notation: x ⊗ y ⊗ z is the tensor with entries x_iy_jz_k. It is a rank 1 tensor. ||A||²_F = sum of squares of all entries.
- Lemma For any *r*-tensor A, there are 1/ε² rank 1 tensors whose sum B satisfies

$$||\boldsymbol{A}-\boldsymbol{B}|| \leq \varepsilon ||\boldsymbol{A}||_{\boldsymbol{F}}.$$

- Proof: Start with B = 0. If Lemma not already satisfied, there are x, y, z such that |(A − B)(x, y, z)| ≥ ε||A||_F. Take cx ⊗ y ⊗ z as the next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]
- To make this constructive, need to find *x*, *y*, *z*. NP-hard : Hillar, Lim in "Most Tensor Problems are NP-Hard".

- Notation: x ⊗ y ⊗ z is the tensor with entries x_iy_jz_k. It is a rank 1 tensor. ||A||²_F = sum of squares of all entries.
- Lemma For any *r*-tensor *A*, there are 1/ε² rank 1 tensors whose sum *B* satisfies

$$||\boldsymbol{A}-\boldsymbol{B}|| \leq \varepsilon ||\boldsymbol{A}||_{\boldsymbol{F}}.$$

- Proof: Start with B = 0. If Lemma not already satisfied, there are x, y, z such that |(A − B)(x, y, z)| ≥ ε||A||_F. Take cx ⊗ y ⊗ z as the next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]
- To make this constructive, need to find *x*, *y*, *z*. NP-hard : Hillar, Lim in "Most Tensor Problems are NP-Hard".
- Theorem dela Vega, K., Karpinski, Vempala For any *r*-tensor A, we can find in O^{*}(n^{1/ε²}) time 4/ε² rank 1 tensors whose sum B satisfies whp: ||A − B|| ≤ ε||A||_F.

- Notation: x ⊗ y ⊗ z is the tensor with entries x_iy_jz_k. It is a rank 1 tensor. ||A||²_F = sum of squares of all entries.
- Lemma For any *r*-tensor *A*, there are 1/ε² rank 1 tensors whose sum *B* satisfies

$$||\boldsymbol{A}-\boldsymbol{B}|| \leq \varepsilon ||\boldsymbol{A}||_{\boldsymbol{F}}.$$

- Proof: Start with B = 0. If Lemma not already satisfied, there are x, y, z such that |(A − B)(x, y, z)| ≥ ε||A||_F. Take cx ⊗ y ⊗ z as the next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]
- To make this constructive, need to find *x*, *y*, *z*. NP-hard : Hillar, Lim in "Most Tensor Problems are NP-Hard".
- Theorem dela Vega, K., Karpinski, Vempala For any *r*-tensor A, we can find in O^{*}(n^{1/ε²}) time 4/ε² rank 1 tensors whose sum B satisfies whp: ||A − B|| ≤ ε||A||_F.
- No Free Lunch: Cannot put $|| \cdot ||_F$ in lhs or $|| \cdot ||$ on rhs.

Central Problem: Find *x*, *y*, *z* unit vectors to maximize $\sum_{ijk} A_{ijk} x_i y_j z_k$.

イロト 不得 トイヨト イヨト 二日

Central Problem: Find *x*, *y*, *z* unit vectors to maximize $\sum_{ijk} A_{ijk} x_i y_j z_k$.

If we knew the optimizing y, z, then the optimizing x is easy to find: it is just the vector A(·, y, z) (whose i th component is A(e_i, y, z)) scaled to length 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Central Problem: Find *x*, *y*, *z* unit vectors to maximize $\sum_{ijk} A_{ijk} x_i y_j z_k$.

- If we knew the optimizing y, z, then the optimizing x is easy to find: it is just the vector A(·, y, z) (whose i th component is A(e_i, y, z)) scaled to length 1.
- Sow, $A(e_i, y, z) = \sum_{j,k} A_{ijk} y_j z_k$. The sum can be estimated by having just a few terms. But, an important question is: how do we make sure the variance is not too high, since the entries can have disparate values ?

Central Problem: Find *x*, *y*, *z* unit vectors to maximize $\sum_{ijk} A_{ijk} x_i y_j z_k$.

- If we knew the optimizing y, z, then the optimizing x is easy to find: it is just the vector A(·, y, z) (whose i th component is A(e_i, y, z)) scaled to length 1.
- Sow, $A(e_i, y, z) = \sum_{j,k} A_{ijk} y_j z_k$. The sum can be estimated by having just a few terms. But, an important question is: how do we make sure the variance is not too high, since the entries can have disparate values ?
- Length squared sampling works ! [Stated here without proof.]

Central Problem: Find *x*, *y*, *z* unit vectors to maximize $\sum_{ijk} A_{ijk} x_i y_j z_k$.

- If we knew the optimizing y, z, then the optimizing x is easy to find: it is just the vector A(·, y, z) (whose i th component is A(e_i, y, z)) scaled to length 1.
- Now, $A(e_i, y, z) = \sum_{j,k} A_{ijk} y_j z_k$. The sum can be estimated by having just a few terms. But, an important question is: how do we make sure the variance is not too high, since the entries can have disparate values ?
- Length squared sampling works ! [Stated here without proof.]
- This gives us many candidate x 's. How do we check which one is good ? For each x, recursively solve the matrix problem (SVD!) to determine its value !

• Estimate $\sum_{jk} A_{ijk} y_j z_k$ for all *i*. (Really for all *y*, *z*.)

イロト 不得 トイヨト イヨト 二日

- Estimate $\sum_{jk} A_{ijk} y_j z_k$ for all *i*. (Really for all *y*, *z*.)
- Pick a set *S* of *O*(1) pairs (j, k) in i.i.d. trials, in each with probabilities: $\frac{\sum_{i} A_{jk}^{2}}{||A||_{F}^{2}}$.

- Estimate $\sum_{ik} A_{ijk} y_j z_k$ for all *i*. (Really for all *y*, *z*.)
- Pick a set *S* of *O*(1) pairs (j, k) in i.i.d. trials, in each with probabilities: $\frac{\sum_{i} A_{jk}^{2}}{||A||_{F}^{2}}$.
- For each (j, k) ∈ S, enumerate all possible values of y_j, z_k (in discrete steps). [Only POLY^{O(1)} =POLY many sets of values.]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Estimate $\sum_{ik} A_{ijk} y_j z_k$ for all *i*. (Really for all *y*, *z*.)
- Pick a set *S* of *O*(1) pairs (j, k) in i.i.d. trials, in each with probabilities: $\frac{\sum_i A_{jk}^2}{||A||_F^2}$.
- For each (j, k) ∈ S, enumerate all possible values of y_j, z_k (in discrete steps). [Only POLY^{O(1)} =POLY many sets of values.]
- Treat $\sum_{(j,k)\in S} A_{ijk} y_j z_k$ as an estimate of $\sum_{all(j,k)} A_{ijk} y_j z_k$.

• First, 2-CSP: MAX-2-SAT. Or MAX-CUT. *n* number of variables or vertices and *m* number of clauses or edges. A has $||A||_F^2 = m$.

B N A B N

A D b 4 A b

For what CSP's is this good?

• First, 2-CSP: MAX-2-SAT. Or MAX-CUT. *n* number of variables or vertices and *m* number of clauses or edges. A has $||A||_F^2 = m$.

• Error =
$$||A - B|| |x| ||1 - x| \le \varepsilon ||A||_F \sqrt{n} \sqrt{n} \le \varepsilon \sqrt{m} n$$
.

B N A B N

A D b 4 A b

For what CSP's is this good?

- First, 2-CSP: MAX-2-SAT. Or MAX-CUT. *n* number of variables or vertices and *m* number of clauses or edges. A has $||A||_F^2 = m$.
- Error = $||A B|| |x| ||1 x| \le \varepsilon ||A||_F \sqrt{n} \sqrt{n} \le \varepsilon \sqrt{m} n$.
- But all MAX-CSP problems can be easily solved with error at most O(m).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- First, 2-CSP: MAX-2-SAT. Or MAX-CUT. *n* number of variables or vertices and *m* number of clauses or edges. A has $||A||_F^2 = m$.
- Error = $||A B|| |x| ||1 x| \le \varepsilon ||A||_F \sqrt{n} \sqrt{n} \le \varepsilon \sqrt{m} n$.
- But all MAX-CSP problems can be easily solved with error at most O(m).
- So, no use unless $m \in \Omega(n^2)$. Dense. Similar argument for higher *r*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Scaling *A*: Let *D_i* be the sum of the *i* th row. [Degree if *A* is the adjacency matrix.]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Scaling *A*: Let *D_i* be the sum of the *i* th row. [Degree if *A* is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{ij} = \frac{A_{ij}}{\sqrt{D_i D_i}}$.

- Scaling A: Let D_i be the sum of the i th row. [Degree if A is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{ij} = \frac{A_{ij}}{\sqrt{D_i D_i}}$.
- Define $\overline{D} = \sum_i D_i / n$. Our scaling $B_{ij} = \frac{A_{ij}}{\sqrt{(D_i + \overline{D})(D_j + \overline{D})}}$.

- Scaling A: Let D_i be the sum of the i th row. [Degree if A is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{ij} = \frac{A_{ij}}{\sqrt{D_i D_i}}$.
- Define $\overline{D} = \sum_i D_i / n$. Our scaling $B_{ij} = \frac{A_{ij}}{\sqrt{(D_i + \overline{D})(D_i + \overline{D})}}$.
- A is core-dense if $||B||_F \in O(1)$.

- Scaling A: Let D_i be the sum of the i th row. [Degree if A is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{ij} = \frac{A_{ij}}{\sqrt{D_i D_i}}$.
- Define $\overline{D} = \sum_i D_i / n$. Our scaling $B_{ij} = \frac{A_{ij}}{\sqrt{(D_i + \overline{D})(D_i + \overline{D})}}$.
- A is core-dense if $||B||_F \in O(1)$.
- Dense matrices, Metrics (triangle inequality), powers of metrics all are core-dense !

- Scaling A: Let D_i be the sum of the i th row. [Degree if A is the adjacency matrix.]
- In many situations, a natural scaling of A is given by $B_{ij} = \frac{A_{ij}}{\sqrt{D_i D_i}}$.
- Define $\overline{D} = \sum_i D_i / n$. Our scaling $B_{ij} = \frac{A_{ij}}{\sqrt{(D_i + \overline{D})(D_i + \overline{D})}}$.
- A is core-dense if $||B||_F \in O(1)$.
- Dense matrices, Metrics (triangle inequality), powers of metrics all are core-dense !
- Theorem PTAS's for all core-dense MAX-r-CSP's.

• x_1, x_2, \ldots, x_n (dependent) r.v.s. with $Ex_i = 0$.

x₁, x₂,..., x_n (dependent) r.v.s. with Ex_i = 0.
A_{ii} = E(x_ix_i) - Variance-Covariance matrix.

イロト 不得 トイヨト イヨト 二日

- x_1, x_2, \ldots, x_n (dependent) r.v.s. with $Ex_i = 0$.
- $A_{ij} = E(x_i x_j)$ Variance-Covariance matrix.
- $A_{ijk} = E(x_i x_j x_k)$ third moments tensor. So, $E((u \cdot x)^3) = A(u, u, u).$

- x_1, x_2, \ldots, x_n (dependent) r.v.s. with $Ex_i = 0$.
- $A_{ij} = E(x_i x_j)$ Variance-Covariance matrix.
- $A_{ijk} = E(x_i x_j x_k)$ third moments tensor. So, $E((u \cdot x)^3) = A(u, u, u).$
- Frieze, Jerrum, K.,: If $E(x_i) = 0$ and x_i are 4-way independent and R is a orthonormal transformation, the **local** maxima of $F(u) = E[(u^T R x)^4]$ over |u| = 1 are precisely the rows of R^{-1} corresponding to *i* with $E(x_i^4) > 3$. Yields an algorithm for ICA. **Moral** Some tensors are nice and we can do the maximization.

- x_1, x_2, \ldots, x_n (dependent) r.v.s. with $Ex_i = 0$.
- $A_{ij} = E(x_i x_j)$ Variance-Covariance matrix.
- $A_{ijk} = E(x_i x_j x_k)$ third moments tensor. So, $E((u \cdot x)^3) = A(u, u, u).$
- Frieze, Jerrum, K.,: If $E(x_i) = 0$ and x_i are 4-way independent and R is a orthonormal transformation, the **local** maxima of $F(u) = E[(u^T R x)^4]$ over |u| = 1 are precisely the rows of R^{-1} corresponding to *i* with $E(x_i^4) > 3$. Yields an algorithm for ICA. **Moral** Some tensors are nice and we can do the maximization.
- Ananathkumar, Hsu, Kakade Third moment tensor used for Topic Modeling.

• These results can also be achieved (for a narrower class) by Sherali-Adams schemes. Yoshida, Zhou (2013).

-

< 日 > < 同 > < 回 > < 回 > < 回 > <

Epilogue

- These results can also be achieved (for a narrower class) by Sherali-Adams schemes. Yoshida, Zhou (2013).
- Low-rank Approximation of polynomials : A *r*-tensor *A* represents a *r*-homogeneous polynomial : $\sum_{ijk} A_{ijk} x_i x_j x_k$. A rank 1 tensor $a \otimes b \otimes c$ represents a product of 3 linear polynomials $(a \cdot x)(b \cdot x)(c \cdot x)$.

Epilogue

- These results can also be achieved (for a narrower class) by Sherali-Adams schemes. Yoshida, Zhou (2013).
- Low-rank Approximation of polynomials : A *r*-tensor *A* represents a *r*-homogeneous polynomial : $\sum_{ijk} A_{ijk} x_i x_j x_k$. A rank 1 tensor $a \otimes b \otimes c$ represents a product of 3 linear polynomials - $(a \cdot x)(b \cdot x)(c \cdot x)$.
- Any homogeneous polynomial can be approximated by the sum of a small number of products of linear polynomials.... Stronger Results Schrijver.

Epilogue

- These results can also be achieved (for a narrower class) by Sherali-Adams schemes. Yoshida, Zhou (2013).
- Low-rank Approximation of polynomials : A *r*-tensor *A* represents a *r*-homogeneous polynomial : $\sum_{ijk} A_{ijk} x_i x_j x_k$. A rank 1 tensor $a \otimes b \otimes c$ represents a product of 3 linear polynomials - $(a \cdot x)(b \cdot x)(c \cdot x)$.
- Any homogeneous polynomial can be approximated by the sum of a small number of products of linear polynomials.... Stronger Results Schrijver.
- OPEN: Use Tensors for other Optimization Problems. Suppose we can find spectral norm of 3-tensors to within a factor of $1 + \varepsilon$ for any constant $\varepsilon > 0$. [Not ruled out by NP-harness proofs.] Can one beat the best approximation factor for say Max-Cut obtained by SDP (a quadratic method) ?