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Reducing MAX-r -CSP to Tensor Optimization

MAX-3-SAT: Clause: (x̄i + xj + xk ). Given a list of 3-clauses on n
variables, find the assignment maximizing the number of clauses
satisfied.

Set up 8 n × n × n tensors: A(1),A(2), . . . ,A(8), where

A(1)
ijk = number of clauses satisfied by the assignment

(xi , xj , xk ) = (1,1,1)

A(2)
ijk = number of clauses satisfied by the assignment

(xi , xj , xk ) = (0,1,1)......
Each clause contributes to 7 of the 8 tensors.

Maximize
∑

ijk A(1)
ijk xixjxk +

∑
ijk A(2)

ijk (1− xi)xjxk + · · · .
Can be done for all MAX-r -CSP problems. (Get 2r r -tensors. But
for this talk, r = 3.) Goodbye MAX-CSP. Only Tensor Optimization.
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Planted Clique Problem

Given G(n,1/2) + p (planted) clique, find clique.

If p ≥ Ω(
√

n), spectral methods work. Alon, Krivelevich, Sudakov.
(p ∈ O(n0.5−ε)? Still open.)

Aijk =

{
1 if number of edges in G among (i , j), (j , k), (k , i) is odd
−1 otherwise.

Frieze, K. Arg-Max|x |=1
∑

ijk Aijkxixjxk , gives the planted clique
provided p ∈ Ω∗(n1/3).
Brubaker, Vempala r -tensor problem gives planted clique provided
p ∈ Ω∗(n1/r ).
Planted Gaussian problem: A n × n i.i.d. N(0,1) entries. B has
i.i.d N(µ,1) entries in (hidden) p × p sub-matrix and 0 o.w. Given
A + B, find B. [Spectral methods for pµ ≥ c

√
n.]

Planted Dense sub-graph problems.
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Tensor Optimization - What norms?

Problem: Maximize
∑

ijk Aijkyiyjyk , where, there are some
constraints of the form yi ∈ {0,1} and yi = 1− yj .

Notation: A(x , y , z) =
∑

ijk Aijkxiyjzk .
Suppose we can approximate A by a “simpler to optimize” (low
rank) tensor B so that

Max|x |=|y |=|z|=1 |A(x , y , z)− B(x , y , z)| = ||A− B|| ≤ ∆.

Then, solving the problem with B instead of A ensures error is at
most ∆|x ||y ||z|.
Moral of this: Enough to ensue that A is well approximated by B in
spectral norm.
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Any tensor can be approximated

Notation: x ⊗ y ⊗ z is the tensor with entries xiyjzk . It is a rank 1
tensor. ||A||2F = sum of squares of all entries.

Lemma For any r−tensor A, there are 1/ε2 rank 1 tensors whose
sum B satisfies

||A− B|| ≤ ε||A||F .

Proof: Start with B = 0. If Lemma not already satisfied, there are
x , y , z such that |(A− B)(x , y , z)| ≥ ε||A||F . Take cx ⊗ y ⊗ z as the
next rank 1 tensor to subtract... [Greedy. Imitation of SVD.]
To make this constructive, need to find x , y , z. NP-hard : Hillar, Lim
in “Most Tensor Problems are NP-Hard”.

Theorem dela Vega, K., Karpinski, Vempala For any r−tensor A,
we can find in O∗(n1/ε2

) time 4/ε2 rank 1 tensors whose sum B
satisfies whp: ||A− B|| ≤ ε||A||F .
No Free Lunch: Cannot put || · ||F in lhs or || · || on rhs.
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Norm Maximization for tensors

Central Problem: Find x , y , z unit vectors to maximize
∑

ijk Aijkxiyjzk .

1 If we knew the optimizing y , z, then the optimizing x is easy to
find: it is just the vector A(·, y , z) (whose i th component is
A(ei , y , z)) scaled to length 1.

2 Now, A(ei , y , z) =
∑

j,k Aijkyjzk . The sum can be estimated by
having just a few terms. But, an important question is: how do we
make sure the variance is not too high, since the entries can have
disparate values ?

3 Length squared sampling works ! [Stated here without proof.]
4 This gives us many candidate x ’s. How do we check which one is

good ? For each x , recursively solve the matrix problem (SVD!) to
determine its value !
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Norm Maximization - Some Detail

Estimate
∑

jk Aijkyjzk for all i . (Really for all y , z.)

Pick a set S of O(1) pairs (j , k) in i.i.d. trials, in each with

probabilities:
∑

i A2
jk

||A||2F
.

For each (j , k) ∈ S, enumerate all possible values of yj , zk (in
discrete steps). [Only POLYO(1) =POLY many sets of values.]
Treat

∑
(j,k)∈S Aijkyjzk as an estimate of

∑
all(j,k) Aijkyjzk .
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For what CSP’s is this good?

First, 2-CSP: MAX-2-SAT. Or MAX-CUT. n number of variables or
vertices and m number of clauses or edges. A has ||A||2F = m.

Error = ||A− B|| |x | |1− x | ≤ ε||A||F
√

n
√

n ≤ ε
√

mn.
But all MAX-CSP problems can be easily solved with error at most
O(m).
So, no use unless m ∈ Ω(n2). Dense. Similar argument for higher
r .
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Generalizing Metrics, Dense problems

Scaling A: Let Di be the sum of the i th row. [Degree if A is the
adjacency matrix.]

In many situations, a natural scaling of A is given by Bij =
Aij√
Di Dj

.

Define D̄ =
∑

i Di/n. Our scaling Bij =
Aij√

(Di +D̄)(Dj +D̄)
.

A is core-dense if ||B||F ∈ O(1).
Dense matrices, Metrics (triangle inequality), powers of metrics -
all are core-dense !
Theorem PTAS’s for all core-dense MAX-r -CSP’s.
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Moment Tensors

x1, x2, . . . , xn (dependent) r.v.s. with Exi = 0.

Aij = E(xixj) - Variance-Covariance matrix.
Aijk = E(xixjxk ) - third moments tensor. So,
E((u · x)3) = A(u,u,u).
Frieze, Jerrum, K.,: If E(xi) = 0 and xi are 4-way independent and
R is a orthonormal transformation, the local maxima of
F (u) = E [(uT Rx)4] over |u| = 1 are precisely the rows of R−1

corresponding to i with E(x4
i ) > 3. Yields an algorithm for ICA.

Moral Some tensors are nice and we can do the maximization.
Ananathkumar, Hsu, Kakade Third moment tensor used for Topic
Modeling.
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Epilogue

These results can also be achieved (for a narrower class) by
Sherali-Adams schemes. Yoshida, Zhou (2013).

Low-rank Approximation of polynomials : A r−tensor A represents
a r−homogeneous polynomial :

∑
ijk Aijkxixjxk . A rank 1 tensor

a⊗ b ⊗ c represents a product of 3 linear polynomials -
(a · x)(b · x)(c · x).
Any homogeneous polynomial can be approximated by the sum of
a small number of products of linear polynomials.... Stronger
Results Schrijver.
OPEN: Use Tensors for other Optimization Problems. Suppose we
can find spectral norm of 3-tensors to within a factor of 1 + ε for
any constant ε > 0 . [Not ruled out by NP-harness proofs.] Can
one beat the best approximation factor for say Max-Cut obtained
by SDP (a quadratic method) ?
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