Mixed and covariate-dependent graphical models

Liza Levina

Department of Statistics, University of Michigan

Joint work with Jie Cheng, Ji Zhu (University of Michigan) and Pei Wang (Fred Hutchinson Cancer Center)
Graphical Models

- Represent **conditional independence** relationships between a set of random variables
- No edge between X_j and $X_{j'} \iff X_j$ is independent of $X_{j'}$ conditional on all other variables

Typically, estimated from n iid observations on p variables
Example: Senate votes
Gaussian Graphical Models

- \(X_1, \ldots, X_p \) jointly follow \(\mathcal{N}_p(\mu, \Omega^{-1}) \)
- Partial correlations \(\rho_{ij} \) are proportional to the entries of \(\Omega \)
- Estimating the graph \(\iff \) estimating the zeros of \(\Omega \)

\[
\begin{pmatrix}
\omega_{1,1} & 0 & \omega_{1,3} & \omega_{1,4} & 0 \\
0 & \omega_{2,2} & 0 & \omega_{2,4} & 0 \\
\omega_{3,1} & 0 & \omega_{3,3} & \omega_{3,4} & \omega_{3,5} \\
\omega_{4,1} & \omega_{4,2} & \omega_{4,3} & \omega_{4,4} & 0 \\
0 & 0 & \omega_{5,3} & 0 & \omega_{5,5}
\end{pmatrix}
\]
Fitting Gaussian Graphical Models

Equivalent to estimating a sparse inverse covariance matrix

- **Element-wise selection** (Dempster, 1972; Drton & Perlman, 2004)
- **Neighborhood selection**: lasso regression of each node on its neighbors (Meinshausen & Bühlmann (2006))
- \(\ell_1 \)-penalized maximum likelihood and extensions: Yuan & Lin (2007), Banerjee et al. (2008), Rothman et al. (2008), Friedman et al. (2008), Lam & Fan (2009), Ravikumar et al. (2009), Zhou et al. (2009), Rocha et al. (2008); Peng et al. (2009); Yuan (2010); Cai et al. (2011); for example

\[
\max_{\Omega \succ 0} \log(\det(\Omega)) - \text{trace}(\hat{\Sigma}\Omega) - \lambda \sum_{j \neq j'} \omega_{j,j'}
\]

where \(\hat{\Sigma} \) is the sample covariance matrix
Binary Markov networks (aka Ising models)

- The graphical model for binary and discrete data

\[
f(X_1, \ldots, X_p) = \frac{1}{Z(\Theta)} \exp \left(\sum_{j=1}^{p} \theta_{j,j} X_j + \sum_{1 \leq j < j' \leq p} \theta_{j,j'} X_j X_{j'} \right).
\]

- The dependence structure is determined by the interaction effects \(\theta_{j,j'} \)

- Higher-order interaction terms are typically omitted (in principle, they can be turned into order-2 interactions by adding more variables)
Fitting Ising models

- Likelihood is computationally intractable because of the normalizing constant
- Various approximations have been proposed – surrogate likelihood, pseudo-likelihood, etc (Banerjee et al 2008, Hoefling & Tibshirani 2009, Ravikumar et al 2009, Guo et al 2010)
- One approach is to run penalized logistic regression of each node on all others (analog of neighborhood selection)
- Alternatively can maximize penalized pseudo-likelihood
Motivation

• Standard assumption: the data $\{y_i^i\}_{i=1}^n$ are i.i.d, from the same underlying graphical model.
• Data are often available in form of $\{(y_i^i, x_i^i)\}_{i=1}^n$, where x_i^i are additional covariates; the relationships between y’s may depend on x.
• A breast cancer study: y_i^i is the indicator of deletion event for various genes of a cancer patient and x_i^i is the patient’s clinical phenotypes (tumor category, mutation status of TP53, estrogen receptors status).
Goals

- A graphical model for y^i which depends on x^i
- Focus on Ising models for $P(y|x)$ due to the motivating application; other cases can be developed similarly
- Subject-specific graphical models with interpretability and “continuity”
- Computational feasibility
Recent related work

- Yin & Li (2011), Cai, Li, Liu, Xie (2011): model the means in the Gaussian graphical model as covariate-dependent, but not the precision matrices
- Liu, Chen, Lafferty, Wasserman (2010): graph-valued regression partitions the covariate space non-parametrically and fits different graphical models to each part
- Guo, Levina, Michailidis, Zhu (2010): jointly fit graphical models in several categories (conditional on a single categorical covariate)
Covariate Dependent Ising Model

- Given covariate vector \mathbf{x}, assume

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\theta(\mathbf{x}))} \exp \left(\sum_{j=1}^{q} \theta_{jj}(\mathbf{x})y_j + \sum_{1 \leq k < j \leq q} \theta_{jk}(\mathbf{x})y_jy_k \right)$$

- Parametrize $\theta_{jk}(\mathbf{x})$ as linear functions of \mathbf{x}

$$\theta_{jk}(\mathbf{x}) = \theta_{jk0} + \theta_{jk}^T \mathbf{x}, \text{ where } \theta_{jk}^T = (\theta_{jk1}, \ldots, \theta_{jkp})$$

$$\theta_{jk}(\mathbf{x}) = \theta_{kj}(\mathbf{x}), \quad \forall j \neq k$$

- Benefits of linear parametrization:
 interpretability, continuity, convexity.
Optimization Criterion

- **Loss function:**
 - Directly maximizing the likelihood is computationally intractable due to the normalizing constant.
 - Focus on optimizing conditional likelihood

\[
\ell_j(\theta; x, y) = -\frac{1}{n} \sum_{i=1}^{n} \log P(y_j^i|x^i, y_{-j}^i)
\]

- **Regularization:** use \(\ell_1\) penalty to select only the important covariates and edges.
Fitting the model

- **Separate approach**: estimate each $\theta_j, j = 1, \ldots, q$ separately by
 \[
 \min_{\theta_j \in \mathbb{R}^{(p+1)q}} \ell_j(\theta_j, \mathcal{D}_n) + \lambda \| \theta_j \|_1
 \]

 Followed by ad hoc symmetrization (min or max of $\hat{\theta}_{jk}$ and $\hat{\theta}_{kj}$)

- **Joint approach**: estimate the entire vector θ simultaneously by
 \[
 \min_{\theta \in \mathbb{R}^{(p+1)q(q+1)/2}} \sum_{j=1}^{q} \ell_j(\theta, \mathcal{D}_n) + \lambda \| \theta \|_1
 \]

- Optimization is done by a coordinate descent type algorithm (Fu, 1998).
Deletion of tumor suppressor genes plays an important role in tumor initiation and development.

Goals of study:

1. Characterize the conditional associations among deletion events of various genes
2. Investigate how these association patterns vary across different types of patients
Data Description

- Data consists of $n = 143$ tumor samples, all from breast cancer patients at various stages before start of therapy.
- 39,632 DNA copy number profiles \rightarrow 620 cytobands
- y^i is a 620-dimensional binary vector; $y^i_j = 1$ if the j^{th} cytoband has been deleted in the i^{th} tumor sample.
- x^i contains 3 clinical phenotypes:
 - TP53 mutation status (0/1)
 - Estrogen Receptor status (0/1): 1 means the sample is ER positive.
 - Tumor category (1, 2, 3, 4): ordinal variable, larger values indicate more advanced tumors.
Covariate dependent inter-chromosome interactions ranked by selection frequency

<table>
<thead>
<tr>
<th>Gene1</th>
<th>Gene2</th>
<th>Freq</th>
<th>Gene1</th>
<th>Gene2</th>
<th>Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>4q31.3</td>
<td>18q23</td>
<td>0.95</td>
<td>3p22.2</td>
<td>22q13.1</td>
<td>0.79</td>
</tr>
<tr>
<td>2p25.2</td>
<td>15q26.2</td>
<td>0.87</td>
<td>3p12.3</td>
<td>12p13.1</td>
<td>0.72</td>
</tr>
<tr>
<td>2q36.3</td>
<td>3p26.1</td>
<td>0.84</td>
<td>12q22</td>
<td>15q14</td>
<td>0.7</td>
</tr>
<tr>
<td>7q21.13</td>
<td>8q21.13</td>
<td>0.84</td>
<td>2p12</td>
<td>Xp22.33</td>
<td>0.69</td>
</tr>
<tr>
<td>6p21.32</td>
<td>16q12.2</td>
<td>0.83</td>
<td>6p21.32</td>
<td>8p11.22</td>
<td>0.68</td>
</tr>
<tr>
<td>3p21.1</td>
<td>17p13.2</td>
<td>0.81</td>
<td>1p34.2</td>
<td>3p24.1</td>
<td>0.67</td>
</tr>
<tr>
<td>4q24</td>
<td>12q21.1</td>
<td>0.81</td>
<td>2p21</td>
<td>Xp11.22</td>
<td>0.67</td>
</tr>
<tr>
<td>2q23.3</td>
<td>6p12.1</td>
<td>0.79</td>
<td>2p12</td>
<td>7p21.1</td>
<td>0.66</td>
</tr>
<tr>
<td>8p21.3</td>
<td>21q21.1</td>
<td>0.79</td>
<td>12q15</td>
<td>13q12.12</td>
<td>0.63</td>
</tr>
<tr>
<td>2q34</td>
<td>3q13.31</td>
<td>0.78</td>
<td>4q25</td>
<td>8p11.22</td>
<td>0.62</td>
</tr>
<tr>
<td>6p21.32</td>
<td>9q31.3</td>
<td>0.78</td>
<td>8p11.22</td>
<td>Xq23</td>
<td>0.62</td>
</tr>
<tr>
<td>6p21.32</td>
<td>13q21.1</td>
<td>0.78</td>
<td>9p21.2</td>
<td>16q22.1</td>
<td>0.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene1</th>
<th>Gene2</th>
<th>Freq</th>
<th>Gene1</th>
<th>Gene2</th>
<th>Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>3q26.1</td>
<td>11p14.3</td>
<td>0.69</td>
<td>16q23.3</td>
<td>17p13.1</td>
<td>0.61</td>
</tr>
<tr>
<td>4q34.3</td>
<td>5q32</td>
<td>0.64</td>
<td>12p11.23</td>
<td>16q12.2</td>
<td>0.59</td>
</tr>
<tr>
<td>8p11.22</td>
<td>11p14.2</td>
<td>0.63</td>
<td>3q13.13</td>
<td>Xq23</td>
<td>0.57</td>
</tr>
<tr>
<td>3q24</td>
<td>22q11.23</td>
<td>0.57</td>
<td>7p21.3</td>
<td>12p11.23</td>
<td>0.56</td>
</tr>
<tr>
<td>4p14</td>
<td>11p15.3</td>
<td>0.55</td>
<td>9q34.13</td>
<td>15q21.1</td>
<td>0.55</td>
</tr>
<tr>
<td>1q31.1</td>
<td>Xq27.3</td>
<td>0.54</td>
<td>11q24.2</td>
<td>13q32.3</td>
<td>0.55</td>
</tr>
<tr>
<td>13q33.2</td>
<td>22q11.23</td>
<td>0.54</td>
<td>8q21.13</td>
<td>13q33.1</td>
<td>0.54</td>
</tr>
<tr>
<td>21q21.1</td>
<td>22q11.21</td>
<td>0.54</td>
<td>2p21</td>
<td>12p13.31</td>
<td>0.53</td>
</tr>
<tr>
<td>5q33.1</td>
<td>17q21.31</td>
<td>0.53</td>
<td>10q26.3</td>
<td>17p11.2</td>
<td>0.53</td>
</tr>
<tr>
<td>12q21.32</td>
<td>18q22.3</td>
<td>0.51</td>
<td>7p21.3</td>
<td>12p12.1</td>
<td>0.51</td>
</tr>
<tr>
<td>8p11.22</td>
<td>22q11.21</td>
<td>0.5</td>
<td>3q13.13</td>
<td>7p21.3</td>
<td>0.5</td>
</tr>
<tr>
<td>8q21.13</td>
<td>Xp22.11</td>
<td>0.5</td>
<td>9q34.13</td>
<td>15q22.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Asymptotic behavior

- Focus on the separate approach
- Need standard assumptions on the design matrix, which now includes both x and y terms
- An exponential decay assumption on the tails of x
- Get standard results on parameter estimation and model selection consistency
- Roughly, the rate is governed by $\sqrt{d \log(pq)/n}$, where d is the max # non-zero parameters per edge
Assumptions

- $x_j \otimes y_{-j}$: all terms in the j's logistic regression
- θ_j^*: true coefficients of the j-th logistic regression
- S_j: the set of non-zero elements of θ_j^*
- $I_j^* = \mathbb{E}_{\theta^*}(\nabla^2 \log P_{\theta}(y_j|x,y_{-j}))$: information matrix
- $U_j^* = \mathbb{E}_{\theta^*}((x \otimes y_{-j})(x \otimes y_{-j})^T)$

A1 There exists $\alpha \in (0, 1]$, s. t.
\[\|I_{S_j^cS_j}^* (I_{S_jS_j}^*)^{-1}\|_\infty \leq (1 - \alpha) \]

A2 There exist $\Delta_{\min}, \Delta_{\max} > 0$, s. t.
\[\Lambda_{\min}(I_{S_jS_j}^*) \geq \Delta_{\min} \]
\[\Lambda_{\max}(U_j^*) \leq \Delta_{\max} \]

A3 $\forall \delta > 0$, $\forall M \geq M_0$,
\[P(\|x\|_\infty \geq M) \leq \exp(-M^\delta) \]
Theorem

Let $d = \max_j |S_j|$, $C > 0$, $\gamma \in (0, 1)$ constants. If A1, A2, A3 hold and $M_n \geq (C \lambda_n^2 n)^{\frac{1}{1+\delta}}$, $\lambda_n \geq CM_n \sqrt{\frac{\log(pq)}{n}}$, $n \geq CM_n^2 d^3 \log(pq)$, then with probability at least $1 - \exp^{-C(\lambda_n^2 n)\gamma}$ for any $j \in \{1, \ldots, q\}$ the following holds:

1. **Uniqueness:** $\hat{\theta}_j$ is the unique optimal solution.
2. **Norm consistency:** $\|\hat{\theta}_j - \theta_j^*\|_2 \leq 5\lambda_n \sqrt{d}/\Delta_{\text{min}}$.
3. **Sign consistency:** $\hat{\theta}_j$ correctly identifies all zeros in θ_j^*, and the sign of non-zeros in θ_j^* whose absolute value is at least $10\lambda_n \sqrt{d}/\Delta_{\text{min}}$.

Simulation: Effect of Sparsity

Sparsity can mean:
- Small number of edges in the graph
- Small number of non-zero parameters per edge

Simulation settings:
- \(p = 20 \) covariates, \(q = 10 \) binary variables, \(n = 200 \)
- Proportion of non-zeros per edge \(\rho = \{0.2, 0.5, 0.8\} \)
- Total number of edges \(n_E = \{10, 20, 30\} \).
- Results summarized in the form of ROC curves
Simulation results: Effect of Sparsity

Joint Approach, $n_E=10$

Separate-Max Approach, $n_E=10$

Joint Approach, $n_E=20$

Separate-Max Approach, $n_E=20$

Joint Approach, $n_E=30$

Separate-Max Approach, $n_E=30$
Motivation: In practice, many datasets contain both continuous and discrete variables!

- Let $X = (Z, Y)$, where $Z \in \{0, 1\}^q$ and $Y \in \mathbb{R}^p$
- Suppose X has the conditional Gaussian distribution (CGD) (Lauritzen and Wermuth, 1989):

$$f(x) = f(z, y) = \exp \left(g_z + h_z^T y - \frac{1}{2} y^T K_z y \right),$$

where $\{(g_z, h_z, K_z) : g_z \in \mathbb{R}, h_z \in \mathbb{R}^p, K_z \in \mathbb{R}^+_{p \times p}, z \in \{0, 1\}^q\}$ are the canonical parameters of the distribution.
Markovian conditional Gaussian distributions

Let Δ index Z, Γ index Y. The canonical parameters can be written as

$$
 g_z = \sum_{d: d \subseteq \Delta} \lambda_d(z), \quad h_z = \sum_{d: d \subseteq \Delta} \eta_d(z), \quad K_z = \sum_{d: d \subseteq \Delta} \Phi_d(z),
$$

where functions indexed by d only depend on z through z_d.

Theorem (Lauritzen 1996): a CGD is Markovian with respect to a graph G iff the density has an expansion that satisfies

$$
 \lambda_d(z) \equiv 0 \quad \text{unless } d \text{ is complete in } G,
 \eta_{d}^{\gamma}(z) \equiv 0 \quad \text{unless } d \cup \{\gamma\} \text{ is complete in } G,
 \Phi_{d}^{\gamma\mu}(z) \equiv 0 \quad \text{unless } d \cup \{\gamma, \mu\} \text{ is complete in } G.
$$
A simplified CGD

- The full model has $O(2^q p^2)$ parameters – impossible to fit to high-dimensional data
- Consider instead a simplified model, with $\log f(z, y) =$

$$
\sum_{d: d \subseteq \Delta, |d| \leq 2} \lambda_d(z) + \sum_{d: d \subseteq \Delta, |d| \leq 1} \eta_d(z)^T y - \frac{1}{2} \sum_{d: d \subseteq \Delta, |d| \leq 1} y^T \Phi_d(z)y =
$$

$$(\lambda_0 + \sum_j \lambda_{jz} + \sum_{j > k} \lambda_{jzk}) + y^T (\eta_0 + \sum_j \eta_{jz}) - \frac{1}{2} y^T (\Phi_0 + \sum_{j=1}^q \Phi_{jz})y$$

- $O(\max(q^2, p^2 q))$ parameters
- Still includes all possible graphs
Model parameters and conditional independence

With the loglikelihood given by

$$\log f(y, z) = (\lambda_0 + \sum_j \lambda_j z_j + \sum_{j>k} \lambda_{jk} z_j z_k) + y^T(\eta_0 + \sum_j \eta_j z_j) - \frac{1}{2} y^T (\Phi_0 + \sum_{j=1}^q \Phi_j z_j) y$$

the conditional independencies are determined as follows:

$$Z_j \perp Z_k \mid X\{Z_j, Z_k\} \iff \lambda_{jk} = 0,$$

$$Z_j \perp Y_\gamma \mid X\{Z_j, Y_\gamma\} \iff \theta_{j\gamma} = \left(\eta_j^\gamma, \left\{\Phi_j^\gamma_{\mu} : \mu \neq \gamma\right\}\right) = 0,$$

$$Y_\gamma \perp Y_\mu \mid X\{Y_\gamma, Y_\mu\} \iff \theta_{\gamma\mu} = \left(\Phi_0^\gamma_{\mu}, \left\{\Phi_j^\gamma_{\mu} : j \in \Delta\right\}\right) = 0.$$
Related recent work

- Lee and Hastie (2012): a special case of our model with covariance of Y independent of Z (all $\Phi_j = 0$).
Model fitting

- Likelihood involves intractable normalizing constant
- Instead look at conditional log-likelihood (neighborhood selection)
- Continuous variables ⇒ linear regression:

\[
E(Y_\gamma | Y_{-\gamma}, Z) = \eta_0^\gamma + \sum_j \eta_j^\gamma Z_j - \sum_{\mu \neq \gamma} \left(\Phi_{0}^{\gamma \mu} + \sum_j \Phi_{j}^{\gamma \mu} Z_j \right) Y_\mu
\]

- Binary variables ⇒ logistic regression:

\[
\log \frac{P(Z_j = 1 | Z_{-j}, Y)}{P(Z_j = 0 | Z_{-j}, Y)} = \lambda_j + \sum_{k \neq j} \lambda_{jk} Z_k + \sum_{\gamma=1}^p \eta_j^\gamma Y_\gamma - \frac{1}{2} \sum_{\gamma,\mu=1}^p \Phi_{j}^{\gamma \mu} Y_\gamma Y_\mu
\]
Penalty

- Need a **sparse** estimate ⇒ regularize
- Complication: parameters are in **overlapping** groups
- Regular lasso penalty: \(\| \theta \|_1 = \sum_i |\theta_i| \)
- Group lasso penalty: \(\| \theta \|_2 = \sqrt{\sum_i \theta_i^2} \) - computationally difficult, especially with overlaps
“Approximate” the group penalty by an upper bound:
\[\| \theta \|_2 \leq \| \theta \|_1 \]

Green (outside): \(\{ \theta : \sqrt{\theta_1^2 + \theta_2^2} + \sqrt{\theta_2^2 + \theta_3^2} = 1 \} \)

Blue (inside): \(\{ \theta : |\theta_1| + 2|\theta_2| + |\theta_3| = 1 \} \)
Simulated example: varying max node degree

- Max node degree varies in \{2, 6, 10\}
- 80 edges total (fixed)
- \(p = 90\) (continuous), \(q = 10\) (categorical)
- Sample size \(n = 100\)
- ROC curves averaged over 20 replications.
Asymptotic behavior

- We fit regular or logistic regressions with weighted L_1 penalties
- The weights are either 1 or 2, do not depend on data
- Standard results establish consistency of parameter estimation and model selection
- Only need to assume that the standard assumptions (such as irrepresentable condition) hold on a rescaled version of the design matrix
Example: music annotation dataset

- CAL500 data set: \(n = 502 \) observations, \(q = 128 \) discrete variables, and \(p = 16 \) continuous variables.
- The 128 discrete variables come from six categories: emotions, genres, instruments, song characteristics, usages, and vocal types; manually labelled by human experts.
- The continuous features are extracted from the time series of the audio signal and represent “brightness” of the music, noisiness, amplitude, etc.
Fitted edges for music data

Showing edges with stability selection frequency of at least 0.9
Some interesting findings

- Amplitude \leftrightarrow “alternative rock”
- Noisiness \leftrightarrow “negative feelings”
- Short period amplitude variation \leftrightarrow popular likable songs
- Songs with positive feelings \leftrightarrow piano
- Songs with high energy \leftrightarrow optimistic emotions, dancable songs
- Fast tempo music \leftrightarrow classic rock
- Likable or popular songs \leftrightarrow driving, reading
Graphical models are a popular exploratory tool but they need more flexibility.

Conditioning on covariates allows subject-specific models; linear models provide interpretation.

Mixed graphical models allow exploring relationships between continuous and categorical variables.

Other questions of interest: mixtures of graphical models (unsupervised learning), more complex covariate relationships, combining graphical models with network models.

Thank you