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Cloud computing 
Data is distributed arbitrarily on many servers 
 
Parallel algorithms: time  
Streaming algorithms: sublinear space 
 
Cloud Complexity: time, space and communication  
    [Cormode-Muthukrishnan-Ye 2008] 
 
Nimble algorithm: polynomial time/space (as usual) and 
sublinear (ideally polylog) communication between servers. 



Cloud vs Streaming 
}  Streaming algorithms make small “sketches” of  data 

}  Nimble algorithms must communicate small “sketches” 

}  Are they equivalent? 
 
Simple observation: 
}  Communication in cloud = O(memory in streaming)  
[Daume-Philips-Saha-Venkatasubramanian12] 

 
}  Is cloud computing more powerful? 



Basic Problems on large data sets 
}  Frequency moments 
}  Counting copies of subgraphs (homomorphisms) 
}  Low-rank approximation 
}  Clustering 

}  … 
}  Matchings 
}  Flows 
}  Linear programs 



Streaming Lower Bounds 
Frequency moments: Given a vector of frequencies 𝑓=(
𝑓↓1 ,   𝑓↓2 ,…,   𝑓↓𝑛 ) presented as a set of increments, 
estimate ‖𝑓‖↓𝑘 =∑𝑖↑▒𝑓↓𝑖↑𝑘   to relative error 𝜖. 

[Alon-Matias-Szegedy99, Indyk-Woodruff05]:  
𝜃 (𝑛↑1−2/𝑘 )  space    (k =1,2 by random projection) 
 
Counting homomorphisms: Estimate #triangles, # 𝐶↓4↑ , #
𝐾↓𝑟,𝑟  … in a large graph G. 
Ω ( 𝑛↑2 ) space lower bounds in streaming. 



Streaming Lower Bounds 
 
Low-rank approximation: Given n x d matrix A, find 𝐴  of rank k 
s.t.  

 ‖𝐴− 𝐴 ‖↓𝐹 ≤(1+𝜖)‖𝐴− 𝐴↓𝑘 ‖↓𝐹   
 
[Clarkson-Woodruff09]  

Any streaming algorithm needs Ω((𝑛+𝑑)𝑘log 𝑛𝑑)   space. 



Frequency moments in the cloud 
}  Lower bound via multi-player set disjointness.  

}  t players have sets 𝑆↓1 ,   𝑆↓2 ,  …,   𝑆↓𝑡 , subsets of [n] 
}  Problem: determine if sets are disjoint or have one 

element in common. 

}  Thm: Communication needed = Ω(𝑛/𝑡log 𝑡  ) bits. 



Frequency moments in the cloud 
Thm. Communication needed to determine set disjointness of t 
sets is Ω(𝑛/𝑡log 𝑡  ) bits. 
 
Consider s sets being either  
(i) completely disjoint or (ii) with one common element  
(each set is on one server) 
 
Then k’th frequency moment is either 𝑛 or 𝑛−1+𝑠↑𝑘  
 
Suppose we have a factor 2 approximation for the k’th moment. 
With 𝑠↑𝑘 =  𝑛+1, then we can distinguish these cases. Therefore, 
communication needed is Ω(𝑠↑𝑘−1 ).   



Frequency moments in the cloud 
Thm. [Kannan-V.-Woodruff13]  
Estimating k’th frequency moment on s servers takes 𝑂(
𝑠↑𝑘 / 𝜖↑2 ) words of communication, with 𝑂(𝑏+ log 𝑛 ) bits 
per word. 
 
}  Lower bound is 𝑠↑𝑘−1    
}  Previous bound:  𝑠↑𝑘−1 (log 𝑛 /𝜖 )↑𝑂(𝑘)    [Woodruff-

Zhang12] 
}  streaming space complexity is 𝑛↑1−2/𝑘   

Main idea of algorithm: sample elements within a server 
according to higher moments. 



Warm-up: 2 servers, third moment 

Goal: estimate ∑𝑖↑▒(𝑢↓𝑖 + 𝑣↓𝑖 )↑3   
 
1.  Estimate ∑𝑖↑▒𝑢↓𝑖↑3   
2.  Sample j w.p. 𝑝↓𝑗 = 𝑢↓𝑗↑3 /∑𝑖↑▒𝑢↓𝑖↑3   ; 

announce 
3.  Second server computes X= 𝑢↓𝑗↑2 𝑣↓𝑗 /𝑝↓𝑗   
4.  Average over many samples. 

𝐸(𝑋)=∑𝑖↑▒𝑢↓𝑖↑2 𝑣↓𝑖   



Warm-up: 2 servers, third moment 

Goal: estimate ∑𝑖↑▒(𝑢↓𝑖 + 𝑣↓𝑖 )↑3   
 

𝑝↓𝑗 = 𝑢↓𝑗↑3 /∑𝑖↑▒𝑢↓𝑖↑3           X= 𝑢↓𝑗↑2 𝑣↓𝑗 /𝑝↓𝑗          𝐸(𝑋)=∑𝑖↑▒𝑢↓𝑖↑2 𝑣↓𝑖   
𝑉𝑎𝑟(𝑋)≤ ∑𝑖:𝑣↓𝑖 >0↑▒(𝑢↓𝑖↑2 𝑣↓𝑖 )↑2 /𝑝↓𝑖         ↑  

            ≤      ∑𝑖↑▒𝑢↓𝑖↑3    ∑𝑖↑▒𝑢↓𝑖 𝑣↓𝑖↑2   
                 ≤     (∑𝑖↑▒𝑢↓𝑖↑3 + 𝑣↓𝑖↑3  )↑2  

 
So, 𝑂(1/𝜖↑2  ) samples suffice.  



Many servers, k’th moment 
}    



Many servers, k’th moment 

Each server j: 
}  Sample i w. prob 𝑝↓𝑖 = 𝑓↓𝑖𝑗↑𝑘 /∑𝑡↑▒𝑓↓𝑡𝑗↑𝑘      according to 

k’th moment.  
}  Every j’ sends 𝑓↓𝑖𝑗↑′ ↑     if  j’ < j and 𝑓↓𝑖𝑗↑′ ↑  < 𝑓↓𝑖𝑗  
                                    or j’>j   and 𝑓↓𝑖𝑗↑′ ↑  ≤𝑓↓𝑖𝑗  
}  Server j computes 𝑋↓𝑖 = ∏𝑗=1↑𝑠▒𝑓↓𝑖𝑗↑′  ↓↑𝑟↓𝑗   /𝑝↓𝑖   



Many servers, k’th moment 
Each server j: 
}  Sample i w. prob 𝑝↓𝑖 = 𝑓↓𝑖𝑗↑𝑘 /∑𝑡↑▒𝑓↓𝑡𝑗↑𝑘      according to 

k’th moment.  

}  Every j’ sends 𝑓↓𝑖𝑗↑′ ↑     if  j’ < j and 𝑓↓𝑖𝑗↑′ ↑  < 𝑓↓𝑖𝑗  
                                    or j’>j   and 𝑓↓𝑖𝑗↑′ ↑  ≤𝑓↓𝑖𝑗  
}  Server j computes 𝑋↓𝑖 = ∏𝑗=1↑𝑠▒𝑓↓𝑖𝑗↑′  ↓↑𝑟↓𝑗   /𝑝↓𝑖   

Lemma. 𝐸(𝑋)=∑𝑅↓𝑗 ↑▒∏𝑗↑▒𝑓↓𝑖𝑗↑𝑟↓𝑗      and 𝑉𝑎𝑟(𝑋)≤ 
(∑𝑖↑▒𝑓↓𝑖𝑗↑𝑘  )↑2  
 
Theorem follows as there are < 𝑠↑𝑘  terms in total. 



Counting homomorphisms  
}  How many copies of graph H in large graph G? 

}  E.g., H = triangle, 4-cycle, complete bipartite etc. 

}  Linear lower bounds for counting 4-cycles, triangles. 

}  We assume an (arbitrary) partition of the vertices among 
servers. 



Counting homomorphisms 
}  To count number of paths of length 2, in a graph with degrees 𝑑↓1 ,   
𝑑↓2 ,  …,   𝑑↓𝑛 ,   we need: 

𝑡(𝐾↓1,2 ,𝐺)=  ∑𝑖=1↑𝑛▒(𝑑↓𝑖 ¦2 )  
    This is a polynomial in frequency moments! 
}  #stars is 𝑡(𝐾↓1,𝑟 ,𝐺)=  ∑𝑖=1↑𝑛▒(𝑑↓𝑖 ¦𝑟 )  
}  #C4’s: let 𝑑↓𝑖𝑗  is the number of common neighbors of i and j. Then,   

𝑡(𝐶↓4 ,𝐺)=  ∑𝑖=1↑𝑛▒(𝑑↓𝑖𝑗 ¦2 )   
}  #𝐾↓𝑎,𝑏 : let 𝑑↓𝑆  be the number of common neighbors of a set of 

vertices S. Then,  
𝑡(𝐾↓𝑎,𝑏 ,𝐺)=  ∑𝑆⊂𝑉,  |𝑆|=𝑎↑▒(𝑑↓𝑆 ¦𝑏 )  



Low-rank approximation 
Given n x d matrix A partitioned arbitrarily as  
𝐴= 𝐴↓1 + 𝐴↓2 +  …+ 𝐴↓𝑠  among s servers, find 𝐴  of rank k s.t. 

‖𝐴− 𝐴 ‖↓𝐹 ≤(1+𝜖)𝑂𝑃𝑇. 
 
To avoid linear communication, on each server t, we leave a 
matrix 𝐴 ↓𝑡 , s.t.    𝐴 = 𝐴 ↓1 + 𝐴 ↓2 +…+𝐴 ↓𝑠  and is of rank k. 
 
How to compute these matrices? 



Low-rank approximation in the cloud 
Thm. [KVW13]. Low-rank approximation of n x d matrix A 
partitioned arbitrarily among s servers takes 𝑂↑∗ (𝑠𝑘𝑑) 
communication. 
 
 



Warm-up: row partition 
}  Full matrix A is n x d  with n >> d. 
}  Each server j has a subset of rows 𝐴↓𝑗  
 
}  Computes  𝐴↓𝑗↑𝑇 𝐴↓𝑗  and sends to server 1. 
}  Server 1 computes 𝐵=∑𝑗=1↑𝑠▒𝐴↓𝑗↑𝑇 𝐴↓𝑗   and 

announces V, the top k eigenvectors of B. 
}  Now each server j can compute  𝐴↓𝑗 𝑉𝑉↑𝑇 . 

}  Total communication = 𝑂(𝑠𝑑↑2 ). 



Low-rank approximation: arbitrary partition 
}  To extend this to arbitrary partitions, we use limited-

independence random projection. 

}  Subspace embedding:  matrix P of size 𝑂(𝑑/𝜖↑2  )×𝑛 s.t. for 
any 𝑥∈ 𝑅↑𝑑 ,    ‖𝑃𝐴𝑥‖=(1±𝜖)‖𝐴𝑥‖. 

}  Agree on projection 𝑃 via a random seed 
}  Each server computes 𝑃𝐴↓𝑡 , sends to server 1.  
}  Server 1 computes 𝑃𝐴=∑𝑡↑▒𝑃𝐴↓𝑡   and its top k right 

singular vectors V. 
}  Project rows of A to V.    

}  Total communication = 𝑂(𝑠𝑑↑2 /𝜖↑2  ). 



Low-rank approximation: arbitrary partition 
}  Agree on projection 𝑃 via a random seed 
}  Each server computes 𝑃𝐴↓𝑡 , sends to server 1.  
}  Server 1 computes 𝑃𝐴=∑𝑡↑▒𝑃𝐴↓𝑡   and its top k right singular vectors V. 
}  Project rows of A to V.    

Thm. ‖𝐴−𝐴𝑉𝑉↑𝑇 ‖≤(1+𝑂(𝜖))𝑂𝑃𝑇. 
Pf. Extend V to a basis 𝑣↓1 ,   𝑣↓2 ,  …,   𝑣↓𝑑 . Then,  
‖𝐴−𝐴𝑉𝑉↑𝑇 ‖↓𝐹↑2 =∑𝑖=𝑘+1↑𝑑▒‖𝐴𝑣↓𝑖 ‖↑2 ≤ (1+𝜖)↑2 ∑𝑖=𝑘+1↑𝑑▒‖𝑃𝐴𝑣↓𝑖 
‖↑2   . 
 
And, with 𝑢↓1 ,   𝑢↓2 ,  …,   𝑢↓𝑑  singular vectors of A,  
∑𝑖=𝑘+1↑𝑑▒‖𝑃𝐴𝑣↓𝑖 ‖↑2  ≤∑𝑖=𝑘+1↑𝑑▒‖𝑃𝐴𝑢↓𝑖 ‖↑2  ≤ (1+𝜖)↑2 ∑𝑖=𝑘+1↑𝑑▒
‖𝐴𝑢↓𝑖 ‖↑2  
                                                                 =(1+𝑂(𝜖))𝑂𝑃𝑇↑2 . 
 



Low-rank approximation in the cloud 
To improve to O(skd), we use a subspace embedding up 
front, and observe that O(k)-wise independence suffices for 
the random projection matrix. 
 
}  Agree on 𝑂(𝑘/𝜖 )×𝑛 matrix S and 𝑂(𝑘/𝜖↑2  )×𝑛 matrix 

P.  
}  Each server computes 𝑆𝐴↓𝑡  and sends to server 1. 
}  S1 computes 𝑆𝐴=∑𝑡↑▒𝑆𝐴↓𝑡   and an orthonormal basis 
𝑈↑𝑇  for its row space.  

}  Apply previous algorithm to 𝐴𝑈.  



K-means clustering 
}  Find a set of k centers 𝑐↓1 ,   𝑐↓2 ,  …,   𝑐↓𝑘  that minimize 
∑𝑖∈𝑆↑▒   Min↓𝑗=1↑𝑘  ‖𝐴↓𝑖 − 𝑐↓𝑗 ‖↑2    
 
}  A near-optimal (i.e. 1+𝜖) solution could be very different! 

}  So, cannot project up front to reduce dimension and 
approximately preserve distances. 



K-means clustering 
}  Kannan-Kumar condition: 
}  Every pair of cluster centers are f(k) standard deviations apart.  
}  “variance”: maximum over 1-d projections, of the average 

squared distance of a point to its center. 
  (e.g. for Gaussian mixtures, max directional variance) 
 
}  Thm. [Kannan-Kumar10]. Under this condition, projection to 

the top k principal components followed by the k-means 
iteration starting at an approximately optimal set of centers 
finds a nearly correct clustering. 

 
}  Finds centers close to the optimal ones, so that the induced 

clustering is same for most point. 



K-means clustering in the cloud 
}  Points (rows) are partitioned among servers 
}  Low-rank approximation to project to SVD space. 

}  How to find a good starting set of centers?  
}  Need a constant-factor approximation. 
 
}  Thm [Chen]. There exists a small subset (“core”) s.t. the k-

means value of this set (weighted) is within a constant factor 
of the k-means value of the full set of points (for any set of 
centers!). 

}  Chen’s algorithm can be made nimble. 
 
Thm. K-means clustering in the cloud achieves the Kannan-
Kumar guarantee with 𝑂( 𝑑↑2 + 𝑘↑4 ) communication on s = 
O(1) servers. 



Cloud computing:  
What problems have nimble algorithms? 
 
}  Approximate flow/matching? 
}  Linear programs 
}  Which graph properties/parameters can be checked/estimated in 

the cloud? 
   (e.g., planarity? expansion? small diameter?) 
}  Other Optimization/Clustering/ 
}  Learning problems  
    [Balcan-Blum-Fine-Mansour12,  
     Daume-Philips-Saha-Venkatasubramaian12] 

}  Random partition of data? 

}  Connection to property testing? 


