The Analysis of Partially Symmetric Functions

Eric Blais

Based on joint work with

Amit Weinstein
Yuichi Yoshida
Classes of “simple” functions
Classes of “simple” functions

Constant
Classes of “simple” functions

Constant

Juntas
Classes of “simple” functions

Constant → Symmetric

Juntas
Classes of “simple” functions

Constant → Symmetric

Juntas → Partially symmetric
Classes of “simple” functions

Constant \rightarrow Symmetric

Juntas \rightarrow Partially symmetric

Def’n. $f : \{0,1\}^n \rightarrow \{0,1\}$ is \((n-k)\)-symmetric if there is a set $J \subseteq [n]$ of k variables such that $f(x) = f(y)$ whenever $x_J = y_J$ and $|x| = |y|$.
An algebraic definition

- Def'n. $f^\pi(x) = f(\pi x) = f(x_{\pi(1)}, \ldots, x_{\pi(n)})$.

- Def'n. f is poly-symmetric if

$$|\text{ISO}_f| = |\{f^\pi : \pi \in S_n\}| \leq \text{poly}(n).$$

- Theorem. f is poly-symmetric if and only if it is $(n-k)$-symmetric for some $k=O(1)$.

[Clote, Kranakis ’91]
[Chakraborty, Fischer, Garcia-Soriano, Matslieh ’12]
Partial Symmetry in Theoretical Computer Science
Circuit complexity

Theorem (Shannon ’49). Almost every function f has circuit complexity $\Omega(2^n/n)$.
Circuit complexity

- **Theorem.** Every symmetric function has circuit complexity at most n^2.
 [Shannon ’38]

- **Theorem.** Every k-junta has circuit complexity at most $2^{k+3}/k$.
 [Shannon ’49]
Circuit complexity

- **Theorem.** Every symmetric function has circuit complexity at most n^2. [Shannon ’38]

- **Theorem.** Every k-junta has circuit complexity at most $2^{k+3}/k$. [Shannon ’49]

- **Theorem.** Every $(n-k)$-symmetric function has circuit complexity $\leq (n-k)2^k + (n-k)^2$. [Shannon ’49]
Parallel complexity and Proof complexity

- **Theorem.** If f is $(n-k)$-symmetric for some $k=O(1)$, then f is in $\text{TC}^0 \subseteq \text{NC}^1$.

 [Clote, Kranakis ’91]

- **Corollary.** “Frege probably does not effectively-p simulate Extended Frege.”

 [Pitassi, Santhanam ’10]
Testing function isomorphism

\[f(x) = g(x) \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
</tr>
</tbody>
</table>
Testing function isomorphism

Def’n. A \textit{q-query tester} for the property $\text{ISO}_f = \{f^\pi : \pi \in S_n\}$ queries $g : \{0,1\}^n \to \{0,1\}$ on at most q inputs and

(i) Accepts w.p. $2/3$ when $g \in \text{ISO}_f$,

(ii) Rejects w.p. $2/3$ when for every $\pi \in S_n$,

$$\Pr[g(x) \neq f^\pi(x)] \geq 1/100.$$

Main Question. For which functions f can we test ISO_f with $O(1)$ queries?
Testing function isomorphism

- **Fact.** For every symmetric function \(f \), we can test \(ISO_f \) with \(O(1) \) queries.

- **Theorem.** For every \(k \)-junta \(f \), we can test \(ISO_f \) with \(O(k \log k) \) queries.

 [Fischer, Kindler, Ron, Safra, Samorodnitsky ’04]
 [B. ’09]
 [Chakraborty, Garcia-Soriano, Matsliah ’10]
Testing function isomorphism

- **Fact.** For every symmetric function f, we can test ISO_f with $O(1)$ queries.

- **Theorem.** For every k-junta f, we can test ISO_f with $O(k \log k)$ queries.
 - [Fischer, Kindler, Ron, Safra, Samorodnitsky ’04]
 - [B. ’09]
 - [Chakraborty, Garcia-Soriano, Matslieh ’10]

- **Theorem.** For every $(n-k)$-symmetric f, we can test ISO_f with $O(k \log k)$ queries.
 - [B., Weinstein, Yoshida ’12]
 - [Chakraborty, Fischer, Garcia-Soriano, Matslieh ’12]
Conjecture. Fix any $k \geq 1$. If f is ε-far from $(n-k)$-symmetric, then testing ISO_f requires $\Omega(\log \log k)$ queries.

[B., Weinstein, Yoshida ’12]
[Chakraborty, Fischer, Garcia-Soriano, Matslieh ’12]
Influence and partial symmetry
Three Notions of Influence

Influence of coordinate i:

\[\text{Inf}_i(f) = \Pr_x[f(x) \neq f(x^{\oplus i})] . \]

Total influence / average sensitivity:

\[\text{Inf}(f) = \sum_i \text{Inf}_i(f) . \]

Influence of a set $S \subseteq [n]$ of coordinates:

\[\text{Inf}_S(f) = \Pr_{x,y}[f(x) \neq f(x_{[n]\setminus S}y_S)] . \]
Three Notions of Influence

Influence of coordinates i,j:

- $\text{Inf}^*_{i,j}(f) = \Pr_x[f(x) \neq f(\mathbf{x}^{i \leftrightarrow j})]$.

Total influence:

- $\text{Inf}^*(f) = \sum_{i \neq j} \text{Inf}^*_{i,j}(f)$.

Influence of a set S of coordinates:

- $\text{Inf}^*_S(f) = \Pr_{x, \pi \in S}[f(x) \neq f(\pi x)]$.
Inf vs. Inf*
Properties of $\text{Inf}^*_{i,j}$ and Inf^*

- **Fact.** When f is symmetric, $\text{Inf}^*(f) = 0$.
- **Fact.** $\text{Inf}^*_{i,j}(f) = \sum_{T : i, j \notin T} \left(\hat{f}(T \cup \{i\}) - \hat{f}(T \cup \{j\}) \right)^2$.
- **Theorem (KKL for Inf^*).** When f is far from symmetric, there exist $i \neq j$ such that $\text{Inf}^*_{i,j}(f) = \Omega(\log(n)/n)$. [O’Donnell, Wimmer ’08]
Properties of \(\text{Inf}^*\mathcal{S} \)

- **Fact.** When \(f \) is \((n-k)\)-symmetric, there is a set \(J \) of size \(|J|=k\) s.t. \(\text{Inf}^{\lfloor n \rfloor \setminus \cup}(f) = 0 \).

- **Fact.** \(\text{Inf}^*\mathcal{S}(f) = \sum_{\mathcal{T}} \text{Var}_{\pi \in \mathcal{S}}(\hat{f}(\pi \mathcal{T})) \).

- **Lemma** (Monotonicity). \(\text{Inf}^*\mathcal{S}(f) \leq \text{Inf}^*\mathcal{S} \cup \mathcal{T}(f) \).

- **Lemma** (Subadditivity). If \(|S|,|T| \geq (1-\gamma)n\) then \(\text{Inf}^*\mathcal{S} \cup \mathcal{T}(f) \leq \text{Inf}^*\mathcal{S}(f) + \text{Inf}^*\mathcal{T}(f) + o(\gamma^{1/2}) \).
Properties of Inf*

Theorem. Let f be ε-far from $(n-k)$-symmetric and let P be a random $O(k^2)$-partition of $[n]$. Then whp every union J of k parts in P satisfies $\text{Inf}^*[n]\cup(f) \geq \varepsilon/9$.

Proof sketch.

1. $F_{1/3} = \{S \subseteq [n]: \text{Inf}^*[n]\setminus S(f) < \varepsilon/3\}$ is $(k+1)$-intersecting.
2. If $F_{1/3}$ contains a set S s.t. $|S| \leq 2k$, the bound holds.
3. Else, $F_{1/9} = \{S \subseteq [n]: \text{Inf}^*[n]\setminus S(f) < \varepsilon/9\}$ is $(2k+1)$-intersecting and the bound holds by the Intersection Theorem. ☐
Properties of Inf*

Theorem. Let f be ε-far from $(n-k)$-symmetric and let P be a random $O(k^2)$-partition of $[n]$. Then whp every union J of k parts in P satisfies $\inf^*[n \setminus J](f) \geq \varepsilon/9$.

Proof sketch.
1. $F_{1/3} = \{S \subseteq [n]: \inf^*[n \setminus S](f) < \varepsilon/3\}$ is $(k+1)$-intersecting.

$$\inf^*[n \setminus (S \cap T)](f) = \inf^*[n \setminus S \cup [n \setminus T)](f) \leq \inf^*[n \setminus S](f) + \inf^*[n \setminus T](f) + \varepsilon/3 < \varepsilon$$
Properties of Inf*

Theorem. Let \(f \) be \(\epsilon \)-far from \((n-k)\)-symmetric and let \(P \) be a random \(O(k^2) \)-partition of \([n]\). Then whp every union \(J \) of \(k \) parts in \(P \) satisfies \(\text{Inf}^*[n\setminus J](f) \geq \epsilon/9 \).

Proof sketch.

1. \(F_{1/3} = \{ S \subseteq [n] : \text{Inf}^*[n\setminus S](f) < \epsilon/3 \} \) is \((k+1)\)-intersecting.

2. If \(F_{1/3} \) contains a set \(S \) s.t. \(|S| \leq 2k \), the bound holds.

W.h.p., \(S \) is shattered by \(P \) \(\Rightarrow \) \(J \cap S \leq k \) \(\Rightarrow \) \(J \notin F_{1/3} \).
Properties of Inf^*

Theorem. Let f be ε-far from $(n-k)$-symmetric and let P be a random $O(k^2)$-partition of $[n]$. Then whp every union J of k parts in P satisfies $\text{Inf}^*[n]\cup(f) \geq \varepsilon/9$.

Proof sketch.

1. $F_{1/3}=\{S \subseteq [n]: \text{Inf}^*[n]\setminus S(f) < \varepsilon/3\}$ is $(k+1)$-intersecting.
2. If $F_{1/3}$ contains a set S s.t. $|S| \leq 2k$, the bound holds.
3. Else, $F_{1/9}=\{S \subseteq [n]: \text{Inf}^*[n]\setminus S(f) < \varepsilon/9\}$ is $(2k+1)$-intersecting and the bound holds by the Intersection Theorem. □

Each J is $O(1/k)$-biased random set $\Rightarrow \Pr[J \in F_{1/9}] \leq k^{-2k}$.

Discussion
Open Problems

- Which other results in the analysis of boolean functions can we extend to partial symmetry?
 - Friedgut’s junta theorem?
 - Structure of the Fourier spectrum?
- Can we use such extensions to prove the function isomorphism testing conjecture?
- In which other areas of TCS do partially symmetric functions appear?
 - Local reconstruction. [Alon, Weinstein ’12]
 - Active property testing. [Alon, Hod, Weinstein ’13]
Thanks!