Elchanan Mossel¹ Joe Neeman²

 $^{1}\mathrm{UC}$ Berkeley

 $^{2}\mathrm{UT}$ Austin

Fix a parameter $0 < \rho < 1$. Take

$$(X,Y) \sim \mathcal{N}\left(0, \begin{pmatrix} I_n & \rho I_n \\ \rho I_n & I_n \end{pmatrix}\right)$$

Fix a parameter $0 < \rho < 1$. Take

$$(X,Y) \sim \mathcal{N}\left(0, \begin{pmatrix} I_n & \rho I_n \\ \rho I_n & I_n \end{pmatrix}\right)$$

The Gaussian noise stability of $A \subset \mathbb{R}^n$ is $\Pr(X \in A, Y \in A)$.

Fix a parameter $0 < \rho < 1$. Take

$$(X,Y) \sim \mathcal{N}\left(0, \begin{pmatrix} I_n & \rho I_n \\ \rho I_n & I_n \end{pmatrix}\right)$$

The Gaussian noise stability of $A \subset \mathbb{R}^n$ is $Pr(X \in A, Y \in A)$. Applications in

- approximability (e.g., optimal UGC hardness of MAX-CUT, KKMO '05)
- ▶ testing (e.g., testing half-spaces, MORS '09)

What sets have high noise stability?

What sets have high noise stability? Half-spaces maximize the noise stability (among all sets of a given volume):

Theorem (Borell '85)

For any $A \subset \mathbb{R}^n$, if $A' \subset \mathbb{R}^n$ is a half-space with $\Pr(A') = \Pr(A)$ then

$$\Pr(X \in A, Y \in A) \le \Pr(X \in A', Y \in A').$$

A half-space is a set of the form $\{x \in \mathbb{R}^n : x \cdot a \leq b\}$.

Define $\Phi(x) = \Pr(X_1 \leq x)$. Then $\{x \in \mathbb{R}^n : x_1 \leq \Phi^{-1}(a)\}$ is a half-space of volume a. Define

$$J(a,b) = \Pr(X_1 \le \Phi^{-1}(a), Y_1 \le \Phi^{-1}(b)).$$

Define $\Phi(x) = \Pr(X_1 \leq x)$. Then $\{x \in \mathbb{R}^n : x_1 \leq \Phi^{-1}(a)\}$ is a half-space of volume a. Define

$$J(a,b) = \Pr(X_1 \le \Phi^{-1}(a), Y_1 \le \Phi^{-1}(b)).$$

Since the Gaussian measure is rotationally invariant, Borell's theorem is equivalent to

$$\Pr(X \in A, Y \in A) \le J(\Pr(A), \Pr(A)).$$

Define $\Phi(x) = \Pr(X_1 \leq x)$. Then $\{x \in \mathbb{R}^n : x_1 \leq \Phi^{-1}(a)\}$ is a half-space of volume a. Define

$$J(a,b) = \Pr(X_1 \le \Phi^{-1}(a), Y_1 \le \Phi^{-1}(b)).$$

Since the Gaussian measure is rotationally invariant, Borell's theorem is equivalent to

$$\Pr(X \in A, Y \in A) \le J(\Pr(A), \Pr(A)).$$

Theorem (Mossel, N. '12) If $Pr(X, Y \in A) = J(Pr(A), Pr(A))$ then A is a.s. equal to a half-space.

Define $\Phi(x) = \Pr(X_1 \leq x)$. Then $\{x \in \mathbb{R}^n : x_1 \leq \Phi^{-1}(a)\}$ is a half-space of volume a. Define

$$J(a,b) = \Pr(X_1 \le \Phi^{-1}(a), Y_1 \le \Phi^{-1}(b)).$$

Since the Gaussian measure is rotationally invariant, Borell's theorem is equivalent to

$$\Pr(X \in A, Y \in A) \le J(\Pr(A), \Pr(A)).$$

Theorem (Mossel, N. '12) If $Pr(X, Y \in A) = J(Pr(A), Pr(A))$ then A is a.s. equal to a half-space.

If $\Pr(X, Y \in A) \ge J(\Pr(A), \Pr(A)) - \delta$ then there is a half-space B with

$$\Pr(A\Delta B) \le C(\rho, \Pr(A))\delta^{c(\rho)}.$$

Define $\Phi(x) = \Pr(X_1 \leq x)$. Then $\{x \in \mathbb{R}^n : x_1 \leq \Phi^{-1}(a)\}$ is a half-space of volume a. Define

$$J(a,b) = \Pr(X_1 \le \Phi^{-1}(a), Y_1 \le \Phi^{-1}(b)).$$

Since the Gaussian measure is rotationally invariant, Borell's theorem is equivalent to

$$\Pr(X \in A, Y \in A) \le J(\Pr(A), \Pr(A)).$$

Theorem (Mossel, N. '12, Eldan '13) If $Pr(X, Y \in A) = J(Pr(A), Pr(A))$ then A is a.s. equal to a half-space.

If $\Pr(X, Y \in A) \ge J(\Pr(A), \Pr(A)) - \delta$ then there is a half-space B with

$$\Pr(A\Delta B) \le \frac{C(\Pr(A))}{\sqrt{1-\rho}}\sqrt{\delta \log(1/\delta)}.$$

Borell's theorem: previous proofs

▶ Borell's original proof, using Ehrhard symmetrization.

Borell's theorem: previous proofs

- ▶ Borell's original proof, using Ehrhard symmetrization.
- Burchard-Schmuckenschlager and Issakson-Mossel, using spherical symmetrization.

Borell's theorem: previous proofs

- ▶ Borell's original proof, using Ehrhard symmetrization.
- Burchard-Schmuckenschlager and Issakson-Mossel, using spherical symmetrization.
- ► Kindler-O'Donnell (when $Pr(X \in A) = \frac{1}{2}$, and for certain values of ρ), using subadditivity.

Suppose we have query access to some unknown $A \subset \mathbb{R}^n$ (ie. we can ask whether $x \in A$) and we want to check if A is a half-space.

Suppose we have query access to some unknown $A \subset \mathbb{R}^n$ (ie. we can ask whether $x \in A$) and we want to check if A is a half-space.

- 1. Sample $Z_1, \ldots, Z_m \sim \mathcal{N}(0, I_n)$ and let $\hat{p} = \frac{\#\{Z_i \in A\}}{m}$.
- 2. Sample $(X_1, Y_1), \ldots, (X_m, Y_m) \sim \Pr_{\rho}$. Answer "yes" if

$$\frac{\#\{i: X_i \in A, Y_i \in A\}}{m} \ge J(\hat{p}, \hat{p}) - \tilde{O}(\epsilon^2)$$

and "no" otherwise.

Suppose we have query access to some unknown $A \subset \mathbb{R}^n$ (ie. we can ask whether $x \in A$) and we want to check if A is a half-space.

- 1. Sample $Z_1, \ldots, Z_m \sim \mathcal{N}(0, I_n)$ and let $\hat{p} = \frac{\#\{Z_i \in A\}}{m}$.
- 2. Sample $(X_1, Y_1), \ldots, (X_m, Y_m) \sim \Pr_{\rho}$. Answer "yes" if

$$\frac{\#\{i: X_i \in A, Y_i \in A\}}{m} \ge J(\hat{p}, \hat{p}) - \tilde{O}(\epsilon^2)$$

and "no" otherwise.

Theorem (Mossel, N. '12, Eldan '13)

If A is a half-space, then the algorithm above answers "yes" w.h.p.

If A is ϵ -far from a half-space and $m \geq \tilde{O}(\epsilon^{-4})$ then the algorithm answers "no" w.h.p.

MORS '09 showed that a similar algorithm works if $m \ge \epsilon^{-6}$.

Recall
$$J(a, b) = \Pr(X_1 \le \Phi^{-1}(a), Y_1 \le \Phi^{-1}(b)).$$

Theorem
For any $f : \mathbb{R}^n \to [0, 1],$
 $\mathbb{E}J(f(X), f(Y)) \le J(\mathbb{E}f, \mathbb{E}f).$

Recall
$$J(a, b) = \Pr(X_1 \le \Phi^{-1}(a), Y_1 \le \Phi^{-1}(b)).$$

Theorem
For any $f : \mathbb{R}^n \to [0, 1],$
 $\mathbb{E}J(f(X), f(Y)) \le J(\mathbb{E}f, \mathbb{E}f).$

To get the original statement,

$$\Pr(X \in A, Y \in A) \le J(\Pr(A), \Pr(A)),$$

set $f = 1_A$. (Note that J(1, 1) = 1 and J(0, 1) = J(1, 0) = J(0, 0) = 0.)

Want to show $\mathbb{E}J(f(X), f(Y)) \leq J(\mathbb{E}f, \mathbb{E}f)$.

Define the operator P_t by

$$(P_t f)(x) = \mathbb{E}f(e^{-t}x + \sqrt{1 - e^{-2t}}X).$$

Note that $P_0 f = f$ and $P_{\infty} f = \mathbb{E} f$.

Want to show $\mathbb{E}J(f(X), f(Y)) \leq J(\mathbb{E}f, \mathbb{E}f)$.

Define the operator P_t by

$$(P_t f)(x) = \mathbb{E}f(e^{-t}x + \sqrt{1 - e^{-2t}}X).$$

Note that $P_0 f = f$ and $P_{\infty} f = \mathbb{E} f$. Consider $\mathbb{E} J(P_t f(X), P_t f(Y))$.

Want to show $\mathbb{E}J(f(X), f(Y)) \leq J(\mathbb{E}f, \mathbb{E}f)$.

Define the operator P_t by

$$(P_t f)(x) = \mathbb{E}f(e^{-t}x + \sqrt{1 - e^{-2t}}X).$$

Note that $P_0 f = f$ and $P_{\infty} f = \mathbb{E} f$. Consider $\mathbb{E} J(P_t f(X), P_t f(Y))$.

The punchline: this is an increasing function of t.

Let

$$v_t = v_t(X) = \Phi^{-1}(P_t f(X))$$

 $w_t = w_t(Y) = \Phi^{-1}(P_t f(Y)).$

Let

$$v_t = v_t(X) = \Phi^{-1}(P_t f(X))$$

 $w_t = w_t(Y) = \Phi^{-1}(P_t f(Y)).$

$$\frac{d}{dt}\mathbb{E}J(P_tf(X), P_tf(Y))$$

Let

$$v_t = v_t(X) = \Phi^{-1}(P_t f(X))$$

 $w_t = w_t(Y) = \Phi^{-1}(P_t f(Y)).$

$$\frac{d}{dt}\mathbb{E}J(P_tf(X), P_tf(Y))$$

= ... chain rule (×8) ...

 Let

$$v_t = v_t(X) = \Phi^{-1}(P_t f(X))$$

 $w_t = w_t(Y) = \Phi^{-1}(P_t f(Y)).$

$$\frac{d}{dt} \mathbb{E}J(P_t f(X), P_t f(Y))$$

$$= \dots \text{ chain rule } (\times 8) \dots$$

$$= \dots \text{ integrate by parts } \dots$$

 Let

$$v_t = v_t(X) = \Phi^{-1}(P_t f(X))$$

 $w_t = w_t(Y) = \Phi^{-1}(P_t f(Y)).$

$$\begin{split} & \frac{d}{dt} \mathbb{E}J(P_t f(X), P_t f(Y)) \\ &= \dots \text{chain rule } (\times 8) \dots \\ &= \dots \text{integrate by parts } \dots \\ &= \frac{\rho}{2\pi\sqrt{1-\rho^2}} \mathbb{E}e^{-(v_t^2 + w_t^2 - 2\rho v_t w_t)/(1-\rho^2)} |\nabla v_t - \nabla w_t|^2 \end{split}$$

 Let

$$v_t = v_t(X) = \Phi^{-1}(P_t f(X))$$

 $w_t = w_t(Y) = \Phi^{-1}(P_t f(Y)).$

$$\begin{split} & \frac{d}{dt} \mathbb{E}J(P_t f(X), P_t f(Y)) \\ &= \dots \text{ chain rule } (\times 8) \dots \\ &= \dots \text{ integrate by parts } \dots \\ &= \frac{\rho}{2\pi\sqrt{1-\rho^2}} \mathbb{E}e^{-(v_t^2 + w_t^2 - 2\rho v_t w_t)/(1-\rho^2)} |\nabla v_t - \nabla w_t|^2 \\ &\geq 0 \qquad \Box \end{split}$$

Why consider $\mathbb{E}J(f(X), f(Y))$? Why does the proof work?

What's going on? Why consider $\mathbb{E}J(f(X), f(Y))$?

Why consider $\mathbb{E}J(f(X), f(Y))$? Given $f : \mathbb{R}^n \to [0, 1]$, define $A_f \subset \mathbb{R}^{n+1}$ by $A_f = \{(x, x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} \leq \Phi^{-1}(f(x))\}.$

Why consider $\mathbb{E}J(f(X), f(Y))$? Given $f : \mathbb{R}^n \to [0, 1]$, define $A_f \subset \mathbb{R}^{n+1}$ by $A_f = \{(x, x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} \leq \Phi^{-1}(f(x))\}.$

Then

$$Pr((X, X_{n+1}) \in A_f)$$

= $Pr(X_{n+1} \le \Phi^{-1}(f(X)))$
= $\mathbb{E}f(X)$

Why consider $\mathbb{E}J(f(X), f(Y))$? Given $f : \mathbb{R}^n \to [0, 1]$, define $A_f \subset \mathbb{R}^{n+1}$ by $A_f = \{(x, x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} \leq \Phi^{-1}(f(x))\}.$

Then

$$Pr((X, X_{n+1}) \in A_f)$$

= $Pr(X_{n+1} \le \Phi^{-1}(f(X)))$
= $\mathbb{E}f(X)$

and

$$Pr((X, X_{n+1}) \in A_f, (Y, Y_{n+1}) \in A_f)$$

= $Pr(X_{n+1} \le \Phi^{-1}(f(X)), Y_{n+1} \le \Phi^{-1}(f(Y)))$
= $\mathbb{E}J(f(X), f(Y)).$

Why consider $\mathbb{E}J(f(X), f(Y))$? Given $f : \mathbb{R}^n \to [0, 1]$, define $A_f \subset \mathbb{R}^{n+1}$ by $A_f = \{(x, x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} \leq \Phi^{-1}(f(x))\}.$

Then

$$Pr((X, X_{n+1}) \in A_f) = \mathbb{E}f(X) Pr((X, X_{n+1}) \in A_f, (Y, Y_{n+1}) \in A_f) = \mathbb{E}J(f(X), f(Y)).$$

Why consider $\mathbb{E}J(f(X), f(Y))$? Given $f : \mathbb{R}^n \to [0, 1]$, define $A_f \subset \mathbb{R}^{n+1}$ by $A_f = \{(x, x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} \leq \Phi^{-1}(f(x))\}.$

Then

$$Pr((X, X_{n+1}) \in A_f) = \mathbb{E}f(X) Pr((X, X_{n+1}) \in A_f, (Y, Y_{n+1}) \in A_f) = \mathbb{E}J(f(X), f(Y)).$$

and so Borell's theorem (in \mathbb{R}^{n+1}) applied to A_f gives

$$\mathbb{E}J(f(X), f(Y))$$

= $\Pr((X, X_{n+1}) \in A_f, (Y, Y_{n+1}) \in A_f)$
 $\leq J(\Pr(A_f), \Pr(A_f))$
= $J(\mathbb{E}f, \mathbb{E}f).$

Why does the proof work?

We showed that this transformation only increases the noise stability.

This idea has been used before: Bakry and Ledoux '96 used it to prove the Gaussian isoperimetric inequality.

Theorem (Mossel, N. '12)
If
$$J : [0,1] \times [0,1] \to \mathbb{R}$$
 satisfies $\begin{pmatrix} \frac{\partial^2 J(x,y)}{\partial x^2} & \rho \frac{\partial^2 J(x,y)}{\partial x \partial y} \\ \rho \frac{\partial^2 J(x,y)}{\partial x \partial y} & \frac{\partial^2 J(x,y)}{\partial y^2} \end{pmatrix} \leq 0$ then

 $\mathbb{E}J(f(X), f(Y)) \leq J(\mathbb{E}f, \mathbb{E}f)$

whenever X and Y are ρ -correlated Gaussians.

Theorem (Mossel, N. '12 Jensen 1906)
If
$$J : [0,1] \times [0,1] \to \mathbb{R}$$
 satisfies $\begin{pmatrix} \frac{\partial^2 J(x,y)}{\partial x^2} & p \frac{\partial^2 J(x,y)}{\partial x \partial y} \\ p \frac{\partial^2 J(x,y)}{\partial x \partial y} & \frac{\partial^2 J(x,y)}{\partial y^2} \end{pmatrix} \leq 0$ then

$$\mathbb{E}J(f(X), f(Y)) \le J(\mathbb{E}f, \mathbb{E}f)$$

whenever X and Y are ρ -correlated Gaussians any random variables.

Theorem (Mossel, N. '12)
If
$$J : [0,1] \times [0,1] \to \mathbb{R}$$
 satisfies $\begin{pmatrix} \frac{\partial^2 J(x,y)}{\partial x^2} & \rho \frac{\partial^2 J(x,y)}{\partial x \partial y} \\ \rho \frac{\partial^2 J(x,y)}{\partial x \partial y} & \frac{\partial^2 J(x,y)}{\partial y^2} \end{pmatrix} \leq 0$ then

 $\mathbb{E}J(f(X), f(Y)) \leq J(\mathbb{E}f, \mathbb{E}f)$

whenever X and Y are ρ -correlated Gaussians.

Theorem (Mossel, N. '12)
If
$$J : [0,1] \times [0,1] \to \mathbb{R}$$
 satisfies $\begin{pmatrix} \frac{\partial^2 J(x,y)}{\partial x^2} & \rho \frac{\partial^2 J(x,y)}{\partial x \partial y} \\ \rho \frac{\partial^2 J(x,y)}{\partial x \partial y} & \frac{\partial^2 J(x,y)}{\partial y^2} \end{pmatrix} \leq 0$ then

 $\mathbb{E}J(f(X), f(Y)) \leq J(\mathbb{E}f, \mathbb{E}f)$

whenever X and Y are ρ -correlated Gaussians.

Does the condition mean anything? Our J is the smallest one satisfying it.

This is what J looks like $(\rho = 0.1)$

This is what J looks like ($\rho = 0.3$)

This is what J looks like ($\rho = 0.5$)

This is what J looks like ($\rho = 0.7$)

This is what J looks like $(\rho = 0.9)$

Proof: the equality case Claim: if $f = 1_A$ and $\mathbb{E}J(f(X), f(Y)) = J(\mathbb{E}f, \mathbb{E}f)$ then A is a half-space. Proof: the equality case

Claim: if $f = 1_A$ and $\mathbb{E}J(f(X), f(Y)) = J(\mathbb{E}f, \mathbb{E}f)$ then A is a half-space. Recall that

$$\frac{d}{dt}\mathbb{E}J(P_tf(X), P_tf(Y)) = \frac{\rho}{2\pi\sqrt{1-\rho^2}}\mathbb{E}e^{-(v_t^2+w_t^2-2\rho v_t w_t)}|\nabla v_t - \nabla w_t|^2$$

where

$$v_t = v_t(X) = \Phi^{-1}(P_t f(X))$$

 $w_t = w_t(Y) = \Phi^{-1}(P_t f(Y))$

Proof: the equality case

Claim: if $f = 1_A$ and $\mathbb{E}J(f(X), f(Y)) = J(\mathbb{E}f, \mathbb{E}f)$ then A is a half-space. Recall that

$$\frac{d}{dt}\mathbb{E}J(P_tf(X), P_tf(Y)) = \frac{\rho}{2\pi\sqrt{1-\rho^2}}\mathbb{E}e^{-(v_t^2+w_t^2-2\rho v_t w_t)}|\nabla v_t - \nabla w_t|^2$$

where

$$v_t = v_t(X) = \Phi^{-1}(P_t f(X))$$

 $w_t = w_t(Y) = \Phi^{-1}(P_t f(Y))$

$$\mathbb{E}J(f,f) = J(\mathbb{E}f,\mathbb{E}f) \iff \forall t \ \nabla v_t(X) = \nabla w_t(Y) = \text{constant}$$
$$\iff P_t f(x) = \Phi(a(t) \cdot x + b(t))$$

Proof: the equality case

Claim: if $f = 1_A$ and $\mathbb{E}J(f(X), f(Y)) = J(\mathbb{E}f, \mathbb{E}f)$ then A is a half-space. Recall that

$$\frac{d}{dt}\mathbb{E}J(P_tf(X), P_tf(Y)) = \frac{\rho}{2\pi\sqrt{1-\rho^2}}\mathbb{E}e^{-(v_t^2+w_t^2-2\rho v_t w_t)}|\nabla v_t - \nabla w_t|^2$$

where

$$v_t = v_t(X) = \Phi^{-1}(P_t f(X))$$

 $w_t = w_t(Y) = \Phi^{-1}(P_t f(Y))$

$$\mathbb{E}J(f,f) = J(\mathbb{E}f,\mathbb{E}f) \iff \forall t \ \nabla v_t(X) = \nabla w_t(Y) = \text{constant}$$
$$\iff P_t f(x) = \Phi(a(t) \cdot x + b(t))$$
$$\iff \text{if } f = 1_A \text{ then } A \text{ is a half-space.}$$

Claim: if $f = 1_A$ and $\mathbb{E}J(f(X), f(Y)) \ge J(\mathbb{E}f, \mathbb{E}f) - \delta$ then A is almost a half-space.

Claim: if $f = 1_A$ and $\mathbb{E}J(f(X), f(Y)) \ge J(\mathbb{E}f, \mathbb{E}f) - \delta$ then A is almost a half-space. Recall that

$$J(\mathbb{E}f,\mathbb{E}f) - \mathbb{E}J(f(X), f(Y))$$

= $\frac{\rho}{2\pi\sqrt{1-\rho^2}} \int_0^\infty \mathbb{E}e^{-(v_t^2 + w_t^2 - 2\rho v_t w_t)} |\nabla v_t - \nabla w_t|^2 dt.$

Claim: if $f = 1_A$ and $\mathbb{E}J(f(X), f(Y)) \ge J(\mathbb{E}f, \mathbb{E}f) - \delta$ then A is almost a half-space. Recall that

$$J(\mathbb{E}f,\mathbb{E}f) - \mathbb{E}J(f(X),f(Y))$$

= $\frac{\rho}{2\pi\sqrt{1-\rho^2}} \int_0^\infty \mathbb{E}e^{-(v_t^2+w_t^2-2\rho v_t w_t)} |\nabla v_t - \nabla w_t|^2 dt.$

Lemma

For any t > 0, $P_t f$ is close to a function of the form $\Phi(a \cdot x + b)$.

Claim: if $f = 1_A$ and $\mathbb{E}J(f(X), f(Y)) \ge J(\mathbb{E}f, \mathbb{E}f) - \delta$ then A is almost a half-space. Recall that

$$J(\mathbb{E}f,\mathbb{E}f) - \mathbb{E}J(f(X), f(Y))$$

= $\frac{\rho}{2\pi\sqrt{1-\rho^2}} \int_0^\infty \mathbb{E}e^{-(v_t^2 + w_t^2 - 2\rho v_t w_t)} |\nabla v_t - \nabla w_t|^2 dt.$

Lemma

For any t > 0, $P_t f$ is close to a function of the form $\Phi(a \cdot x + b)$.

Lemma

If $P_t f$ is close to a function of the form $\Phi(a \cdot x + b)$ then f is also close to a function of the same form.

