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Gaussian noise stability

Fix a parameter 0 < ρ < 1. Take

(X,Y ) ∼ N
(

0,

(
In ρIn
ρIn In

))

The Gaussian noise stability of A ⊂ Rn is Pr(X ∈ A, Y ∈ A).
Applications in

I approximability (e.g., optimal UGC hardness of
Max-Cut, KKMO ’05)

I testing (e.g., testing half-spaces, MORS ’09)
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Borell’s theorem

What sets have high noise stability?

Half-spaces maximize the noise stability (among all sets of a
given volume):

Theorem (Borell ’85)

For any A ⊂ Rn, if A′ ⊂ Rn is a half-space with Pr(A′) = Pr(A)
then

Pr(X ∈ A, Y ∈ A) ≤ Pr(X ∈ A′, Y ∈ A′).

A half-space is a set of the form {x ∈ Rn : x · a ≤ b}.
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Borell’s theorem
Define Φ(x) = Pr(X1 ≤ x). Then {x ∈ Rn : x1 ≤ Φ−1(a)} is a
half-space of volume a. Define

J(a, b) = Pr(X1 ≤ Φ−1(a), Y1 ≤ Φ−1(b)).

Since the Gaussian measure is rotationally invariant, Borell’s
theorem is equivalent to

Pr(X ∈ A, Y ∈ A) ≤ J(Pr(A),Pr(A)).

Theorem (Mossel, N. ’12)

If Pr(X,Y ∈ A) = J(Pr(A),Pr(A)) then A is a.s. equal to a
half-space.

If Pr(X,Y ∈ A) ≥ J(Pr(A),Pr(A))− δ then there is a
half-space B with

Pr(A∆B) ≤ .
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Borell’s theorem
Define Φ(x) = Pr(X1 ≤ x). Then {x ∈ Rn : x1 ≤ Φ−1(a)} is a
half-space of volume a. Define

J(a, b) = Pr(X1 ≤ Φ−1(a), Y1 ≤ Φ−1(b)).

Since the Gaussian measure is rotationally invariant, Borell’s
theorem is equivalent to

Pr(X ∈ A, Y ∈ A) ≤ J(Pr(A),Pr(A)).

Theorem (Mossel, N. ’12, Eldan ’13)

If Pr(X,Y ∈ A) = J(Pr(A),Pr(A)) then A is a.s. equal to a
half-space.

If Pr(X,Y ∈ A) ≥ J(Pr(A),Pr(A))− δ then there is a
half-space B with

Pr(A∆B) ≤ C(Pr(A))√
1− ρ

√
δ log(1/δ).



Borell’s theorem: previous proofs

I Borell’s original proof, using Ehrhard symmetrization.

I Burchard-Schmuckenschlager and Issakson-Mossel, using
spherical symmetrization.

I Kindler-O’Donnell (when Pr(X ∈ A) = 1
2 , and for certain

values of ρ), using subadditivity.
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An application: half-space testing

Suppose we have query access to some unknown A ⊂ Rn (ie. we
can ask whether x ∈ A) and we want to check if A is a
half-space.

1. Sample Z1, . . . , Zm ∼ N (0, In) and let p̂ = #{Zi∈A}
m .

2. Sample (X1, Y1), . . . , (Xm, Ym) ∼ Prρ. Answer “yes” if

#{i : Xi ∈ A, Yi ∈ A}
m

≥ J(p̂, p̂)− Õ(ε2)

and “no” otherwise.

Theorem (Mossel, N. ’12, Eldan ’13)

If A is a half-space, then the algorithm above answers “yes”
w.h.p.
If A is ε-far from a half-space and m ≥ Õ(ε−4) then the
algorithm answers “no” w.h.p.

MORS ’09 showed that a similar algorithm works if m ≥ ε−6.
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and “no” otherwise.

Theorem (Mossel, N. ’12, Eldan ’13)

If A is a half-space, then the algorithm above answers “yes”
w.h.p.
If A is ε-far from a half-space and m ≥ Õ(ε−4) then the
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Proof of Borell’s theorem

Recall J(a, b) = Pr(X1 ≤ Φ−1(a), Y1 ≤ Φ−1(b)).

Theorem
For any f : Rn → [0, 1],

EJ(f(X), f(Y )) ≤ J(Ef,Ef).

To get the original statement,

Pr(X ∈ A, Y ∈ A) ≤ J(Pr(A),Pr(A)),

set f = 1A.
(Note that J(1, 1) = 1 and J(0, 1) = J(1, 0) = J(0, 0) = 0.)
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Proof of Borell’s theorem

Want to show EJ(f(X), f(Y )) ≤ J(Ef,Ef).

Define the operator Pt by

(Ptf)(x) = Ef(e−tx+
√

1− e−2tX).

Note that P0f = f and P∞f = Ef .

Consider EJ(Ptf(X), Ptf(Y )).

The punchline: this is an increasing function of t.
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Proof of Borell’s theorem

Let

vt = vt(X) = Φ−1(Ptf(X))

wt = wt(Y ) = Φ−1(Ptf(Y )).

d

dt
EJ(Ptf(X), Ptf(Y ))

= . . . chain rule (×8) . . .

= . . . integrate by parts . . .

=
ρ

2π
√

1− ρ2
Ee−(v

2
t+w

2
t−2ρvtwt)/(1−ρ2)|∇vt −∇wt|2

≥ 0 �
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What’s going on?
Why consider EJ(f(X), f(Y ))? Why does the proof work?

Given f : Rn → [0, 1], define Af ⊂ Rn+1 by

Af = {(x, xn+1) ∈ Rn+1 : xn+1 ≤ Φ−1(f(x))}.

Then
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What’s going on?
Why consider EJ(f(X), f(Y ))?
Given f : Rn → [0, 1], define Af ⊂ Rn+1 by

Af = {(x, xn+1) ∈ Rn+1 : xn+1 ≤ Φ−1(f(x))}.

Then

Pr((X,Xn+1) ∈ Af ) = Ef(X)

Pr((X,Xn+1) ∈ Af , (Y, Yn+1) ∈ Af ) = EJ(f(X), f(Y )).

and so Borell’s theorem (in Rn+1) applied to Af gives

EJ(f(X), f(Y ))

= Pr((X,Xn+1) ∈ Af , (Y, Yn+1) ∈ Af )

≤ J(Pr(Af ),Pr(Af ))

= J(Ef,Ef).
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What’s going on?

Why does the proof work?
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What’s going on?

Why does the proof work?
AP10f :

We showed that this transformation only increases the noise
stability.
This idea has been used before: Bakry and Ledoux ’96 used it
to prove the Gaussian isoperimetric inequality.



Borell’s theorem vs. Jensen’s inequality

Theorem (Mossel, N. ’12)

If J : [0, 1]× [0, 1]→ R satisfies

(
∂2J(x,y)
∂x2

ρ∂
2J(x,y)
∂x∂y

ρ∂
2J(x,y)
∂x∂y

∂2J(x,y)
∂y2

)
≤ 0 then

EJ(f(X), f(Y )) ≤ J(Ef,Ef)

whenever X and Y are ρ-correlated Gaussians.

Does the condition mean anything? Our J is the smallest one
satisfying it.
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This is what J looks like (ρ = 0.1)
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Proof: the equality case
Claim: if f = 1A and EJ(f(X), f(Y )) = J(Ef,Ef) then A is a
half-space.

Recall that

d

dt
EJ(Ptf(X), Ptf(Y )) =

ρ

2π
√

1− ρ2
Ee−(v

2
t+w

2
t−2ρvtwt)|∇vt−∇wt|2

where

vt = vt(X) = Φ−1(Ptf(X))

wt = wt(Y ) = Φ−1(Ptf(Y ))

EJ(f, f) = J(Ef,Ef) ⇐⇒ ∀t ∇vt(X) = ∇wt(Y ) = constant

⇐⇒ Ptf(x) = Φ(a(t) · x+ b(t))

⇐⇒ if f = 1A then A is a half-space. �
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Proof: robustness

Claim: if f = 1A and EJ(f(X), f(Y )) ≥ J(Ef,Ef)− δ then A
is almost a half-space.

Recall that

J(Ef,Ef)− EJ(f(X), f(Y ))

=
ρ

2π
√

1− ρ2

∫ ∞
0

Ee−(v
2
t+w

2
t−2ρvtwt)|∇vt −∇wt|2 dt.

Lemma
For any t > 0, Ptf is close to a function of the form Φ(a ·x+ b).

Lemma
If Ptf is close to a function of the form Φ(a · x+ b) then f is
also close to a function of the same form.
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