Gaussian noise stability

Elchanan Mossel ${ }^{1}$ Joe Neeman ${ }^{2}$

${ }^{1}$ UC Berkeley
${ }^{2}$ UT Austin

Gaussian noise stability

Fix a parameter $0<\rho<1$. Take

$$
(X, Y) \sim \mathcal{N}\left(0,\left(\begin{array}{cc}
I_{n} & \rho I_{n} \\
\rho I_{n} & I_{n}
\end{array}\right)\right)
$$

Gaussian noise stability

Fix a parameter $0<\rho<1$. Take

$$
(X, Y) \sim \mathcal{N}\left(0,\left(\begin{array}{cc}
I_{n} & \rho I_{n} \\
\rho I_{n} & I_{n}
\end{array}\right)\right)
$$

The Gaussian noise stability of $A \subset \mathbb{R}^{n}$ is $\operatorname{Pr}(X \in A, Y \in A)$.

Gaussian noise stability

Fix a parameter $0<\rho<1$. Take

$$
(X, Y) \sim \mathcal{N}\left(0,\left(\begin{array}{cc}
I_{n} & \rho I_{n} \\
\rho I_{n} & I_{n}
\end{array}\right)\right)
$$

The Gaussian noise stability of $A \subset \mathbb{R}^{n}$ is $\operatorname{Pr}(X \in A, Y \in A)$. Applications in

- approximability (e.g., optimal UGC hardness of Max-Cut, KKMO '05)
- testing (e.g., testing half-spaces, MORS '09)

Borell's theorem

What sets have high noise stability?

Borell's theorem

What sets have high noise stability?
Half-spaces maximize the noise stability (among all sets of a given volume):
Theorem (Borell '85)
For any $A \subset \mathbb{R}^{n}$, if $A^{\prime} \subset \mathbb{R}^{n}$ is a half-space with $\operatorname{Pr}\left(A^{\prime}\right)=\operatorname{Pr}(A)$ then

$$
\operatorname{Pr}(X \in A, Y \in A) \leq \operatorname{Pr}\left(X \in A^{\prime}, Y \in A^{\prime}\right)
$$

A half-space is a set of the form $\left\{x \in \mathbb{R}^{n}: x \cdot a \leq b\right\}$.

Borell's theorem

Define $\Phi(x)=\operatorname{Pr}\left(X_{1} \leq x\right)$. Then $\left\{x \in \mathbb{R}^{n}: x_{1} \leq \Phi^{-1}(a)\right\}$ is a half-space of volume a. Define

$$
J(a, b)=\operatorname{Pr}\left(X_{1} \leq \Phi^{-1}(a), Y_{1} \leq \Phi^{-1}(b)\right) .
$$

Borell's theorem

Define $\Phi(x)=\operatorname{Pr}\left(X_{1} \leq x\right)$. Then $\left\{x \in \mathbb{R}^{n}: x_{1} \leq \Phi^{-1}(a)\right\}$ is a half-space of volume a. Define

$$
J(a, b)=\operatorname{Pr}\left(X_{1} \leq \Phi^{-1}(a), Y_{1} \leq \Phi^{-1}(b)\right) .
$$

Since the Gaussian measure is rotationally invariant, Borell's theorem is equivalent to

$$
\operatorname{Pr}(X \in A, Y \in A) \leq J(\operatorname{Pr}(A), \operatorname{Pr}(A)) .
$$

Borell's theorem

Define $\Phi(x)=\operatorname{Pr}\left(X_{1} \leq x\right)$. Then $\left\{x \in \mathbb{R}^{n}: x_{1} \leq \Phi^{-1}(a)\right\}$ is a half-space of volume a. Define

$$
J(a, b)=\operatorname{Pr}\left(X_{1} \leq \Phi^{-1}(a), Y_{1} \leq \Phi^{-1}(b)\right) .
$$

Since the Gaussian measure is rotationally invariant, Borell's theorem is equivalent to

$$
\operatorname{Pr}(X \in A, Y \in A) \leq J(\operatorname{Pr}(A), \operatorname{Pr}(A)) .
$$

Theorem (Mossel, N. '12)
If $\operatorname{Pr}(X, Y \in A)=J(\operatorname{Pr}(A), \operatorname{Pr}(A))$ then A is a.s. equal to a half-space.

Borell's theorem

Define $\Phi(x)=\operatorname{Pr}\left(X_{1} \leq x\right)$. Then $\left\{x \in \mathbb{R}^{n}: x_{1} \leq \Phi^{-1}(a)\right\}$ is a half-space of volume a. Define

$$
J(a, b)=\operatorname{Pr}\left(X_{1} \leq \Phi^{-1}(a), Y_{1} \leq \Phi^{-1}(b)\right)
$$

Since the Gaussian measure is rotationally invariant, Borell's theorem is equivalent to

$$
\operatorname{Pr}(X \in A, Y \in A) \leq J(\operatorname{Pr}(A), \operatorname{Pr}(A))
$$

Theorem (Mossel, N. '12)
If $\operatorname{Pr}(X, Y \in A)=J(\operatorname{Pr}(A), \operatorname{Pr}(A))$ then A is a.s. equal to a half-space.

If $\operatorname{Pr}(X, Y \in A) \geq J(\operatorname{Pr}(A), \operatorname{Pr}(A))-\delta$ then there is a half-space B with

$$
\operatorname{Pr}(A \Delta B) \leq C(\rho, \operatorname{Pr}(A)) \delta^{c(\rho)}
$$

Borell's theorem

Define $\Phi(x)=\operatorname{Pr}\left(X_{1} \leq x\right)$. Then $\left\{x \in \mathbb{R}^{n}: x_{1} \leq \Phi^{-1}(a)\right\}$ is a half-space of volume a. Define

$$
J(a, b)=\operatorname{Pr}\left(X_{1} \leq \Phi^{-1}(a), Y_{1} \leq \Phi^{-1}(b)\right)
$$

Since the Gaussian measure is rotationally invariant, Borell's theorem is equivalent to

$$
\operatorname{Pr}(X \in A, Y \in A) \leq J(\operatorname{Pr}(A), \operatorname{Pr}(A))
$$

Theorem (Mossel, N. '12, Eldan '13)
If $\operatorname{Pr}(X, Y \in A)=J(\operatorname{Pr}(A), \operatorname{Pr}(A))$ then A is a.s. equal to a half-space.

If $\operatorname{Pr}(X, Y \in A) \geq J(\operatorname{Pr}(A), \operatorname{Pr}(A))-\delta$ then there is a half-space B with

$$
\operatorname{Pr}(A \Delta B) \leq \frac{C(\operatorname{Pr}(A))}{\sqrt{1-\rho}} \sqrt{\delta \log (1 / \delta)}
$$

Borell's theorem: previous proofs

- Borell's original proof, using Ehrhard symmetrization.

Borell's theorem: previous proofs

- Borell's original proof, using Ehrhard symmetrization.
- Burchard-Schmuckenschlager and Issakson-Mossel, using spherical symmetrization.

Borell's theorem: previous proofs

- Borell's original proof, using Ehrhard symmetrization.
- Burchard-Schmuckenschlager and Issakson-Mossel, using spherical symmetrization.
- Kindler-O'Donnell (when $\operatorname{Pr}(X \in A)=\frac{1}{2}$, and for certain values of ρ), using subadditivity.

An application: half-space testing

An application: half-space testing

Suppose we have query access to some unknown $A \subset \mathbb{R}^{n}$ (ie. we can ask whether $x \in A$) and we want to check if A is a half-space.

An application: half-space testing

Suppose we have query access to some unknown $A \subset \mathbb{R}^{n}$ (ie. we can ask whether $x \in A$) and we want to check if A is a half-space.

1. Sample $Z_{1}, \ldots, Z_{m} \sim \mathcal{N}\left(0, I_{n}\right)$ and let $\hat{p}=\frac{\#\left\{Z_{i} \in A\right\}}{m}$.
2. Sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{m}, Y_{m}\right) \sim \operatorname{Pr}_{\rho}$. Answer "yes" if

$$
\frac{\#\left\{i: X_{i} \in A, Y_{i} \in A\right\}}{m} \geq J(\hat{p}, \hat{p})-\tilde{O}\left(\epsilon^{2}\right)
$$

and "no" otherwise.

An application: half-space testing

Suppose we have query access to some unknown $A \subset \mathbb{R}^{n}$ (ie. we can ask whether $x \in A$) and we want to check if A is a half-space.

1. Sample $Z_{1}, \ldots, Z_{m} \sim \mathcal{N}\left(0, I_{n}\right)$ and let $\hat{p}=\frac{\#\left\{Z_{i} \in A\right\}}{m}$.
2. Sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{m}, Y_{m}\right) \sim \operatorname{Pr}_{\rho}$. Answer "yes" if

$$
\frac{\#\left\{i: X_{i} \in A, Y_{i} \in A\right\}}{m} \geq J(\hat{p}, \hat{p})-\tilde{O}\left(\epsilon^{2}\right)
$$

and "no" otherwise.
Theorem (Mossel, N. '12, Eldan '13)
If A is a half-space, then the algorithm above answers "yes" w.h.p.

If A is ϵ-far from a half-space and $m \geq \tilde{O}\left(\epsilon^{-4}\right)$ then the algorithm answers "no" w.h.p.
MORS '09 showed that a similar algorithm works if $m \geq \epsilon^{-6}$.

Proof of Borell's theorem

Proof of Borell's theorem

Recall $J(a, b)=\operatorname{Pr}\left(X_{1} \leq \Phi^{-1}(a), Y_{1} \leq \Phi^{-1}(b)\right)$.
Theorem
For any $f: \mathbb{R}^{n} \rightarrow[0,1]$,

$$
\mathbb{E} J(f(X), f(Y)) \leq J(\mathbb{E} f, \mathbb{E} f)
$$

Proof of Borell's theorem

Recall $J(a, b)=\operatorname{Pr}\left(X_{1} \leq \Phi^{-1}(a), Y_{1} \leq \Phi^{-1}(b)\right)$.
Theorem
For any $f: \mathbb{R}^{n} \rightarrow[0,1]$,

$$
\mathbb{E} J(f(X), f(Y)) \leq J(\mathbb{E} f, \mathbb{E} f)
$$

To get the original statement,

$$
\operatorname{Pr}(X \in A, Y \in A) \leq J(\operatorname{Pr}(A), \operatorname{Pr}(A))
$$

set $f=1_{A}$.
(Note that $J(1,1)=1$ and $J(0,1)=J(1,0)=J(0,0)=0$.)

Proof of Borell's theorem

Want to show $\mathbb{E} J(f(X), f(Y)) \leq J(\mathbb{E} f, \mathbb{E} f)$.
Define the operator P_{t} by

$$
\left(P_{t} f\right)(x)=\mathbb{E} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} X\right)
$$

Note that $P_{0} f=f$ and $P_{\infty} f=\mathbb{E} f$.

Proof of Borell's theorem

Want to show $\mathbb{E} J(f(X), f(Y)) \leq J(\mathbb{E} f, \mathbb{E} f)$.
Define the operator P_{t} by

$$
\left(P_{t} f\right)(x)=\mathbb{E} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} X\right)
$$

Note that $P_{0} f=f$ and $P_{\infty} f=\mathbb{E} f$.
Consider $\mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right)$.

Proof of Borell's theorem

Want to show $\mathbb{E} J(f(X), f(Y)) \leq J(\mathbb{E} f, \mathbb{E} f)$.
Define the operator P_{t} by

$$
\left(P_{t} f\right)(x)=\mathbb{E} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} X\right)
$$

Note that $P_{0} f=f$ and $P_{\infty} f=\mathbb{E} f$.
Consider $\mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right)$.
The punchline: this is an increasing function of t.

Proof of Borell's theorem

Let

$$
\begin{aligned}
v_{t} & =v_{t}(X)=\Phi^{-1}\left(P_{t} f(X)\right) \\
w_{t} & =w_{t}(Y)=\Phi^{-1}\left(P_{t} f(Y)\right)
\end{aligned}
$$

Proof of Borell's theorem

Let

$$
\left.\begin{array}{rl}
v_{t} & =v_{t}(X) \\
w_{t} & =\Phi_{t}^{-1}(Y)
\end{array}=\Phi_{t} f(X)\right),
$$

$$
\frac{d}{d t} \mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right)
$$

Proof of Borell's theorem

Let

$$
\begin{aligned}
& v_{t}=v_{t}(X) \\
& w_{t}=w_{t}(Y)=\Phi^{-1}\left(P_{t} f(X)\right) \\
&\left.P_{t} f(Y)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right) \\
& =\ldots \text { chain rule }(\times 8) \ldots
\end{aligned}
$$

Proof of Borell's theorem

Let

$$
\begin{aligned}
v_{t} & =v_{t}(X)=\Phi^{-1}\left(P_{t} f(X)\right) \\
w_{t} & =w_{t}(Y)=\Phi^{-1}\left(P_{t} f(Y)\right)
\end{aligned}
$$

$$
\frac{d}{d t} \mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right)
$$

$$
=\ldots \text { chain rule }(\times 8) \ldots
$$

$$
=\ldots \text { integrate by parts . . . }
$$

Proof of Borell's theorem

Let

$$
\begin{aligned}
v_{t} & =v_{t}(X)=\Phi^{-1}\left(P_{t} f(X)\right) \\
w_{t} & =w_{t}(Y)=\Phi^{-1}\left(P_{t} f(Y)\right)
\end{aligned}
$$

$$
\frac{d}{d t} \mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right)
$$

$$
=\ldots \text { chain rule }(\times 8) \ldots
$$

$$
=\ldots \text { integrate by parts . . . }
$$

$$
=\frac{\rho}{2 \pi \sqrt{1-\rho^{2}}} \mathbb{E} e^{-\left(v_{t}^{2}+w_{t}^{2}-2 \rho v_{t} w_{t}\right) /\left(1-\rho^{2}\right)}\left|\nabla v_{t}-\nabla w_{t}\right|^{2}
$$

Proof of Borell's theorem

Let

$$
\begin{aligned}
v_{t} & =v_{t}(X)=\Phi^{-1}\left(P_{t} f(X)\right) \\
w_{t} & =w_{t}(Y)=\Phi^{-1}\left(P_{t} f(Y)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right) \\
& =\ldots \text { chain rule }(\times 8) \ldots \\
& =\ldots \text { integrate by parts } \ldots \\
& =\frac{\rho}{2 \pi \sqrt{1-\rho^{2}}} \mathbb{E} e^{-\left(v_{t}^{2}+w_{t}^{2}-2 \rho v_{t} w_{t}\right) /\left(1-\rho^{2}\right)}\left|\nabla v_{t}-\nabla w_{t}\right|^{2} \\
& \geq 0
\end{aligned}
$$

What's going on?
Why consider $\mathbb{E} J(f(X), f(Y))$? Why does the proof work?

What's going on?
Why consider $\mathbb{E} J(f(X), f(Y))$?

What's going on?

Why consider $\mathbb{E} J(f(X), f(Y))$?
Given $f: \mathbb{R}^{n} \rightarrow[0,1]$, define $A_{f} \subset \mathbb{R}^{n+1}$ by

$$
A_{f}=\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{n+1} \leq \Phi^{-1}(f(x))\right\} .
$$

What's going on?

Why consider $\mathbb{E} J(f(X), f(Y))$?
Given $f: \mathbb{R}^{n} \rightarrow[0,1]$, define $A_{f} \subset \mathbb{R}^{n+1}$ by

$$
A_{f}=\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{n+1} \leq \Phi^{-1}(f(x))\right\} .
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(X, X_{n+1}\right) \in A_{f}\right) \\
& =\operatorname{Pr}\left(X_{n+1} \leq \Phi^{-1}(f(X))\right) \\
& =\mathbb{E} f(X)
\end{aligned}
$$

What's going on?

Why consider $\mathbb{E} J(f(X), f(Y))$?
Given $f: \mathbb{R}^{n} \rightarrow[0,1]$, define $A_{f} \subset \mathbb{R}^{n+1}$ by

$$
A_{f}=\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{n+1} \leq \Phi^{-1}(f(x))\right\} .
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(X, X_{n+1}\right) \in A_{f}\right) \\
& =\operatorname{Pr}\left(X_{n+1} \leq \Phi^{-1}(f(X))\right) \\
& =\mathbb{E} f(X)
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(X, X_{n+1}\right) \in A_{f},\left(Y, Y_{n+1}\right) \in A_{f}\right) \\
& =\operatorname{Pr}\left(X_{n+1} \leq \Phi^{-1}(f(X)), Y_{n+1} \leq \Phi^{-1}(f(Y))\right) \\
& =\mathbb{E} J(f(X), f(Y)) .
\end{aligned}
$$

What's going on?

Why consider $\mathbb{E} J(f(X), f(Y))$?
Given $f: \mathbb{R}^{n} \rightarrow[0,1]$, define $A_{f} \subset \mathbb{R}^{n+1}$ by

$$
A_{f}=\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{n+1} \leq \Phi^{-1}(f(x))\right\} .
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(X, X_{n+1}\right) \in A_{f}\right)=\mathbb{E} f(X) \\
& \operatorname{Pr}\left(\left(X, X_{n+1}\right) \in A_{f},\left(Y, Y_{n+1}\right) \in A_{f}\right)=\mathbb{E} J(f(X), f(Y)) .
\end{aligned}
$$

What's going on?

Why consider $\mathbb{E} J(f(X), f(Y))$?
Given $f: \mathbb{R}^{n} \rightarrow[0,1]$, define $A_{f} \subset \mathbb{R}^{n+1}$ by

$$
A_{f}=\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{n+1} \leq \Phi^{-1}(f(x))\right\} .
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(X, X_{n+1}\right) \in A_{f}\right)=\mathbb{E} f(X) \\
& \operatorname{Pr}\left(\left(X, X_{n+1}\right) \in A_{f},\left(Y, Y_{n+1}\right) \in A_{f}\right)=\mathbb{E} J(f(X), f(Y)) .
\end{aligned}
$$

and so Borell's theorem (in \mathbb{R}^{n+1}) applied to A_{f} gives

$$
\begin{aligned}
& \mathbb{E} J(f(X), f(Y)) \\
& =\operatorname{Pr}\left(\left(X, X_{n+1}\right) \in A_{f},\left(Y, Y_{n+1}\right) \in A_{f}\right) \\
& \leq J\left(\operatorname{Pr}\left(A_{f}\right), \operatorname{Pr}\left(A_{f}\right)\right) \\
& =J(\mathbb{E} f, \mathbb{E} f) .
\end{aligned}
$$

What's going on?

Why does the proof work?

What's going on?
Why does the proof work?

What's going on?
Why does the proof work?

What's going on?
Why does the proof work?

What's going on?
Why does the proof work?

What's going on?
Why does the proof work?

What's going on?
Why does the proof work?

What's going on?
Why does the proof work?

What's going on?
Why does the proof work?

What's going on?

Why does the proof work?

What's going on?

Why does the proof work?

We showed that this transformation only increases the noise stability.
This idea has been used before: Bakry and Ledoux '96 used it to prove the Gaussian isoperimetric inequality.

Borell's theorem vs. Jensen's inequality

Theorem (Mossel, N. '12)

$$
\begin{gathered}
\text { If } J:[0,1] \times[0,1] \rightarrow \mathbb{R} \text { satisfies }\left(\begin{array}{cc}
\frac{\partial^{2} J(x, y)}{\partial x^{2}} & \rho \frac{\partial^{2} J(x, y)}{\partial x y} \\
\rho \frac{\partial^{2} J(x, y)}{\partial x \partial y} & \frac{\partial^{2} J(x, y)}{\partial y^{2}}
\end{array}\right) \leq 0 \text { then } \\
\mathbb{E} J(f(X), f(Y)) \leq J(\mathbb{E} f, \mathbb{E} f)
\end{gathered}
$$

whenever X and Y are ρ-correlated Gaussians.

Borell's theorem vs. Jensen's inequality

$$
\begin{aligned}
& \text { Theorem (Mossel, N. ' } 12 \text { Jensen } 1906) \\
& \text { If } J:[0,1] \times[0,1] \rightarrow \mathbb{R} \text { satisfies }\left(\begin{array}{cc}
\frac{\partial^{2} J(x, y)}{\partial x^{2}} & \not \partial^{2} J(x, y) \\
\not \partial^{2} J(x, y) \\
\partial x \partial y & \frac{\partial^{2} J(x, y)}{\partial y^{2}}
\end{array}\right) \leq 0 \text { then } \\
& \mathbb{E} J(f(X), f(Y)) \leq J(\mathbb{E} f, \mathbb{E} f)
\end{aligned}
$$

whenever X and Y are p-correlated Gaussians any random variables.

Borell's theorem vs. Jensen's inequality

Theorem (Mossel, N. '12)

$$
\begin{gathered}
\text { If } J:[0,1] \times[0,1] \rightarrow \mathbb{R} \text { satisfies }\left(\begin{array}{cc}
\frac{\partial^{2} J(x, y)}{\partial x^{2}} & \rho \frac{\partial^{2} J(x, y)}{\partial x y} \\
\rho \frac{\partial^{2} J(x, y)}{\partial x \partial y} & \frac{\partial^{2} J(x, y)}{\partial y^{2}}
\end{array}\right) \leq 0 \text { then } \\
\mathbb{E} J(f(X), f(Y)) \leq J(\mathbb{E} f, \mathbb{E} f)
\end{gathered}
$$

whenever X and Y are ρ-correlated Gaussians.

Borell's theorem vs. Jensen's inequality

Theorem (Mossel, N. '12)

$$
\begin{gathered}
\text { If } J:[0,1] \times[0,1] \rightarrow \mathbb{R} \text { satisfies }\left(\begin{array}{cc}
\frac{\partial^{2} J(x, y)}{\partial x^{2}} & \rho \frac{\partial^{2} J(x, y)}{\partial x y} \\
\rho \frac{\partial^{2} J(x, y)}{\partial x \partial y} & \frac{\partial^{2} J(x, y)}{\partial y^{2}}
\end{array}\right) \leq 0 \text { then } \\
\mathbb{E} J(f(X), f(Y)) \leq J(\mathbb{E} f, \mathbb{E} f)
\end{gathered}
$$

whenever X and Y are ρ-correlated Gaussians.
Does the condition mean anything? Our J is the smallest one satisfying it.

This is what J looks like $(\rho=0.1)$

This is what J looks like $(\rho=0.3)$

This is what J looks like $(\rho=0.5)$

This is what J looks like $(\rho=0.7)$

This is what J looks like $(\rho=0.9)$

Proof: the equality case

Claim: if $f=1_{A}$ and $\mathbb{E} J(f(X), f(Y))=J(\mathbb{E} f, \mathbb{E} f)$ then A is a half-space.

Proof: the equality case

Claim: if $f=1_{A}$ and $\mathbb{E} J(f(X), f(Y))=J(\mathbb{E} f, \mathbb{E} f)$ then A is a half-space.
Recall that

$$
\frac{d}{d t} \mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right)=\frac{\rho}{2 \pi \sqrt{1-\rho^{2}}} \mathbb{E} e^{-\left(v_{t}^{2}+w_{t}^{2}-2 \rho v_{t} w_{t}\right)}\left|\nabla v_{t}-\nabla w_{t}\right|^{2}
$$

where

$$
\begin{aligned}
v_{t} & =v_{t}(X) \\
w_{t} & =\Phi_{t}(Y)
\end{aligned}=\Phi^{-1}\left(P_{t} f(X)\right), ~\left(P_{t} f(Y)\right)
$$

Proof: the equality case

Claim: if $f=1_{A}$ and $\mathbb{E} J(f(X), f(Y))=J(\mathbb{E} f, \mathbb{E} f)$ then A is a half-space.
Recall that

$$
\frac{d}{d t} \mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right)=\frac{\rho}{2 \pi \sqrt{1-\rho^{2}}} \mathbb{E} e^{-\left(v_{t}^{2}+w_{t}^{2}-2 \rho v_{t} w_{t}\right)}\left|\nabla v_{t}-\nabla w_{t}\right|^{2}
$$

where

$$
\left.\begin{array}{rl}
v_{t} & =v_{t}(X) \\
w_{t} & =\Phi_{t}^{-1}\left(P_{t} f(X)\right.
\end{array}=\Phi^{-1}\left(P_{t} f(Y)\right)\right)
$$

$$
\begin{aligned}
\mathbb{E} J(f, f)=J(\mathbb{E} f, \mathbb{E} f) & \Longleftrightarrow \forall t \nabla v_{t}(X)=\nabla w_{t}(Y)=\mathrm{constant} \\
& \Longleftrightarrow P_{t} f(x)=\Phi(a(t) \cdot x+b(t))
\end{aligned}
$$

Proof: the equality case

Claim: if $f=1_{A}$ and $\mathbb{E} J(f(X), f(Y))=J(\mathbb{E} f, \mathbb{E} f)$ then A is a half-space.
Recall that

$$
\frac{d}{d t} \mathbb{E} J\left(P_{t} f(X), P_{t} f(Y)\right)=\frac{\rho}{2 \pi \sqrt{1-\rho^{2}}} \mathbb{E} e^{-\left(v_{t}^{2}+w_{t}^{2}-2 \rho_{t} w_{t}\right)}\left|\nabla v_{t}-\nabla w_{t}\right|^{2}
$$

where

$$
\left.\begin{array}{rl}
v_{t} & =v_{t}(X) \\
w_{t} & =\Phi_{t}^{-1}\left(P_{t} f(X)\right.
\end{array}=\Phi^{-1}\left(P_{t} f(Y)\right)\right)
$$

$$
\begin{aligned}
\mathbb{E} J(f, f)=J(\mathbb{E} f, \mathbb{E} f) & \Longleftrightarrow \forall t \nabla v_{t}(X)=\nabla w_{t}(Y)=\text { constant } \\
& \Longleftrightarrow P_{t} f(x)=\Phi(a(t) \cdot x+b(t)) \\
& \Longleftrightarrow \text { if } f=1_{A} \text { then } A \text { is a half-space. }
\end{aligned}
$$

Proof: robustness

Claim: if $f=1_{A}$ and $\mathbb{E} J(f(X), f(Y)) \geq J(\mathbb{E} f, \mathbb{E} f)-\delta$ then A is almost a half-space.

Proof: robustness

Claim: if $f=1_{A}$ and $\mathbb{E} J(f(X), f(Y)) \geq J(\mathbb{E} f, \mathbb{E} f)-\delta$ then A is almost a half-space.
Recall that

$$
\begin{aligned}
& J(\mathbb{E} f, \mathbb{E} f)-\mathbb{E} J(f(X), f(Y)) \\
& \quad=\frac{\rho}{2 \pi \sqrt{1-\rho^{2}}} \int_{0}^{\infty} \mathbb{E} e^{-\left(v_{t}^{2}+w_{t}^{2}-2 \rho v_{t} w_{t}\right)}\left|\nabla v_{t}-\nabla w_{t}\right|^{2} d t
\end{aligned}
$$

Proof: robustness

Claim: if $f=1_{A}$ and $\mathbb{E} J(f(X), f(Y)) \geq J(\mathbb{E} f, \mathbb{E} f)-\delta$ then A is almost a half-space.
Recall that

$$
\begin{aligned}
& J(\mathbb{E} f, \mathbb{E} f)-\mathbb{E} J(f(X), f(Y)) \\
& \quad=\frac{\rho}{2 \pi \sqrt{1-\rho^{2}}} \int_{0}^{\infty} \mathbb{E} e^{-\left(v_{t}^{2}+w_{t}^{2}-2 \rho v_{t} w_{t}\right)}\left|\nabla v_{t}-\nabla w_{t}\right|^{2} d t
\end{aligned}
$$

Lemma
For any $t>0, P_{t} f$ is close to a function of the form $\Phi(a \cdot x+b)$.

Proof: robustness

Claim: if $f=1_{A}$ and $\mathbb{E} J(f(X), f(Y)) \geq J(\mathbb{E} f, \mathbb{E} f)-\delta$ then A is almost a half-space.
Recall that

$$
\begin{aligned}
& J(\mathbb{E} f, \mathbb{E} f)-\mathbb{E} J(f(X), f(Y)) \\
& \quad=\frac{\rho}{2 \pi \sqrt{1-\rho^{2}}} \int_{0}^{\infty} \mathbb{E} e^{-\left(v_{t}^{2}+w_{t}^{2}-2 \rho v_{t} w_{t}\right)}\left|\nabla v_{t}-\nabla w_{t}\right|^{2} d t
\end{aligned}
$$

Lemma
For any $t>0, P_{t} f$ is close to a function of the form $\Phi(a \cdot x+b)$.
Lemma
If $P_{t} f$ is close to a function of the form $\Phi(a \cdot x+b)$ then f is also close to a function of the same form.

