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Streaming, Sketching and Sufficient Statistics 

 Data is growing faster than our ability to store or index it 

 There are 3 Billion Telephone Calls in US each day 
(100BN minutes), 30B emails daily, 4B SMS, IMs.  

 Scientific data: NASA's observation satellites 
generate billions of readings each per day. 

 IP Network Traffic: can be billions packets per hour per 
router.  Each ISP has many (10s of thousands) routers! 

 Whole genome readings for individual humans now 
available: each is many gigabytes in size 

Data is Massive 
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Small Summaries and Sufficient Statistics 

 A summary (approximately) allows answering such questions 

 To earn the name, should be (very) small 

– Can keep in fast storage 

 Should be able to build, update and query efficiently 

 Key methods for summaries: 

– Create an empty summary 

– Update with one new tuple: streaming processing 

– Merge summaries together: distributed processing 

– Query: may tolerate some approximation 

 A generalized notion of “sufficient statistics”  

Streaming, Sketching and Sufficient Statistics 
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The CS Perspective 

 Cynical: “The price of everything and the value of nothing” 

– Optimize the cost of quantities related to a computation 

 The space required to store the sufficient information 

 The time to process each new item, or answer a query 

 The accuracy of the answer () 

 The amount of “true” randomness 

– In terms of size of input n, and chosen parameters 

 Pessimistic: “A pessimist is never disappointed” 

– Rarely make strong assumptions about the input distribution 

– “the data is the data”: assume fixed input, adversarial ordering 

– Seek to compute a function of the input (not the distribution) 
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The CS Perspective II 

 “Probably Approximately Correct” 

– Preference for tail bounds on quantities 

– Within error  with probability 1- 

– Use concentration of measure (Markov, Chebyshev, Chernoff…) 

 “High price of entr(op)y”: Randomness is a limited resource 

– We often need “random” bits as a function of i 

– Must either store the randomness  

– Or use weaker hash functions with small random keys 

– Occasionally, assume “fully independent hash functions” 

 Not too concerned about constant factors 

– Most bounds given in O() notation 
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Streaming, Sketching and Sufficient Statistics 

Data Models 

 We model data as a collection of simple tuples 

 Problems hard due to scale and dimension of input 

 Arrivals only model: 

– Example: (x, 3), (y, 2), (x, 2) encodes 
the arrival of 3 copies of item x,  
2 copies of y, then 2 copies of x. 

– Could represent eg. packets on a network; power usage 

 Arrivals and departures: 

– Example: (x, 3), (y,2), (x, -2) encodes 
 final state of (x, 1), (y, 2). 

–  Can represent fluctuating quantities, or measure differences 
between two distributions 

x 
y 

x 
y 
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Streaming, Sketching and Sufficient Statistics 

Part I: Sketches and Frequency Moments 

 Frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Part II: Advanced Topics 

 Sampling and Lp Sampling 

– L0 sampling and graph sketching 

– L2 sampling and frequency moment estimation 

 Matrix computations 

– Sketches for matrix multiplication 

– Sparse representation via frequent directions 

 Lower bounds for streaming and sketching 

– Basic hard problems (Index, Disjointness) 

– Hardness via reductions 
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Streaming, Sketching and Sufficient Statistics 

Frequency Distributions 

 Given set of items, let fi be the number of occurrences of item i 

 Many natural questions on fi values: 

– Find those i’s with large fi values (heavy hitters) 

– Find the number of non-zero fi values (count distinct) 

– Compute Fk = i (fi)
k – the k’th Frequency Moment 

– Compute  H = i (fi/F1) log (F1/fi) – the (empirical) entropy 

 “Space Complexity of the Frequency Moments” 
  Alon, Matias, Szegedy in STOC 1996 

– Awarded Gödel prize in 2005 

– Set the pattern for many streaming algorithms to follow 
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Concentration Bounds 

 Will provide randomized algorithms for these problems 

 Each algorithm gives a (randomized) estimate of the answer 

 Give confidence bounds on the final estimate X 

– Use probabilistic concentration bounds on random variables 

 A concentration bound is typically of the form 
   Pr[ |X – x| > y ] <  

– At most probability  of being more than y away from x 
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Markov Inequality 

 Take any probability distribution X s.t. Pr[X < 0] = 0 

 Consider the event X  k for some constant k > 0 

 For any draw of X, kI(X  k)  X 

– Either 0  X < k, so I(X  k) = 0 

– Or X  k, lhs = k 

 Take expectations of both sides: k Pr[ X  k]  E[X] 

 Markov inequality: Pr[ X  k ]  E[X]/k 

– Prob of random variable exceeding k times its expectation < 1/k 

– Relatively weak in this form, but still useful 
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Sketch Structures 

 Sketch is a class of summary that is a linear transform of input 

– Sketch(x) = Sx for some matrix S 

– Hence, Sketch(x + y) =  Sketch(x) +  Sketch(y) 

– Trivial to update and merge 

 Often describe S in terms of hash functions 

– If hash functions are simple, sketch is fast 

 Aim for limited independence hash functions h: [n]  [m] 

– If PrhH[ h(i1)=j1  h(i2)=j2  … h(ik)=jk ] = m-k,  
then H is k-wise independent family (“h is k-wise independent”) 

– k-wise independent hash functions take time, space O(k) 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

A First Sketch: Fingerprints 

 Test if two (distributed) binary vectors are equal  
  d= (x,y) = 0 iff x=y, 1 otherwise 

 To test in small space: pick a suitable hash function h 

 Test h(x)=h(y) : small chance of false positive, no chance of 
false negative 

 Compute h(x), h(y) incrementally as new bits arrive  

– How to choose the function h()? 

 1 0 1 1 1 0 1 0 1 … 

 1 0 1 1 0 0 1 0 1 … 
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Polynomial Fingerprints 

 Pick h(x) = i=1
n xi r

i mod p for prime p, random r  {1…p-1} 

– Flexible: h(x) is linear function of x—easy to update and merge 

 For accuracy, note that computation mod p is over the field Zp 

– Consider the polynomial in , i=1
n (xi – yi) 

i  = 0 

– Polynomial of degree n over Zp has at most n roots 

 Probability that r happens to solve this polynomial is n/p 

 So Pr[ h(x) = h(y) | x  y ]  n/p 

– Pick p = poly(n), fingerprints are log p = O(log n) bits 

 Fingerprints applied to small subsets of data to test equality 

– Will see several examples that use fingerprints as subroutine 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Sketches and Frequency Moments 

 Frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Streaming, Sketching and Sufficient Statistics 

Count-Min Sketch 

 Simple sketch idea relies primarily on Markov inequality 

 Model input data as a vector x of dimension U  

 Creates a small summary as an array of w  d in size 

 Use d hash function to map vector entries to [1..w] 

 Works on arrivals only and arrivals & departures streams 

W 

d 
Array: 

CM[i,j] 
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Streaming, Sketching and Sufficient Statistics 

Count-Min Sketch Structure 

 Each entry in vector x is mapped to one bucket per row. 

 Merge two sketches by entry-wise summation 

 Estimate x[j] by taking mink CM[k,hk(j)] 
– Guarantees error less than F1 in size O(1/ log 1/) 

– Probability of more error is less than 1- 

+c 

+c 

+c 

+c 

h1(j) 

hd(j) 

j,+c 

d
=

lo
g
 1

/
 

w = 2/ 

[C, Muthukrishnan ’04] 
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Streaming, Sketching and Sufficient Statistics 

Approximation of Point Queries 

Approximate point query x’[j] = mink CM[k,hk(j)] 

 Analysis: In k'th row, CM[k,hk(j)] = x[j] + Xk,j 

– Xk,j = Si x[i] I(hk(i) = hk(j)) 

– E[Xk,j] = Si j x[i]*Pr[hk(i)=hk(j)]  
   Pr[hk(i)=hk(j)] * Si x[i] 
  =  F1/2 – requires only pairwise independence of h 

– Pr[Xk,j  F1] = Pr[ Xk,j  2E[Xk,j] ]  1/2 by Markov inequality  

 So, Pr[x’[j]  x[j] + F1] = Pr[ k. Xk,j > F1]  1/2log 1/
 =  

 Final result: with certainty x[j]  x’[j] and  
with probability at least 1-,  x’[j] < x[j] + F1 
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Streaming, Sketching and Sufficient Statistics 

Applications of Count-Min to Heavy Hitters 

 Count-Min sketch lets us estimate fi for any i (up to F1) 

 Heavy Hitters asks to find i such that fi is large (>  F1) 

 Slow way: test every i after creating sketch 

 Alternate way:  

– Keep binary tree over input domain: each node is a subset 

– Keep sketches of all nodes at same level 

– Descend tree to find large frequencies, discard ‘light’ branches 

– Same structure estimates arbitrary range sums 

 A first step towards compressed sensing style results... 
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Application to Large Scale Machine Learning 

 In machine learning, often have very large feature space 

– Many objects, each with huge, sparse feature vectors 

– Slow and costly to work in the full feature space 

 “Hash kernels”: work with a sketch of the features 

– Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09] 

 Similar analysis explains why: 

– Essentially, not too much noise on the important features 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Sketches and Frequency Moments 

 Frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Chebyshev Inequality 

 Markov inequality is often quite weak 

 But Markov inequality holds for any random variable 

 Can apply to a random variable that is a function of X 

 Set Y = (X – E[X])2 

 By Markov, Pr[ Y > kE[Y] ] < 1/k 

– E[Y] = E[(X-E[X])2]= Var[X] 

 Hence, Pr[ |X – E[X]| > √(k Var[X]) ] < 1/k 

 Chebyshev inequality: Pr[ |X – E[X]| > k ] < Var[X]/k2 

– If Var[X]  2 E[X]2, then Pr[|X – E[X]| >  E[X] ] = O(1) 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

F2 estimation 

 AMS sketch (for Alon-Matias-Szegedy) proposed in 1996 

– Allows estimation of F2 (second frequency moment) 

– Used at the heart of many streaming and non-streaming 
applications: achieves dimensionality reduction 

 Here, describe AMS sketch by generalizing CM sketch.  

 Uses extra hash functions g1...glog 1/ {1...U} {+1,-1} 

– (Low independence) Rademacher variables 

 Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j) 

linear 

projection 

AMS sketch 
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Streaming, Sketching and Sufficient Statistics 

F2 analysis 

 Estimate F2 = mediank i CM[k,i]2 

 Each row’s result is i g(i)2x[i]2  + h(i)=h(j) 2 g(i) g(j) x[i] x[j] 

 But g(i)2 = -12 = +12 = 1, and i x[i]2 = F2 

 g(i)g(j) has 1/2 chance of  +1 or –1 : expectation is 0 … 

+c*g1(j) 

+c*g2(j) 

+c*g3(j) 

+c*g4(j) 

h1(j) 

hd(j) 

j,+c 

d
=

8
lo

g
 1

/
 

w = 4/2 
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Streaming, Sketching and Sufficient Statistics 

F2 Variance 

 Expectation of row estimate Rk = i CM[k,i]2 is exactly F2 

 Variance of row k, Var[Rk], is an expectation: 

– Var[Rk] = E[ (buckets b (CM[k,b])2 – F2)2 ] 

– Good exercise in algebra: expand this sum and simplify 

– Many terms are zero in expectation because of terms like 
g(a)g(b)g(c)g(d) (degree at most 4) 

– Requires that hash function g is four-wise independent: it 
behaves uniformly over subsets of size four or smaller 

 Such hash functions are easy to construct 
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Streaming, Sketching and Sufficient Statistics 

F2 Variance 

 Terms with odd powers of g(a) are zero in expectation 
– g(a)g(b)g2(c), g(a)g(b)g(c)g(d), g(a)g3(b) 

 Leaves  
Var[Rk]  i g

4(i) x[i]4  
  + 2 j i g

2(i) g2(j) x[i]2 x[j]2   
  + 4 h(i)=h(j) g

2(i) g2(j) x[i]2 x[j]2  
  - (x[i]4 + j i 2x[i]2 x[j]2) 
   F2

2/w 

 Row variance can finally be bounded by F2
2/w 

– Chebyshev for w=4/2 gives probability ¼ of failure: 
       Pr[ |Rk – F2| > 2 F2 ]  ¼   

– How to amplify this to small  probability of failure? 

– Rescaling w has cost linear in 1/ 
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Streaming, Sketching and Sufficient Statistics 

Tail Inequalities for Sums 

 We achieve stronger bounds on tail probabilities for the sum of 
independent Bernoulli trials via the Chernoff Bound:   

– Let X1, ..., Xm be independent Bernoulli trials s.t. Pr[Xi=1] = p 

(Pr[Xi=0] = 1-p).  

– Let X = i=1
m Xi  ,and μ = mp be the expectation of X.  

– Then, for >0, Chernoff bound states: 

  Pr[ |X - μ|  μ]  2 exp(- ½ μ2)  

– Proved by applying Markov inequality to Y = exp(X1  X2  …  Xm) 
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Streaming, Sketching and Sufficient Statistics 

Applying Chernoff Bound 

 Each row gives an estimate that is within  relative error with 
probability p’ > ¾ 

 Take d repetitions and find the median.  Why the median? 

 

 

– Because bad estimates are either too small or too large 

– Good estimates form a contiguous group “in the middle” 

– At least d/2 estimates must be bad for median to be bad 

 Apply Chernoff bound to d independent estimates, p=1/4 

– Pr[ More than d/2 bad estimates ] < 2exp(-d/8) 

– So we set d = (ln 1/) to give  probability of failure 

 Same outline used many times in summary construction 
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Applications and Extensions 

 F2 guarantee: estimate ǁxǁ2 from sketch with error  ǁxǁ2 

– Since ǁx + yǁ2
2 = ǁxǁ2

2 + ǁyǁ2
2 + 2x  y  

Can estimate (x  y) with error ǁxǁ2ǁyǁ2 

– If y = e
j
, obtain (x  ej) = xj with error  ǁxǁ2 :  

L2 guarantee (“Count Sketch”) vs L1 guarantee (Count-Min) 
 

 Can view the sketch as a low-independence realization of the 
Johnson-Lindendestraus lemma 

– Best current JL methods have the same structure 

– JL is stronger: embeds directly into Euclidean space 

– JL is also weaker: requires O(1/)-wise hashing, O(log 1/) 
independence [Kane, Nelson 12] 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Sketches and Frequency Moments 

 Frequency Moments and Sketches 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Streaming, Sketching and Sufficient Statistics 

F0 Estimation 

 F0 is the number of distinct items in the stream  

– a fundamental quantity with many applications 

 Early algorithms by Flajolet and Martin [1983] gave nice 
hashing-based solution 

– analysis assumed fully independent hash functions 

 Will describe a generalized version of the FM algorithm due to 
Bar-Yossef et. al with only pairwise indendence 

– Known as the “k-Minimum values (KMV)” algorithm 
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Streaming, Sketching and Sufficient Statistics 

F0 Algorithm 

 Let m be the domain of stream elements 

– Each item in data is from [1…m] 

 Pick a random (pairwise) hash function h: [m]  [m3] 

– With probability at least 1-1/m, no collisions under h 

 

 
 For each stream item i, compute h(i), and track the t distinct 

items achieving the smallest values of h(i) 

– Note: if same i is seen many times, h(i) is same 

– Let vt = t’th smallest (distinct) value of h(i) seen 

 If F0 < t, give exact answer, else estimate F’0 = tm3/vt 

– vt/m3  fraction of hash domain occupied by t smallest 

m3 0m3 vt 
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Streaming, Sketching and Sufficient Statistics 

Analysis of F0 algorithm 

 Suppose F’0 = tm3/vt > (1+) F0   [estimate is too high] 

 

 

 

 

 So for input = set S  2[m], we have  

– |{ s  S | h(s) < tm3/(1+)F0 }| > t 

– Because  < 1, we have tm3/(1+)F0  (1-/2)tm3/F0 

– Pr[ h(s) < (1-/2)tm3/F0]  1/m3 * (1-/2)tm3/F0 = (1-/2)t/F0 

 

– (this analysis outline hides some rounding issues) 

 

m3 tm3/(1+)F0 
0m3 vt 
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Streaming, Sketching and Sufficient Statistics 

Chebyshev Analysis 

 Let Y be number of items hashing to under tm3/(1+)F0  

– E[Y] = F0 * Pr[ h(s) < tm3/(1+)F0] = (1-/2)t 

– For each item i, variance of the event = p(1-p) < p 

– Var[Y] = sS Var[ h(s) < tm3/(1+)F0] < (1-/2)t  

 We sum variances because of pairwise independence 

 

 Now apply Chebyshev inequality:  

– Pr[ Y > t ]   Pr[|Y – E[Y]| > t/2]  
    4Var[Y]/2t2  
   < 4t/(2t2)  

– Set t=20/2 to make this Prob  1/5 
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Streaming, Sketching and Sufficient Statistics 

Completing the analysis 

 We have shown 
 Pr[ F’0 > (1+) F0 ] < 1/5 

 Can show Pr[ F’0 < (1-) F0 ] < 1/5 similarly 

– too few items hash below a certain value 

 So Pr[ (1-) F0  F’0  (1+)F0] > 3/5  [Good estimate] 

 

 Amplify this probability: repeat O(log 1/) times in parallel 
with different choices of hash function h 

– Take the median of the estimates, analysis as before 
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Streaming, Sketching and Sufficient Statistics 

F0 Issues 

 Space cost:  

– Store t hash values, so O(1/2 log m) bits 

– Can improve to O(1/2 + log m) with additional tricks 

 

 

 

 Time cost:  

– Find if hash value h(i) < vt 

– Update vt and list of t smallest if h(i) not already present 

– Total time O(log 1/ + log m) worst case 
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Count-Distinct 

 Engineering the best constants: Hyperloglog algorithm 

– Hash each item to one of 1/2 buckets (like Count-Min) 

– In each bucket, track the function max log(h(x))  

 Can view as a coarsened version of KMV 

 Space efficient: need log log m  6 bits per bucket 

 Can estimate intersections between sketches 

– Make use of identity |A  B| = |A| + |B| - |A  B| 

– Error scales with  √(|A||B|), so poor for small intersections 

– Higher order intersections via inclusion-exclusion principle 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Bloom Filters 

 Bloom filters compactly encode set membership 

– k hash functions map items to bit vector k times 

– Set all k entries to 1 to indicate item is present 

– Can lookup items, store set of size n in O(n) bits 

 

 

 

 

 

 Duplicate insertions do not change Bloom filters 

 Can merge by OR-ing vectors (of same size) 

item 

1 1 1 
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Bloom Filter analysis 

 How to set k (number of hash functions), m (size of filter)? 

 False positive: when all k locations for an item are set 

– If  fraction of cells are empty, false positive probability is (1-)k 

 Consider probability of any cell being empty: 

– For n items, Pr[ cell j is empty ] = (1 - 1/m)kn  ≈  ≈ exp(-kn/m) 

– False positive prob = (1 - )k = exp(k ln(1 - )) 
        = exp(-m/n ln() ln(1-)) 

 For fixed n, m, by symmetry minimized at  = ½ 

– Half cells are occupied, half are empty 

– Give k = (m/n)ln 2, false positive rate is  ½k 

– Choose m = cn to get constant FP rate, e.g. c=10 gives < 1% FP 

 

 
Streaming, Sketching and Sufficient Statistics 
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Bloom Filters Applications 

 Bloom Filters widely used in “big data” applications 

– Many problems require storing a large set of items 

 Can generalize to allow deletions 

– Swap bits for counters: increment on insert, decrement on delete 

– If representing sets, small counters suffice: 4 bits per counter 

– If representing multisets, obtain sketches (next lecture) 

 Bloom Filters are an active research area 

– Several papers on topic in every networking conference… 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Frequency Moments 

 Intro to frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Higher Frequency Moments 

 Fk for k>2.  Use a sampling trick [Alon et al 96]: 

– Uniformly pick an item from the stream length 1…n 

– Set r = how many times that item appears subsequently  

– Set estimate F’k = n(rk – (r-1)k) 

 

 E[F’k]=1/n*n*[ f1
k - (f1-1)k + (f1-1)k - (f1-2)k + … + 1k-0k]+… 

 = f1
k + f2

k + … = Fk 

 Var[F’k]1/n*n2*[(f1
k-(f1-1)k)2 + …] 

– Use various bounds to bound the variance by k m1-1/k Fk
2 

– Repeat k m1-1/k times in parallel to reduce variance 

 Total space needed is O(k m1-1/k) machine words 

– Not a sketch: does not distribute easily.  See part 2! 
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Streaming, Sketching and Sufficient Statistics 

Combined Frequency Moments 

 Let G[i,j] = 1 if (i,j) appears in input.  
E.g. graph edge from i to j.  Total of m distinct edges 

 Let di = Sj=1
n G[i,j] (aka degree of node i) 

 Find aggregates of di’s: 

– Estimate heavy di’s (people who talk to many) 

– Estimate frequency moments: 
number of distinct di values, sum of squares 

– Range sums of di’s (subnet traffic) 

 Approach: nest one sketch inside another, e.g. HLL inside CM 

– Requires new analysis to track overall error 

43 



Streaming, Sketching and Sufficient Statistics 

Range Efficiency 

 Sometimes input is specified as a collection of ranges [a,b] 

– [a,b] means insert all items (a, a+1, a+2 … b) 

– Trivial solution: just insert each item in the range 

 Range efficient F0 [Pavan, Tirthapura 05] 

– Start with an alg for F0 based on pairwise hash functions 

– Key problem: track which items hash into a certain range 

– Dives into hash fns to divide and conquer for ranges 

 Range efficient F2 [Calderbank et al. 05, Rusu,Dobra 06] 

– Start with sketches for F2 which sum hash values 

– Design new hash functions so that range sums are fast 

 Rectangle Efficient F0 [Tirthapura, Woodruff 12] 
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Forthcoming Attractions 

 Data Streams Mini Course @Simons 

– Prof Andrew McGregor 

– Starts early October 

 

 

 

 Succinct Data Representations and Applications @ Simons 

– September 16-19  

Streaming, Sketching and Sufficient Statistics 
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Recap 

 Sketching Techniques summarize large data sets 

 Summarize vectors: 

– Test equality (fingerprints) 

– Recover approximate entries (count-min, count sketch) 

– Approximate Euclidean norm (F2) and dot product 

– Approximate number of non-zero entries (F0) 

– Approximate set membership (Bloom filter) 

Streaming, Sketching and Sufficient Statistics 
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Part II: Advanced Topics 

 Sampling and Lp Sampling 

– L0 sampling and graph sketching 

– L2 sampling and frequency moment estimation 

 Matrix computations 

– Sketches for matrix multiplication 

– Sparse representation via frequent directions 

 Lower bounds for streaming and sketching 

– Basic hard problems (Index, Disjointness) 

– Hardness via reductions 

 

Streaming, Sketching and Sufficient Statistics 
48 



Streaming, Sketching and Sufficient Statistics 

Sampling From a Large Input 

 Fundamental prob: sample m items uniformly from data 

– Useful: approximate costly computation on small sample 

 Challenge: don’t know how large total input is 

– So when/how often to sample? 

 Several solutions, apply to different situations: 

– Reservoir sampling (dates from 1980s?) 

– Min-wise sampling (dates from 1990s?) 
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Streaming, Sketching and Sufficient Statistics 

Min-wise Sampling 

 For each item, pick a random fraction between 0 and 1 

 Store item(s) with the smallest random tag [Nath et al.’04] 

 

0.391 0.908 0.291 0.555 0.619 0.273 

 Each item has same chance of least tag, so uniform 

 Can run on multiple inputs separately, then merge 

 Applications in geometry: basic -approximations are samples 

 Estimate number of points falling in a range (bounded VC dim) 
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Sampling from Sketches 

 Given inputs with positive and negative weights 

 Want to sample based on the overall frequency distribution 

– Sample from support set of n possible items 

– Sample proportional to (absolute) weights 

– Sample proportional to some function of weights 

 How to do this sampling effectively? 

 Recent approach: Lp sampling 

Streaming, Sketching and Sufficient Statistics 
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Lp Sampling 

 Lp sampling: use sketches to sample i w/prob (1±) fi
p/ǁfǁp

p 

 “Efficient” solutions developed of size O(-2 log2 n) 

– [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11] 

 L0 sampling enables novel “graph sketching” techniques 

– Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12] 

 L2 sampling allows optimal estimation of frequency moments 

Streaming, Sketching and Sufficient Statistics 
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L0 Sampling 

 L0 sampling: sample with prob (1±) fi
0/F0

 

– i.e., sample (near) uniformly from items with non-zero frequency 

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05] 

– Sub-sample all items (present or not) with probability p 

– Generate a sub-sampled vector of frequencies fp 

– Feed fp to a k-sparse recovery data structure 

 Allows reconstruction of fp if F0 < k  

– If fp is k-sparse, sample from reconstructed vector 

– Repeat in parallel for exponentially shrinking values of p 

Streaming, Sketching and Sufficient Statistics 
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Sampling Process 

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U 

– Let N = F0 = |{ i : fi  0}| 

– Want there to be a level where k-sparse recovery will succeed 

– At level p, expected number of items selected S is Np 

– Pick level p so that k/3 < Np  2k/3 

 Chernoff bound: with probability exponential in k, 1  S  k 

– Pick k = O(log 1/) to get 1- probability 

 Streaming, Sketching and Sufficient Statistics 

p=1 

p=1/U 

k-sparse recovery  
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k-Sparse Recovery 

 Given vector x with at most k non-zeros, recover x via sketching 

– A core problem in compressed sensing/compressive sampling 

 First approach: Use Count-Min sketch of x 

– Probe all U items, find those with non-zero estimated frequency 

– Slow recovery: takes O(U) time 

 Faster approach: also keep sum of item identifiers in each cell 

– Sum/count will reveal item id 

– Avoid false positives: keep fingerprint of items in each cell 

 Can keep a sketch of size O(k log U) to recover up to k items 
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Sum, i : h(i)=j i 

Count, i : h(i)=j xi 

Fingerprint, i : h(i)=j xi r
i 
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Uniformity 

 Also need to argue sample is uniform 

– Failure to recover could bias the process 

 Pr[ i would be picked if k=n] = 1/F0 by symmetry 

 Pr[ i is picked ] = Pr[ i would be picked if k=n  S k] 
         (1-)/F0 

 So (1-)/N  Pr[i is picked]  1/N 

 Sufficiently uniform (pick  = ) 
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Application: Graph Sketching 

 Given L0 sampler, use to sketch (undirected) graph properties 

 Connectivity: want to test if there is a path between all pairs 

 Basic alg: repeatedly contract edges between components 

 Use L0 sampling to provide edges on vector of adjacencies 

 Problem: as components grow, sampling most likely to 
produce internal links 
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Graph Sketching 

 Idea: use clever encoding of edges [Ahn, Guha, McGregor 12] 

 Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i 

 When node i and node j get merged, sum their L0 sketches 

– Contribution of edge (i,j) exactly cancels out 

 

 

 

 Only non-internal edges remain in the L0 sketches 

 Use independent sketches for each iteration of the algorithm 

– Only need O(log n) rounds with high probability 

 Result: O(poly-log n) space per node for connectivity 
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Other Graph Results via sketching 

 K-connectivity via connectivity 

– Use connectivity result to find and remove a spanning forest 

– Repeat k times to generate k spanning forests F1, F2, … Fk 

– Theorem: G is k-connected if i=1
k Fi is k-connected 

 Bipartiteness via connectivity:  

– Compute c = number of connected components in G 

– Generate G’ over V  V’ so (u,v)  E  (u, v’)  E’, (u’, v)  E’ 

– If G is bipartite, G’ has 2c components, else it has <2c components 

 Minimum spanning tree:  

– Round edge weights to powers of (1+) 

– Define ni = number of components on edges lighter than (1+)i 

– Fact: weight of MST on rounded weights is i (1+)ini
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Application: Fk via L2 Sampling 

 Recall, Fk = i fi
k  

 Suppose L2 sampling samples fi with probability fi
2/F2 

– And also estimates sampled fi with relative error  

 Estimator: X = F2 fi
k-2  (with estimates of F2, fi) 

– Expectation: E[X] = F2 i fi
k-2  fi

2 / F2 = Fk 

– Variance: Var[X]  E[X2] = i fi
2/F2 (F2 fi

k-2)2 = F2 F2k-2 
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Rewriting the Variance 

 Want to express variance F2 F2k-2 in terms of Fk and domain size n 

 Hölder’s inequality: x, y  ǁxǁp ǁyǁq for 1  p, q with 1/p+1/q=1 

– Generalizes Cauchy-Shwarz inequality, where p=q=2.  

 So pick p=k/(k-2) and q = k/2 for k > 2.  Then 
   1n, (fi)

2  ǁ1nǁk/(k-2) ǁ(fi)
2ǁk/2 

  F2  n
(k-2)/k

 Fk
2/k    (1) 

 Also, since ǁxǁp+a  ǁxǁp for any p 1, a > 0 

– Thus ǁxǁ2k-2  ǁxǁk for k  2 

– So F2k-2 = ǁfǁ2k-2
2k-2  ǁfǁk

2k-2 = Fk
2-2/k  (2) 

 Multiply (1) * (2) : F2 F2k-2  n1-2/k Fk
2 

– So variance is bounded by n1-2/k Fk
2 
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Fk Estimation 

 For k  3, we can estimate Fk via L2 sampling: 

– Variance of our estimate is O(Fk
2 n1-2/k) 

– Take mean of n1-2/k-2 repetitions to reduce variance 

– Apply Chebyshev inequality: constant prob of good estimate 

– Chernoff bounds: O(log 1/) repetitions reduces prob to  

 How to instantiate this? 

– Design method for approximate L2 sampling via sketches 

– Show that this gives relative error approximation of fi 

– Use approximate value of F2 from sketch 

– Complicates the analysis, but bound stays similar 
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L2 Sampling Outline 

 For each i, draw ui uniformly in the range 0…1 

– From vector of frequencies f, derive g so gi = fi/√ui 

– Sketch gi vector 

 Sample: return (i, fi) if there is unique i with gi
2 > t=F2/ threshold 

– Pr[ gi
2 > t   j  i : gj

2 < t] = Pr[gi
2 > t] ji Pr[gj

2 < t] 
    = Pr[ui < fi

2/F2] ji Pr[uj > fj
2/F2] 

    = (fi
2/F2 ) ji (1 - fj

2/F2) 
    ≈ fi

2/F2 

 Probability of returning anything is not so big: i  fi
2/F2 =  

– Repeat O(1/ log 1/) times to improve chance of sampling 
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L2 sampling continued 

 Given (estimated) gi s.t. gi
2  F2/, estimate fi = ui gi  

 Sketch size O(-1 log n) means estimate of fi
2 has error (fi

2 + ui
2) 

– With high prob, no ui < 1/poly(n), and so F2(g) = O(F2(f) log n) 

– Since estimated fi
2/ui

2  F2/, ui
2  fi

2/F2 

 Estimating fi
2 with error fi

2 sufficient for estimating Fk  

 

 Many details omitted 

–  See Precision Sampling paper [Andoni Krauthgamer Onak 11] 
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Advanced Topics 

 Sampling and Lp Sampling 

– L0 sampling and graph sketching 

– L2 sampling and frequency moment estimation 

 Matrix computations 

– Sketches for matrix multiplication 

– Sparse representation via frequent directions 

 Lower bounds for streaming and sketching 

– Basic hard problems (Index, Disjointness) 

– Hardness via reductions 
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Matrix Sketching 

 Given matrices A, B, want to approximate matrix product AB 

 Compute normed error of approximation C: ǁAB – Cǁ 

 Give results for the Frobenius (entrywise) norm ǁǁF 

– ǁCǁF = (i,j Ci,j
2)½   

– Results rely on sketches, so this norm is most natural 
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Direct Application of Sketches 

 Build sketch of each row of A, each column of B 

 Estimate Ci,j by estimating inner product of Ai with Bj 

 Absolute error in estimate is  ǁAiǁ2 ǁBjǁ2 (whp) 

 Sum over all entries in matrix, squared error is 
 2 i,j ǁAiǁ2

2 ǁBjǁ2
2  = 2 (i ǁAiǁ2

2)(j ǁBjǁ2
2) 

   = 2 (ǁAǁF
2)(ǁBǁF

2) 

 Hence, Frobenius norm of error is ǁAǁFǁBǁF 

 Problem: need the bound to hold for all sketches simultaneously 

– Requires polynomially small failure probability 

– Increases sketch size by logarithmic factors 
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Improved Matrix Multiplication Analysis 

 Simple analysis is too pessimistic [Clarkson Woodruff 09] 

– It bounds probability of failure of each sketch independently 

 A better approach is to directly analyze variance of error 

– Immediately, each estimate of (AB) has variance 2ǁAǁF
2ǁBǁF

2 

– Just need to apply Chebyshev inequality to sum… almost 

 Problem: how to amplify probability of correctness? 

– ‘Median’ trick doesn’t work: what is median of set of matrices? 

– Find an estimate which is close to most others 

 Estimate ǁAǁF
2ǁBǁF

2 := d using sketches 

 Find an estimate that’s closer than d/2 to more than ½ the rest 

 We find an estimate with this property with probability 1- 
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Advanced Linear Algebra 

 More directly approximate matrix multiplication:  

– use more powerful hash functions in sketching 

– obtain a single accurate estimate with high probability 

 

 Linear regression given matrix A and vector b: 
 find x  Rd to (approximately) solve minx ǁAx – bǁ 

– Approach: solve the minimization in “sketch space” 

– Require a summary of size O(d2/ log 1/) 

Streaming, Sketching and Sufficient Statistics 
69 



Frequent Items and Frequent Directions 

 A deterministic algorithm for tracking item frequencies 

– With a recent analysis of its performance 

– Unusually, it is deterministic 

 Inspiring an algorithm for tracking matrix properties 

– Due to [Liberty 13], extended by [Ghashami Phillips 13] 
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Streaming, Sketching and Sufficient Statistics 

Misra-Gries Summary (1982) 

 Misra-Gries (MG) algorithm finds up to k items that occur 
more than 1/k fraction of the time in the input 

 Update: Keep k different candidates in hand.  For each item: 

– If item is monitored, increase its counter 

– Else, if < k items monitored, add new item with count 1 

– Else, decrease all counts by 1 

7 

5 

1 2 1 

4 

6 
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Streaming MG analysis 

 N = total weight of input 

 M = sum of counters in data structure 

 Error in any estimated count at most (N-M)/(k+1) 

– Estimated count a lower bound on true count 

– Each decrement spread over (k+1) items: 1 new one and k in MG 

– Equivalent to deleting (k+1) distinct items from stream 

– At most (N-M)/(k+1) decrement operations 

– Hence, can have “deleted” (N-M)/(k+1) copies of any item 

– So estimated counts have at most this much error 

7 

1 

4 

6 
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Merging two MG Summaries [ACHPWY ‘12] 

 Merge algorithm: 

– Merge the counter sets in the obvious way 

– Take the (k+1)th largest counter = Ck+1, and subtract from all 

– Delete non-positive counters 

– Sum of remaining counters is M12 

 This keeps the same guarantee as Update: 

– Merge subtracts at least (k+1)Ck+1 from counter sums 

– So (k+1)Ck+1  (M1 + M2 – M
12

) 

– By induction, error is  
((N1-M1) + (N2-M2) + (M1+M2–M12))/(k+1)=((N1+N2) –M12)/(k+1)  

(prior error) (from merge) (as claimed) 
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A Powerful Summary 

 MG summary with update and merge is very powerful 

– Builds a compact summary of the frequency distribution 

– Can also multiply the summary by any scalar 

– Hence can take (positive) linear combinations: x + y 

– Useful for building models of data 

 Ideas recently extended to matrix computations 
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Frequent Directions 

 Input: An n  d matrix A, presented one row at a time 

 Find k  d matrix Q so for any vector x, Qx approximates Ax 

 Simple idea: use SVD to focus on most important directions 

 Given current k  d matrix Q  

– Replace last row with new row ai 

– Compute SVD of Q as USV 

– Set S’ = diag( √(1
2 - k

2), √(2
2 - k

2), … , √(k-1
2 - k

2), √(k
2 - k

2)=0) 

– Rescale: Q’ = S’VT 

 At step i, have introduced error based on i = Sk,k = k 
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Frequent Directions Analysis 

 Error (in Frobenius norm) introduced at each step at most i
2 

– Let vj be j’th column of Vj and pick any x such that ǁxǁ2 = 1 

– ǁQxǁ2
2 = j=1

k j
2 (vj  x)2 = j=1

k (’j
2 + i

2) (vj  x)2 

         = j=1
k ’j

2 (vj  x)2 + j=1
k i

2 (vj  x)2  

         ǁQ’xǁ2
2

 + i
2 

 Observe that ǁQ’ǁF
2

 - ǁQǁF
2 = i

2 + i
2 + … = k i

2 

 Adding row ai causes ǁQǁF
2

 to increase by ǁaiǁ2
2 

 Hence, ǁAǁF
2

 = i ǁaiǁ2
2 = k i i

2 

 Summing over all steps, 0  ǁAxǁ2
2 - ǁQxǁ2

2  i i
2
 = ǁAǁF/k 

– “Relative error” bounds follow by increasing k [Ghashami Phillips 13]  
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Advanced Topics 

 Sampling and Lp Sampling 

– L0 sampling and graph sketching 

– L2 sampling and frequency moment estimation 

 Matrix computations 

– Sketches for matrix multiplication 

– Sparse representation via frequent directions 

 Lower bounds for streaming and sketching 

– Basic hard problems (Index, Disjointness) 

– Hardness via reductions 
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Streaming, Sketching and Sufficient Statistics 

Streaming Lower Bounds 

 Lower bounds for summaries 

– Communication and information complexity bounds 

– Simple reductions 

– Hardness of Gap-Hamming problem 

– Reductions to Gap-Hamming 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Computation As Communication 

 Imagine Alice processing a prefix of the input 

 Then takes the whole working memory, and sends to Bob 

 Bob continues processing the remainder of the input 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Computation As Communication 

 Suppose Alice’s part of the input corresponds to string x, and 
Bob’s part corresponds to string y... 

 ...and computing the function corresponds to computing 
f(x,y)... 

 ...then if f(x,y) has communication complexity (g(n)), then the 
computation has a space lower bound of (g(n)) 

 Proof by contradiction:   
If there was an algorithm with better space usage, we could 
run it on x, then send the memory contents as a message, and 
hence solve the communication problem 
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Deterministic Equality Testing 

 Alice has string x, Bob has string y, want to test if x=y 

 Consider a deterministic (one-round, one-way) protocol that 
sends a message of length m < n 

 There are 2m possible messages, so some strings must 
generate the same message: this would cause error 

 So a deterministic message (sketch) must be (n) bits 

– In contrast, we saw a randomized sketch of size O(log n) 

 

 1 0 1 1 1 0 1 0 1 … 

 1 0 1 1 0 0 1 0 1 … 
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Hard Communication Problems 

 INDEX: Alice’s x is a binary string of length n 
Bob’s y is an index in [n] 
Goal: output x[y] 
Result: (one-way) (randomized) communication complexity of INDEX 

is (n) bits 
 

 AUGINDEX: as INDEX, but y additionally contains x[y+1]…x[n] 
 Result: (one-way) (randomized) complexity of AUGINDEX is (n) bits 
 

 DISJ: Alice’s x and Bob’s y are both length n binary strings  
Goal: Output 1 if i: x[i]=y[i]=1, else 0 
Result: (multi-round) (randomized) communication complexity of 
DISJ  (disjointness) is (n) bits 
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Hardness of INDEX 

 Show hardness of INDEX via Information Complexity argument 

– Makes extensive use of Information Theory 

 Entropy of random variable X: H(X) = - x Pr[X=x] lg Pr[X=x] 

– (Expected) information (in bits) gained by learning value of X 

– If X takes on at most N values, H(X)  lg N 

 Conditional Entropy of X given Y: H(X|Y) = y Pr[y] H[X|Y=y] 

– (Expected) information (bits) gained by learning value of X given Y 

 Mutual Information: I(X : Y) = I(Y : X) = H(X) – H(X | Y) 

– Information (in bits) shared by X and Y 

– If X, Y are independent, I(X : Y) = 0 and I(XY : Z)  I(X : Z) + I(Y : Z) 
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Information Cost 

 Use Information Theoretic properties to lower bound 
communication complexity 

 Suppose Alice and Bob have random inputs X and Y 

 Let M be the (random) message sent by Alice in protocol P 

 The cost of (one-way) protocol P is cost(P) = max |M| 

– Worst-case size of message (in bits) sent in the protocol 

 Define information cost as icost(P) = I(M : X) 

– The information conveyed about X in M 

– icost(P) = I(M : X) = H(M) – H(M | X)  H(M)  cost(P) 
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Information Cost of INDEX 

 Give Alice random input X = n uniform random bits 

 Given protocol P for INDEX, Alice sends message M(X) 

 Give Bob input i.  He should output Xi 

 icost(P)  = I(X1 X2 … Xn : M) 
   I(X1 : M) + I(X2 : M) + … + I(Xn: M)   

 Now consider the mutual information of Xi and M 

– Have reduced the problem to n instances of a simpler problem 

 Intuition: I(Xj : M) should be at least constant, so cost(P) = (n) 
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Fano’s Inequality 

 When forming estimate X’ from X given (message) M, where 
X, X’  have k possible values, let E denote X  X’.  We have: 
  H(E) + Pr[E] log(k-1)  H(X | M) 
where H(E) = -Pr[E]lg Pr[E] – (1-Pr[E]) lg(1-Pr[E]) 

 Here, k=2, so we get I(X : M) = H(X) - H(X | M)  H(X) – H(E) 

– H(X) = 1.  If Pr[E]=, we have H(E) < ½ for <0.1 

– Hence I(Xi : M) > ½  

 Thus cost(P)  icost(P) > ½ n if P succeeds w/prob 1- 

– Protocols for INDEX must send (n) bits 

– Hardness of AUGINDEX follows similarly 
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Outline for DISJOINTNESS hardness 

 Hardness for DISJ follows a similar outline 

 Reduce to n instances of the problem “AND” 

– “AND” problem: test whether Xi = Yi = 1 

 Show that the information cost of DISJ protocol is sufficient 
to solve all n instances of AND 

 Show that the information cost of each instance is (1) 

 Proves that communication cost of DISJ is (1) 

– Even allowing multiple rounds of communication 
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Simple Reduction to Disjointness 

 F: output the highest frequency in the input 

 Input: the two strings x and y from disjointness instance 

 Reduction: if x[i]=1, then put i in input; then same for y 

– A streaming reduction (compare to polynomial-time reductions) 

 Analysis: if F=2, then intersection; if F1, then disjoint. 

 Conclusion: Giving exact answer to F requires (N) bits 

– Even approximating up to 50% relative error is hard 

– Even with randomization: DISJ bound allows randomness 

x: 1 0 1 1 0 1 

y: 0 0 0 1 1 0 

1, 3, 4, 6 

4, 5 
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Simple Reduction to Index 

 F0: output the number of items in the stream 

 Input: the strings x and index y from INDEX 

 Reduction: if x[i]=1, put i in input; then put y in input 

 Analysis: if (1-)F’0(xy)>(1+)F’0(x) then x[y]=1, else it is 0 

 Conclusion: Approximating F0 for <1/N requires (N) bits 

– Implies that space to approximate must be (1/) 

– Bound allows randomization 

x: 1 0 1 1 0 1 

y: 5 

1, 3, 4, 6 

5 
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Reduction to AUGINDEX [Clarkson Woodruff 09] 

 Matrix-Multiplication: approximate ATB with error 2ǁAǁF ǁBǁF 

– For r  c matrices.  A encodes string x, B encodes index y 

 

 

 

 

 

 

 Bob uses suffix of x in y to remove heavy entries from A 
ǁBǁF = 1 ǁAǁF = cr/log (cn) *(1 + 4 + … 22k)  4cr22k/3log (cn) 

 Choose  r =  log(cn)/8
2
 so permitted error is c 22k / 62 

– Each error in sign in estimate of (ATB) contributes 22k error 

– Can tolerate error in at most 1/6 fraction of entries 

 Matrix multiplication requires space (rc) = (c/2 log (cn)) 
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+1 -1 -2 -2  …  2k 2k … 0 0 0 0 0 
-1 -1 -2 +2  …  2k 2k … 0 0 0 0 0 
+1 +1 +2 -2  …  2k 2k … 0 0 0 0 0 
-1 -1 +2 +2  …  2k 2k … 0 0 0 0 0 
 

[ ] [ 
0 0 … 

0 0 … 

0 0 … 

0 0 … 

0 0 … 

0 0 … 

1 0 … 

0 0 … 

0 0 … 

0 0 … 

] c 

r/log(cn) 

ATB “reads off” 
j’th column of AT 
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Streaming Lower Bounds 

 Lower bounds for data streams 

– Communication complexity bounds 

– Simple reductions 

– Hardness of Gap-Hamming problem 

– Reductions to Gap-Hamming 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 

91 



Streaming, Sketching and Sufficient Statistics 

Gap Hamming 

Gap-Hamming communication problem: 

 Alice holds x  {0,1}N, Bob holds y  {0,1}N 

 Promise: Ham(x,y) is either  N/2 - √N or  N/2 + √N 

 Which is the case? 

 Model: one message from Alice to Bob 

 Sketching upper bound: need relative error  = √N/F2 = 1/√N 

– Gives space O(1/2) = O(N) 

 

Requires (N) bits of one-way randomized communication  
[Indyk, Woodruff’03, Woodruff’04, Jayram, Kumar, Sivakumar ’07] 
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Hardness of Gap Hamming 

 Reduction starts with an instance of INDEX 

– Map string x to u by 1  +1, 0  -1  (i.e. u[i] = 2x[i] -1 ) 

– Assume both Alice and Bob have access to public random 
strings rj, where each bit of rj is iid {-1, +1} 

– Assume w.l.o.g. that length of string n is odd (important!) 

– Alice computes aj = sign(rj  u) 

– Bob computes bj = sign(rj[y]) 

 Repeat N times with different random strings, and consider 
the Hamming distance of a1... aN with b1 ... bN 

– Argue if we solve Gap-Hamming on (a, b), we solve INDEX 
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Probability of a Hamming Error 

 Consider the pair aj= sign(rj  u),  bj = sign(rj[y]) 

 Let w = i  y u[i] rj[i] 

– w is a sum of (n-1) values distributed iid uniform {-1,+1} 

 Case 1: w  0.  So |w| 2, since (n-1) is even    

– so sign(aj) = sign(w), independent of x[y] 

– Then Pr[aj  bj] = Pr[sign(w)  sign(rj[y])] = ½   

 Case 2: w = 0.  
So aj = sign(rju) = sign(w + u[y]rj[y]) = sign(u[y]rj[y]) 

– Then Pr[aj  bj] = Pr[sign(u[y]rj[y]) = sign(rj[y])] 

– This probability is 1 is u[y]=+1, 0 if u[y]=-1 

– Completely biased by the answer to INDEX 
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Finishing the Reduction 

 So what is Pr[w=0]? 

– w is sum of (n-1) iid uniform {-1,+1} values 

– Then: Pr[w=0] = 2-n(n choose n/2) = c/n, for some constant c 

 Do some probability manipulation: 

– Pr[aj = bj] = ½ + c/2n if x[y]=1 

– Pr[aj = bj] = ½ - c/2n if x[y]=0 

 Amplify this bias by making strings of length N=4n/c2 

– Apply Chernoff bound on N instances  

– With prob>2/3, either Ham(a,b)>N/2 + N or Ham(a,b)<N/2 - N 

 If we could solve Gap-Hamming, could solve INDEX 

– Therefore, need (N) = (n) bits for Gap-Hamming 
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Streaming Lower Bounds 

 Lower bounds for data streams 

– Communication complexity bounds 

– Simple reductions 

– Hardness of Gap-Hamming problem 

– Reductions to Gap-Hamming 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Lower Bound for Entropy 

Gap-Hamming instance—Alice: x  {0,1}N, Bob: y  {0,1}N 

Entropy estimation algorithm A 

 Alice runs A on enc(x) = (1,x1), (2,x2), …, (N,xN) 

 Alice sends over memory contents to Bob 

 Bob continues A on enc(y) = (1,y1), (2,y2), …, (N,yN) 

0 1 0 0 1 1 

(6,0) (5,1) (4,0) (3,0) (2,1) (1,1) 

Bob 

(6,1) (5,1) (4,0) (3,0) (2,1) (1,0) 

1 1 0 0 1 0 
Alice 
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Lower Bound for Entropy 

 Observe: there are 

– 2Ham(x,y) tokens with frequency 1 each 

– N-Ham(x,y) tokens with frequency 2 each 

 So (after algebra), H(S) = log N + Ham(x,y)/N = log N + ½  1/√N 

 If we separate two cases, size of Alice’s memory contents = (N)   
Set  = 1/(√(N) log N) to show bound of (/log 1/)-2) 

0 1 0 0 1 1 

(6,0) (5,1) (4,0) (3,0) (2,1) (1,1) 

Bob 

(6,1) (5,1) (4,0) (3,0) (2,1) (1,0) 

1 1 0 0 1 0 
Alice 
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Lower Bound for F0 

 Same encoding works for F0 (Distinct Elements) 

– 2Ham(x,y) tokens with frequency 1 each 

– N-Ham(x,y) tokens with frequency 2 each 

 F0(S) = N + Ham(x,y) 

 Either Ham(x,y)>N/2 + N or Ham(x,y)<N/2 - N 

– If we could approximate F0 with  < 1/N, could separate 

– But space bound = (N) = (-2) bits 

 Dependence on  for F0 is tight 

 

 Similar arguments show (-2) bounds for Fk 

– Proof assumes k (and hence 2k) are constants 
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Summary of Tools 

 Vector equality: fingerprints 

 Approximate item frequencies: 

– Count-min, Misra-Gries (L1 guarantee), Count sketch (L2 guarantee) 

 Euclidean norm, inner product: AMS sketch, JL sketches 

 Count-distinct: k-Minimum values, Hyperloglog 

 Compact set-representation: Bloom filters 

 Uniform Sampling  

 L0 sampling: hashing and sparse recovery 

 L2 sampling: via count-sketch 

 Graph sketching: L0 samples of neighborhood 

 Frequency moments: via L2 sampling 

 Matrix sketches: adapt AMS sketches, frequent directions 

Streaming, Sketching and Sufficient Statistics 
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Summary of Lower Bounds 

 Can’t deterministically test equality 

 Can’t retrieve arbitrary bits from a vector of n bits: INDEX 

– Even if some unhelpful suffix of the vector is given: AUGINDEX 

 Can’t determine whether two n bit vectors intersect: DISJ 

 Can’t distinguish small differences in Hamming distance: 
GAP-HAMMING 

 These in turn provide lower bounds on the cost of 

– Finding the maximum frequency 

– Approximating the number of distinct items 

– Approximating matrix multiplication 

Streaming, Sketching and Sufficient Statistics 
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Current Directions in Streaming and Sketching 

 Sparse representations of high dimensional objects 

– Compressed sensing, sparse fast fourier transform 

 Numerical linear algebra for (large) matrices 

– k-rank approximation, linear regression, PCA, SVD, eigenvalues 

 Computations on large graphs 

– Sparsification, clustering, matching 

 Geometric (big) data 

– Coresets, facility location, optimization, machine learning 

 Use of summaries in distributed computation 

– MapReduce, Continuous Distributed models 
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Forthcoming Attractions 

 Data Streams Mini Course @Simons 

– Prof Andrew McGregor 

– Starts early October 

 

 

 

 Succinct Data Representations and Applications @ Simons 

– September 16-19  
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