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Data is Massive

m Datais growing faster than our ability to store or index it

m There are 3 Billion Telephone Calls in US each day
(100BN minutes), 30B emails daily, 4B SMS, IMs.

I
m Scientific data: NASA's observation satellites ~@)
generate billions of readings each per day. 2

m [P Network Traffic: can be billions packets per hour per
router. Each ISP has many (10s of thousands) routers!

m Whole genome readings for individual humans now
available: each is many gigabytes in size /

=
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Small Summaries and Sufficient Statistics

m Asummary (approximately) allows answering such questions
m To earn the name, should be (very) small
— Can keep in fast storage
m Should be able to build, update and query efficiently
m Key methods for summaries:
— Create an empty summary
— Update with one new tuple: streaming processing
— Merge summaries together: distributed processing
— Query: may tolerate some approximation

m A generalized notion of “sufficient statistics”
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The CS Perspective

m Cynical: “The price of everything and the value of nothing”
— Optimize the cost of quantities related to a computation
m The space required to store the sufficient information
m The time to process each new item, or answer a query
m The accuracy of the answer ()
m The amount of “true” randomness
— In terms of size of input n, and chosen parameters
m Pessimistic: “A pessimist is never disappointed”
— Rarely make strong assumptions about the input distribution
— “the data is the data”: assume fixed input, adversarial ordering
— Seek to compute a function of the input (not the distribution)
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The CS Perspective Il

m “Probably Approximately Correct”

e
— Preference for tail bounds on quantities 7%

— Within error € with probability 1-0 R 74 82

— Use concentration of measure (Markov, Chebyshev, Chernoff...)

m “High price of entr(op)y”: Randomness is a limited resource
— We often need “random” bits as a function of i
— Must either store the randomness
— Or use weaker hash functions with small random keys
— Occasionally, assume “fully independent hash functions”
m Not too concerned about constant factors
— Most bounds given in O() notation
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Data Models

m We model data as a collection of simple tuples
m Problems hard due to scale and dimension of input
m Arrivals only model:

_ . (x, 3), (v, 2), (x, 2) encodes X OQOOO

the arrival of 3 copies of item x, y . .
2 copies of y, then 2 copies of x.

— Could represent eg. packets on a network; power usage
m Arrivals and departures:
_ (%, 3), (v,2), (x, -2) encodes x Q00
final state of (x, 1), (y, 2). Yy ..

— Can represent fluctuating quantities, or measure differences
between two distributions
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Part I: Sketches and Frequency Moments

m Frequency distributions and Concentration bounds
m Count-Min sketch for F_ and frequent items

m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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Part Il: Advanced Topics

m Sampling and L, Sampling
— Ly sampling and graph sketching
— L, sampling and frequency moment estimation

m Matrix computations
— Sketches for matrix multiplication /? {\

— Sparse representation via frequent directions Q

m Lower bounds for streaming and sketching
— Basic hard problems (Index, Disjointness)

— Hardness via reductions
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Frequency Distributions

m Given set of items, let f. be the number of occurrences of item i

m Many natural questions on f, values:
— Find those i’s with large f, values (heavy hitters)
— Find the number of non-zero f, values (count distinct)
— Compute F, = 2. (f.)*—the k’th Frequency Moment
— Compute H=2. (f/F,) log (F,/f) — the (empirical) entropy
Alon, Matias, Szegedy in STOC 1996
— Awarded Godel prize in 2005
— Set the pattern for many streaming algorithms to follow
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Concentration Bounds

m Will provide randomized algorithms for these problems
m Each algorithm gives a (randomized) estimate of the answer
m Give confidence bounds on the final estimate X

— Use probabilistic concentration bounds on random variables

m A concentration bound is typically of the form
Pr[ [ X—x| >ey]<d
— At most probability 0 of being more than gy away from x

Probability
distribution

Tail probability

/

u
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Markov Inequality

m Take any probability distribution X s.t. Pr[X<0] =0

m Consider the event X > k for some constant k>0

m Forany draw of X, kI(X > k) <X
— Either0<X<k,sol(X>k)=0
— OrX=k, lhs=k

m Take expectations of both sides: k Pr[ X > k] < E[X]

m Markov inequality: Pr[ X > k ] < E[X]/k
— Prob of random variable exceeding k times its expectation < 1/k

IX| k

— Relatively weak in this form, but still useful
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Sketch Structures

m Sketch is a class of summary that is a linear transform of input
— Sketch(x) = Sx for some matrix S

— Hence, Sketch(ax + By) = o Sketch(x) + B Sketch(y)
— Trivial to update and merge

m Often describe S in terms of hash functions

— If hash functions are simple, sketch is fast
m Aim for limited independence hash functions h: [n] > [m]
— If Pr,_4[ h(iy)=j; A h(i,)=j, A ... h(i,)=], ] = m¥,
then H is k-wise independent family (“h is k-wise independent”)
— k-wise independent hash functions take time, space O(k)
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A First Sketch: Fingerprints

101110101 ..

SOOI

101100101 ..

m Test if two (distributed) binary vectors are equal
d_ (x,y) = 0 iff x=y, 1 otherwise

m To test in small space: pick a suitable hash function h

m Test h(x)=h(y) : small chance of false positive, no chance of
false negative

m Compute h(x), h(y) incrementally as new bits arrive
— How to choose the function h()?
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Polynomial Fingerprints

m Pick h(x) = 2._,"x. r' mod p for prime p, random r € {1...p-1}
— Flexible: h(x) is linear function of x—easy to update and merge
m For accuracy, note that computation mod p is over the field Z,
— Consider the polynomial in o, 2.._;" (x. —y) o' =0
— Polynomial of degree n over Z, has at most n roots
m Probability that r happens to solve this polynomial is n/p
m SoPr[h(x)=h(y) | x£2y]<n/p
— Pick p = poly(n), fingerprints are log p = O(log n) bits
m Fingerprints applied to small subsets of data to test equality
— Will see several examples that use fingerprints as subroutine
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Sketches and Frequency Moments

m Frequency distributions and Concentration bounds
m Count-Min sketch for F_ and frequent items

m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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Count-Min Sketch

Simple idea relies primarily on Markov inequality
Model input data as a vector x of dimension U

Creates a small summary as an array of w x d in size
Use d hash function to map vector entries to [1..w]

Works on arrivals only and arrivals & departures streams

W

Array:
CMI[i.] |
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Count-Min Sketch Structure

J,+C

m Each entry in vector x is mapped to one bucket per row.

/'|;C
] -
+C
§ | .
\:‘t
T
w = 2/¢

m Merge two sketches by entry-wise summation
m Estimate x[j] by taking min, CM[k,h,(j)]

— Guarantees error less than €F, in size O(1/¢ log 1/0)
— Probability of more error is less than 1-0

17
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Approximation of Point Queries

Approximate point query X'[j] = min, CM[k,h,(j)]
m Analysis: In k'th row, CM[k,h,(j)] = x[j] + X, ,
= Xi;= Zi x[i] I(h,(i) = hy(j))

- E[Xk,j] = Ziij X[i]*Pr[h,(i)=h(j)]
< Prlh(i)=h,(j)] * Z; x[i]
= ¢ F,/2 — requires only pairwise independence of h

- Pr[X, ;= eF;] = Pr[ X ;= 2E[X, ;] ] £ 1/2 by Markov inequality
m So, Prx'[j] = x[j] + eFy] = Pr[V k. X, ;> eF,] < 1/2/°81/6=§

m Final result: with certainty x[j] < x’[j] and
with probability at least 1-9, x'[j] < x[j] + €F,
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Applications of Count-Min to Heavy Hitters

Count-Min sketch lets us estimate f. for any i (up to €F,)
asks to find i such that f.is large (> ¢ F,)
Slow way: test every i after creating sketch

Alternate way:
— Keep binary tree over input domain: each node is a subset
— Keep sketches of all nodes at same level
— Descend tree to find large frequencies, discard ‘light” branches
— Same structure estimates arbitrary range sums

m A first step towards compressed sensing style results...
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Application to Large Scale Machine Learning

®m In machine learning, often have very large feature space
— Many objects, each with huge, sparse feature vectors
— Slow and costly to work in the full feature space

m ”: work with a sketch of the features
— Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09]
m Similar analysis explains why:

— Essentially, not too much noise on the important features

=
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Sketches and Frequency Moments

m Frequency distributions and Concentration bounds
m Count-Min sketch for F__ and frequent items

m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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Chebyshev Inequality

22

Markov inequality is often quite weak
But Markov inequality holds for any random variable
Can apply to a random variable that is a function of X
SetY = (X — E[X])?
By Markov, Pr[ Y > kE[Y] ] < 1/k
- E[Y] = E[(X-E[X])?]= Var[X]
Hence, Pr[ | X —E[X]| > V(k Var[X]) ] < 1/k
Chebyshev inequality: Pr[ | X — E[X]| > k ] < Var[X]/k?
— If Var[X] < &2 E[X]?, then Pr[|X = E[X]]| > € E[X] ] = O(1)
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F, estimation

m AMS sketch (for Alon-Matias-Szegedy) proposed in 1996
— Allows estimation of F, (second frequency moment)

— Used at the heart of many streaming and non-streaming
applications: achieves dimensionality reduction

m Here, describe AMS sketch by generalizing CM sketch.
m Uses extra hash functions g;...8,,, 1/5 {1...U}2 {+1,-1}

— (Low independence) Rademacher variables
m Now, given update (j,+c), set CM[k,h,(j)] += c*g,(j)

linear
projection

AMS sketch

Streaming, Sketching and Sufficient Statistics
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F, analysis

j,+C —— +§<92G)
\st)
\@940)

W = 4/¢?
Estimate F, = median, 2. CM[k,i]?
Each row’s result is 2, g(i)2x[i]? + 2y i-n(p 2 8(1) 8() x[i] x[j]
But g(i)2=-12=+12=1, and 2 x[i]* = F,
g(i)g(j) has 1/2 chance of +1 or —1 : expectationis O ...
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F, Variance

m Expectation of row estimate R, = 2.. CM[k,i]? is exactly F,
m Variance of row k, Var[R,], is an expectation:

- Var[Rk] = E[ (Zbuckets b (C|\/I[klb])2 - F2)2]

— Good exercise in algebra: expand this sum and simplify

— Many terms are zero in expectation because of terms like
g(a)g(b)e(c)g(d) (degree at most 4)

— Requires that hash function g is four-wise independent: it
behaves uniformly over subsets of size four or smaller

m Such hash functions are easy to construct
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F, Variance

m Terms with odd powers of g(a) are zero in expectation

- g(a)g(b)g*(c), g(a)g(b)g(c)g(d), g(a)g*(b)
B Leaves
Var[R,] < 2., g*(i) x[i]*
+2 2., 8%(i) g2() x[i]* x[j]?
+4 Zh(i):h i) g2(i) g2(j) x[i]> x[j]°
(TR 32X X(G12)
<F,?/w
m Row variance can finally be bounded by F,%/w
— Chebyshev for w=4/¢? gives probability % of failure:
Pr[ |[R,—F,] > g2 F, 1<%
— How to amplify this to small 6 probability of failure?
— Rescaling w has cost linear in 1/0
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Tail Inequalities for Sums

m We achieve stronger bounds on tail probabilities for the sum of
independent Bernoulli trials via the Chernoff Bound:

- LetX,, ..., X, be independent Bernoulli trials s.t. Pr[X=1] = p
(Pr[X;=0] = 1-p).
— LetX=2._,™X. ,and u = mp be the expectation of X.

— Then, for €50, Chernoff bound states:
Pr [X - | = epu] <2 exp(- % pe?)

— Proved by applying Markov inequality to Y = exp(X; - X, - ... - X))
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Applying Chernoff Bound

m Each row gives an estimate that is within € relative error with
probability p’ > %

m Take d repetitions and find the median. Why the median?

00000000 O®

— Because bad estimates are either too small or too large
— Good estimates form a contiguous group “in the middle”
— At least d/2 estimates must be bad for median to be bad
m Apply Chernoff bound to d independent estimates, p=1/4
— Pr[ More than d/2 bad estimates ] < 2exp(-d/8)
— So we set d = ®(In 1/9) to give 0 probability of failure

m Same outline used many times in summary construction
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Applications and Extensions

m F, guarantee: estimate ||x||, from sketch with error ¢ |[x||,

— Since [Ix + y[I,2 = [Ix[l,2 + lyll, + 2x - y
Can estimate (x - y) with error x|, |lyll,

— Ify= e obtain (x - &;) = x; with error € [[x]|, :
L, guarantee (”Count Sketch”) vs L, guarantee (Count-Min)

m Can view the sketch as a low-independence realization of the
Johnson-Lindendestraus lemma

— Best current JL methods have the same structure
— JLis stronger: embeds directly into Euclidean space

— JLis also weaker: requires O(1/g)-wise hashing, O(log 1/3)
independence [Kane, Nelson 12]
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Sketches and Frequency Moments

m Frequency Moments and Sketches

m Count-Min sketch for F__ and frequent items
m AMS Sketch for F,

m Estimating F,

m Extensions:

— Higher frequency moments
— Combined frequency moments
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F, Estimation

m F,isthe number of distinct items in the stream

— a fundamental quantity with many applications

m Early algorithms by Flajolet and Martin [1983] gave nice
hashing-based solution

— analysis assumed fully independent hash functions

m Will describe a generalized version of the FM algorithm due to
Bar-Yossef et. al with only pairwise indendence

— Known as the “k-Minimum values (KMV)” algorithm
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F, Algorithm

B Let m be the domain of stream elements
— Each item in datais from [1...m]

m Pick a random (pairwise) hash function h: [m] — [m?]
— With probability at least 1-1/m, no collisions under h

00 ® o ® O

Om3 Vt m3

m For each stream item i, compute h(i), and track the t distinct
items achieving the smallest values of h(i)

— Note: if same i is seen many times, h(i) is same
— Let v, = t'th smallest (distinct) value of h(i) seen
m If Fy<t, give exact answer, else estimate F', = tm3/v,

— v,/m3 = fraction of hash domain occupied by t smallest
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Analysis of F, algorithm

m Suppose F'y =tm3/v, > (1+¢) F, [estimate is too high]

Ool'oo e © 0 ®69

Oms3 Ivt tm3/(1+e)F, m?3

m So forinput=setS e 2IM we have
— |{s eS| h(s) <tm3/(1+g)F, }| >t
— Because € < 1, we have tm3/(1+¢)F, < (1-¢/2)tm3/F,
— Pr[ h(s) < (1-&/2)tm3/F,] = 1/m3 * (1-¢/2)tm3/F, = (1-&/2)t/F,

— (this analysis outline hides some rounding issues)
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Chebyshev Analysis

m Let Y be number of items hashing to under tm3/(1+¢)F,
— E[Y] =F, * Pr[ h(s) < tm3/(1+¢)F ] = (1-&/2)t
— For each item i, variance of the event = p(1-p) < p
— Var[Y] = 2, _¢ Var[ h(s) < tm3/(1+¢)F,] < (1-&/2)t
m We sum variances because of pairwise independence

m Now apply Chebyshev inequality:

— Pr[Y>t] <Pr[|Y—E[Y]| > et/2]
< 4Var[Y]/et2
< 4t/(e%1?)

— Set t=20/¢2 to make this Prob < 1/5
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Completing the analysis

m We have shown
Pr[F'y>(1+g) Fy]1 < 1/5
m Canshow Pr[ F, < (1-¢) F,] < 1/5 similarly
— too few items hash below a certain value
m SoPr[(1-¢) F,<F,<(1+g)F,] >3/5 [Good estimate]

m Amplify this probability: repeat O(log 1/0) times in parallel
with different choices of hash function h

— Take the median of the estimates, analysis as before
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F, Issues

B Space cost:
— Store t hash values, so O(1/¢? log m) bits
— Can improve to O(1/¢? + log m) with additional tricks

O o ®e o e ©C 0 @0

B Time cost:
— Find if hash value h(i) <,
— Update v, and list of t smallest if h(i) not already present
— Total time O(log 1/¢ + log m) worst case
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Count-Distinct

m Engineering the best constants: Hyperloglog algorithm
— Hash each item to one of 1/¢? buckets (like Count-Min)
— In each bucket, track the function max LIog(h(x))J
m Can view as a coarsened version of KMV
m Space efficient: need log log m = 6 bits per bucket
m Can estimate intersections between sketches
— Make use of identity |AnB| = |A| + [B]| - |A U B|
— Error scales with ¢ V(|A||B]), so poor for small intersections
— Higher order intersections via inclusion-exclusion principle
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Bloom Filters

m Bloom filters compactly encode set membership
— k hash functions map items to bit vector k times
— Set all k entries to 1 to indicate item is present
— Can lookup items, store set of size nin O(n) bits

e

m Duplicate insertions do not change Bloom filters
m Can merge by OR-ing vectors (of same size)
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Bloom Filter analysis

m How to set k (number of hash functions), m (size of filter)?

m False positive: when all k locations for an item are set

— If p fraction of cells are empty, false positive probability is (1-p)X
m Consider probability of any cell being empty:

— Fornitems, Pr[celljisempty ] =(1-1/m) = p = exp(-kn/m)

— False positive prob = (1 - p)¢=exp(k In(1 - p))

= exp(-m/n In(p) In(1-p))

m For fixed n, m, by symmetry minimized at p =%

— Half cells are occupied, half are empty

— Give k= (m/n)In 2, false positive rate is ¥k

— Choose m = cn to get constant FP rate, e.g. c=10 gives < 1% FP
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Bloom Filters Applications

m Bloom Filters widely used in “big data” applications
— Many problems require storing a large set of items
m Can generalize to allow deletions
— Swap bits for counters: increment on insert, decrement on delete
— If representing sets, small counters suffice: 4 bits per counter
— If representing multisets, obtain sketches (next lecture)
m Bloom Filters are an active research area
— Several papers on topic in every networking conference...

1 1 1
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Frequency Moments

Intro to frequency distributions and Concentration bounds
Count-Min sketch for F_ and frequent items

AMS Sketch for F,

Estimating F,

Extensions:
— Higher frequency moments
— Combined frequency moments
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Higher Frequency Moments

m F fork>2. Use a sampling trick [Alon et al 96]:
— Uniformly pick an item from the stream length 1...n
— Set r = how many times that item appears subsequently
— Set estimate F’, = n(rk— (r-1)%)

m E[F ]=1/n*n*[fX- (f-1)%+ (f-1)% - (f-2)% + ... + 1k-0K]+...
=fk+fk+..=F
m Var[F ]<1/n*n2*[(f *(f-1)%)% + ...]
— Use various bounds to bound the variance by k m*-V/k F,2
— Repeat k mIk times in parallel to reduce variance

m Total space needed is O(k m¥1/%) machine words

— Not a sketch: does not distribute easily. See part 2!
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Combined Frequency Moments

m Let GJi,j] =1if (i,j) appears in input.

E.g. graph edge from i toj. Total of m distinct edges
m letd =X_,"G[ij] (aka degree of node i)
m Find aggregates of d.’s:

— Estimate heavy d.’s (people who talk to many)

— Estimate frequency moments:
number of distinct d, values, sum of squares

— Range sums of d’s (subnet traffic)
m Approach: nest one sketch inside another, e.g. HLL inside CM

— Requires new analysis to track overall error
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Range Efficiency

m Sometimes input is specified as a collection of ranges [a,b]
— [a,b] means insert all items (a, a+1, a+2 ... b)
— Trivial solution: just insert each item in the range
m Range efficient F, [Pavan, Tirthapura 09]
— Start with an alg for F, based on pairwise hash functions
— Key problem: track which items hash into a certain range
— Dives into hash fns to divide and conquer for ranges
m Range efficient F, [Calderbank et al. 05, Rusu,Dobra 06]
— Start with sketches for F, which sum hash values

— Design new hash functions so that range sums are fast
m Rectangle Efficient F [Tirthapura, Woodruff 12]
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Forthcoming Attractions

m Data Streams Mini Course @Simons
— Prof Andrew McGregor
— Starts early October

m Succinct Data Representations and Applications @ Simons

— September 16-19
O (mara)
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Recap

m Sketching Techniques summarize large data sets

B Summarize vectors:

a7

Test equality (fingerprints)

Recover approximate entries (count-min, count sketch)
Approximate Euclidean norm (F,) and dot product
Approximate number of non-zero entries (F)
Approximate set membership (Bloom filter)
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Part Il: Advanced Topics

m Sampling and L, Sampling
— Ly sampling and graph sketching
— L, sampling and frequency moment estimation

m Matrix computations
— Sketches for matrix multiplication /? {\

— Sparse representation via frequent directions

m Lower bounds for streaming and sketching b
— Basic hard problems (Index, Disjointness)
— Hardness via reductions
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Sampling From a Large Input

O0000O00OO0
00000000000000000

) 2@
o0

m Fundamental prob: sample m items uniformly from data

- : approximate costly computation on small sample

m Challenge: don’t know how large total input is

— So when/how often to sample?

m Several solutions, apply to different situations:

— Reservoir sampling (dates from 1980s7?)
— Min-wise sampling (dates from 1990s7?)
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Min-wise Sampling

m For each item, pick a random fraction between 0 and 1
m Store item(s) with the smallest random tag [Nath et al.'04]

@ 6 & e o O

0.391 0.908 0.291 0.555 0.619 0.273

L

m Each item has same chance of least tag, so uniform
m Can run on multiple inputs separately, then merge

m Applications in geometry: basic e-approximations are samples
m Estimate number of points falling in a range (bounded VC dim)
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Sampling from Sketches

m Given inputs with positive and negative weights
m Want to sample based on the overall frequency distribution

— Sample from support set of n possible items
— Sample proportional to (absolute) weights
— Sample proportional to some function of weights

m How to do this sampling effectively?
m Recentapproach: L;sampling

51 Streaming, Sketching and Sufficient Statistics



I
L, Sampling

m | sampling: use sketches to sample i w/prob (1tg) f°/||f]| P
m “Efficient” solutions developed of size O(¢? log? n)
— [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11]
m L, sampling enables novel “graph sketching” techniques
— Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12]
m L, sampling allows optimal estimation of frequency moments
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L, Sampling

m L, sampling: sample with prob (1tg) f%/F,

— i.e., sample (near) uniformly from items with non-zero frequency
m General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]

— Sub-sample all items (present or not) with probability p

— Generate a sub-sampled vector of frequencies f,

— Feed f, to a k-sparse recovery data structure

m Allows reconstruction of f, if F; <k
— If f, is k-sparse, sample from reconstructed vector
— Repeat in parallel for exponentially shrinking values of p
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Sampling Process

o
> | k-sparse recovery >00—>0

m Exponential set of probabilities, p=1, ¥, %, 1/8, 1/16... 1/U
— LetN=F,=|{i:f #0}|
— Want there to be a level where k-sparse recovery will succeed
— At level p, expected number of items selected S is Np
— Pick level p so that k/3 < Np < 2k/3

m Chernoff bound: with probability exponential ink, 1 <S <k
— Pick k = O(log 1/9) to get 1-0 probability

54 Streaming, Sketching and Sufficient Statistics



I
k-Sparse Recovery

m Given vector x with at most k non-zeros, recover x via sketching

— A core problem in compressed sensing/compressive sampling

m First approach: Use Count-Min sketch of x
— Probe all U items, find those with non-zero estimated frequency
— Slow recovery: takes O(U) time

m Faster approach: also keep sum of item identifiers in each cell
— Sum/count will reveal item id

— Avoid false positives: keep fingerprint of items in each cell

m Can keep a sketch of size O(k log U) to recover up to k items

Sum, X hii)=i |

Count, 2. 1)< X;
Fingerprint, ;.o %; 1
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I
Uniformity

m Also need to argue sample is uniform
— Failure to recover could bias the process

m Pr[iwould be picked if k=n] = 1/F, by symmetry

m Pr[iis picked ] =Pr[iwould be picked if k=n A S<K]
> (1-8)/F,

m So (1-0)/N < PrJiis picked] <1/N
m Sufficiently uniform (pick 0 =€)
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I
Application: Graph Sketching

Given L, sampler, use to sketch (undirected) graph properties
Connectivity: want to test if there is a path between all pairs

: repeatedly contract edges between components
Use L, sampling to provide edges on vector of adjacencies

Problem: as components grow, sampling most likely to

produce internal links
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Graph Sketching

58

Idea: use clever encoding of edges [Ahn, Guha, McGregor 12]
Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i
When node i and node j get merged, sum their L, sketches

— Contribution of edge (i,j) exactly cancels out

- K SN

o - g

Only non-internal edges remain in the L, sketches

Use independent sketches for each iteration of the algorithm
— Only need O(log n) rounds with high probability
Result: O(poly-log n) space per node for connectivity
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I
Other Graph Results via sketching

m K-connectivity via connectivity
— Use connectivity result to find and remove a spanning forest
— Repeat k times to generate k spanning forests F,, F,, ... F,
— Theorem: G is k-connected if U._,X F, is k-connected
B Bipartiteness via connectivity:
— Compute ¢ = number of connected components in G
— Generate G’ overVUV’'so(uv) e E=(u,V') e F, (U,v) e F
— If G is bipartite, G’ has 2c components, else it has <2c components

B Minimum spanni

59
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I
Application: F, via L, Sampling

m Recall, F =2 fX

m Suppose L, sampling samples f. with probability f.2/F,
— And also estimates sampled f, with relative error ¢

m Estimator: X =F, f*2 (with estimates of F,, f))
- EX]=F, % f*2-f2/F,=F,
- : Var[X] < E[X?] = X, f2/F, (F, f<2)2 = F, F,, ,
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Rewriting the Variance

m Want to express variance F, F,, , in terms of F,and domain size n

O (% ¥) < Il Ivll, for 1 <p, g with 1/p+1/g=1
— Generalizes Cauchy-Shwarz inequality, where p=g=2.

m So pick p=k/(k-2) and g = k/2 for k> 2. Then

(1% (1)) < 1Ly NPl
F, <nlk2/kF 2/k )

m Also, since [|x|[,,, <[Ix]|, forany p>1,a>0

— Thus [[x|l,, < Il for k=2

— So Fy, = [Ifll. 22k 2< "f"ka 2=F* 2/ (2)
m Multiply (1) *(2): F, Fy, <n¥?kF2

— So variance is bounded by n-?/k F 2
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_
F. Estimation

m For k =3, we can estimate F, via L, sampling:
— Variance of our estimate is O(F,2 n-%/k)
— Take mean of n1?/kg=2 repetitions to reduce variance
— Apply Chebyshev inequality: constant prob of good estimate
— Chernoff bounds: O(log 1/0) repetitions reduces prob to o

m How to instantiate this?
— Design method for approximate L, sampling via sketches
— Show that this gives relative error approximation of f.
— Use approximate value of F, from sketch
— Complicates the analysis, but bound stays similar

62 Streaming, Sketching and Sufficient Statistics



_
L, Sampling Outline

m Foreach i, draw u, uniformly in the range 0...1
— From vector of frequencies f, derive g so g, = f./Vu.
— Sketch g. vector
m Sample: return (i, f) if there is unique i with g.2 > t=F, /¢ threshold
- Prlg2>tAVj=zi:g?<t]=Prlg?>t] 1], Prlg’<t]
= Prlu; < ef?/F,] 11, Prlu; > ef2/F,]
= (ef?/Fy) I, (1 - ef2/F)
= gf 2/F,
m Probability of returning anything is not so big: 2. e f?/F, = ¢
— Repeat O(1/< log 1/0) times to improve chance of sampling
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L, sampling continued

m Given (estimated) g; s.t. g* > F,/¢, estimatef. = u. g

m Sketch size O(¢?! log n) means estimate of f2 has error (ef.2 + u.?)
— With high prob, no u; < 1/poly(n), and so F,(g) = O(F,(f) log n)
— Since estimated f2/u? > F,/¢g, u? < ef2/F,

m Estimating f.2 with error &f 2 sufficient for estimating F,

® Many details omitted
— See Precision Sampling paper [Andoni Krauthgamer Onak 11]
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I
Advanced Topics

m Sampling and L, Sampling
— Ly sampling and graph sketching
— L, sampling and frequency moment estimation

m Matrix computations
— Sketches for matrix multiplication %D
— Sparse representation via frequent directions /?
m Lower bounds for streaming and sketching %

— Basic hard problems (Index, Disjointness)
— Hardness via reductions
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I
Matrix Sketching

m Given matrices A, B, want to approximate matrix product AB
m Compute normed error of approximation C: |AB — C||

m Give results for the Frobenius (entrywise) norm ||-||-

- [I<ll; = (Zi,j Ci,jz)y2
— Results rely on sketches, so this norm is most natural
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Direct Application of Sketches

67

Build sketch of each row of A, each column of B
Estimate C;; by estimating inner product of A; with B
Absolute error in estimate is € ||A, [|B']l, (whp)

Sum over all entries in matrix, squared error is

e 2 AL 1B, =€ (2 AL (2 1B11,%)
= g? (NAll>)(IBI>)
Hence, Frobenius norm of error is g||Al|¢||B|;
Problem: need the bound to hold for all sketches simultaneously
— Requires polynomially small failure probability
— Increases sketch size by logarithmic factors
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I
Improved Matrix Multiplication Analysis

m Simple analysis is too pessimistic [Clarkson Woodruff 09]
— It bounds probability of failure of each sketch independently

m A better approach is to directly analyze variance of error
— Immediately, each estimate of (AB) has variance €2||A||:%||B||:2
— Just need to apply Chebyshev inequality to sum... almost
m Problem: how to amplify probability of correctness?
— ‘Median’ trick doesn’t work: what is median of set of matrices?
— Find an estimate which is close to most others
m Estimate ||A[:?||B]|? := d using sketches
m Find an estimate that’s closer than d/2 to more than % the rest
m We find an estimate with this property with probability 1-0
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I
Advanced Linear Algebra

m More directly approximate matrix multiplication:
— use more powerful hash functions in sketching
— obtain a single accurate estimate with high probability

m Linear regression given matrix A and vector b:
find x € RY to (approximately) solve min_ ||Ax — b

— Approach: solve the minimization in “sketch space”
— Require a summary of size O(d?/< log 1/9)
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Frequent Items and Frequent Directions

m A deterministic algorithm for tracking item frequencies
— With a recent analysis of its performance
— Unusually, it is deterministic

m Inspiring an algorithm for tracking matrix properties
— Due to [Liberty 13], extended by [Ghashami Phillips 13]
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Misra-Gries Summary (1982)

O
O
O

6
A

1

O @

m Misra-Gries (MG) algorithm finds up to k items that occur
more than 1/k fraction of the time in the input

m Update: Keep k different candidates in hand. For each item:

— If item is monitored, increase its counter

— Else, if < k items monitored, add new item with count 1

— Else, decrease all counts by 1

71
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Streaming MG analysis

m N = total weight of input
m M =sum of counters in data structure
m Errorin any estimated count at most (N-M)/(k+1)

72

6
A
1

ON N

Estimated count a lower bound on true count
Each decrement spread over (k+1) items: 1 new one and k in MG
Equivalent to deleting (k+1) distinct items from stream

At most (N-M)/(k+1) decrement operations

Hence, can have “deleted” (N-M)/(k+1) copies of any item

So estimated counts have at most this much error
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Merging two MG Summaries [ACHPWY ‘12]

m Merge algorithm:
— Merge the counter sets in the obvious way
— Take the (k+1)th largest counter = C,,,, and subtract from all
— Delete non-positive counters
— Sum of remaining counters is M,
m This keeps the same guarantee as Update:
— Merge subtracts at least (k+1)C,,, from counter sums
- So (k+1)C,,; < (M, + M, — Mlz)
— By induction, error is
((N;-M;) + (N,-M,) + (M +M,—M,))/(k+1)=((N;+N,) =M ,)/(k+1)

(prior error) (from merge) (as claimed)
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A Powerful Summary

m MG summary with update and merge is very powerful

Builds a compact summary of the frequency distribution
Can also multiply the summary by any scalar

Hence can take (positive) linear combinations: ax + By
Useful for building models of data

m |deas recently extended to matrix computations

74
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I
Frequent Directions

Input: An n x d matrix A, presented one row at a time
Find k x d matrix Q so for any vector x, Qx approximates Ax
Simple idea: use SVD to focus on most important directions

Given current k x d matrix Q
— Replace last row with new row a,
— Compute SVD of Q as UXV
— Set ¥’ =diag(V(o,%- 0,2), V(0,% - 6,2), ..., V(O ,* - 6,%), V(o2 - 5, %)=0)
— Rescale: Q" =X'VT
m Atstep i, have introduced error based on ¢, = %, , =,

& Streaming, Sketching and Sufficient Statistics



I
Frequent Directions Analysis

m Error (in Frobenius norm) introduced at each step at most 6.2
— Let v, be j'th column of V;and pick any x such that [|x||, = 1

- lax]l,2 = 2. 6% (v - x)2 =2 (072 + 62) (v; - x)?
= Zj:1k Grjz (VJ- . x)2 +Zj=1k 5i2 (VJ- . x)2
<lla’x|,? + 6.2

Observe that ||Q||:2- [|Q[;> =6 + 02+ ... =k 5.2
Adding row a; causes ||Q|:> to increase by [lai(|,?
Hence, ||All2= 2 lla)]l,2 = k 2, 6.2
Summing over all steps, 0 < [|Ax|.,2 - [|Qx[I,2 < Y., 8. = ||All./k
— “Relative error” bounds follow by increasing k [Ghashami Phillips 13]
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Advanced Topics

m Sampling and L, Sampling
— Ly sampling and graph sketching

— L, sampling and frequency moment estimation
m Matrix computations
— Sketches for matrix multiplication |

— Sparse representation via frequent directions Q / ;
m Lower bounds for streaming and sketching

— Basic hard problems (Index, Disjointness)
— Hardness via reductions
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I
Streaming Lower Bounds

m Lower bounds for summaries
— Communication and information complexity bounds
— Simple reductions
— Hardness of Gap-Hamming problem
— Reductions to Gap-Hamming

Alice

v

101110101 ..

A

Bob
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Computation As Communication

79

Alice

v

101110101 ..

A

Bob

Imagine Alice processing a prefix of the input

Then takes the whole working memory, and sends to Bob

Bob continues processing the remainder of the input
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I
Computation As Communication

m Suppose Alice’s part of the input corresponds to string x, and
Bob’s part corresponds to string y...

m ...and computing the function corresponds to computing
f(x,y)...

m ...thenif f(x,y) has communication complexity Q2(g(n)), then the
computation has a space lower bound of €(g(n))

m Proof by contradiction:
If there was an algorithm with better space usage, we could
run it on x, then send the memory contents as a message, and
hence solve the communication problem

80 Streaming, Sketching and Sufficient Statistics



Deterministic Equality Testing

81

101110101 ..

SOOI

101100101 ..

Alice has string x, Bob has string y, want to test if x=y

Consider a deterministic (one-round, one-way) protocol that
sends a message of lengthm <n

There are 2™ possible messages, so some strings must
generate the same message: this would cause error

So a deterministic message (sketch) must be C2(n) bits
— In contrast, we saw a randomized sketch of size O(log n)
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Hard Communication Problems

82

INDEX: Alice’s x is a binary string of length n

Bob’s y is an index in [n]

Goal: output x[y]

Result: (one-way) (randomized) communication complexity of INDEX

is A(n) bits

AUGINDEX: as INDEX, but y additionally contains x[y+1]...x[n]
Result: (one-way) (randomized) complexity of AUGINDEX is (Q(n) bits

DISJ: Alice’s x and Bob’s y are both length n binary strings
Goal: Output 1 if di: x[i]=y[i]=1, else O

Result: (multi-round) (randomized) communication complexity of
DISJ (disjointness) is (2(n) bits
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Hardness of INDEX

m Show hardness of INDEX via Information Complexity argument
— Makes extensive use of Information Theory
m Entropy of random variable X: H(X) =- 2. Pr[X=x] Ig Pr[X=x]
— (Expected) information (in bits) gained by learning value of X
— If X takes on at most N values, H(X) <Ig N
m Conditional Entropy of X given Y: H(X|Y) = 2., Pr[y] H[X|Y=y]
— (Expected) information (bits) gained by learning value of X given Y
m Mutual Information: I(X:Y)=1I(Y : X) = H(X) —H(X | Y)
— Information (in bits) shared by X and Y
— If X, Yareindependent, (X:Y)=0and (XY :Z) > (X :Z) + (Y : Z)
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Information Cost

84

Use Information Theoretic properties to lower bound
communication complexity

Suppose Alice and Bob have random inputs X and Y

Let M be the (random) message sent by Alice in protocol P
The cost of (one-way) protocol P is cost(P) = max | M|

— Worst-case size of message (in bits) sent in the protocol
Define information cost as icost(P) = [(M : X)

— The information conveyed about X in M
— icost(P) = I(M : X) = H(M) — H(M | X) < H(M) < cost(P)
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Information Cost of INDEX

85

Give Alice random input X = n uniform random bits
Given protocol P for INDEX, Alice sends message M(X)
Give Bob inputi. He should output X

icost(P) =1(X; X, ... X, : M)
> (X : M) +1(X,: M) + ... +1(X,: M)

Now consider the mutual information of X, and M
— Have reduced the problem to n instances of a simpler problem

Intuition: I(X; : M) should be at least constant, so cost(P) = ©(n)
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I
Fano’s Inequality

m When forming estimate X’ from X given (message) M, where
X, X’ have k possible values, let E denote X # X’. We have:

H(E) +PriEHesgtety = H(X | M)
where H(E) = -Pr[E]lg Pr[E] — (1-Pr[E]) Ig(1-Pr[E])

m Here, k=2, so we get [(X : M) = H(X) - H(X | M) > H(X) — H(E)
— H(X) =1. If Pr[E]=0, we have H(E) < % for 0<0.1
— Hence I(X,: M) > 7%
m Thus cost(P) > icost(P) > % n if P succeeds w/prob 1-6
— Protocols for INDEX must send Q(n) bits
— Hardness of AUGINDEX follows similarly

86 Streaming, Sketching and Sufficient Statistics



o
Outline for DISJOINTNESS hardness

m Hardness for DISJ follows a similar outline

m Reduce to n instances of the problem “AND”
— “AND” problem: test whether X. =Y. =1

m Show that the information cost of DISJ protocol is sufficient
to solve all n instances of AND

m Show that the information cost of each instance is Q(1)
m Proves that communication cost of DISJ is (2(1)

— Even allowing multiple rounds of communication
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I
Simple Reduction to Disjointness

Xx:101101—— 1,3,4,6

y:000110— 4,5

m F_:output the highest frequency in the input
m Input: the two strings x and y from disjointness instance
m Reduction: if x[i]=1, then puti in input; then same fory
— A streaming reduction (compare to polynomial-time reductions)
m Analysis: if F_=2, then intersection; if F_<1, then disjoint.
m Conclusion: Giving exact answer to F_ requires C2(N) bits

— Even approximating up to 50% relative error is hard
— Even with randomization: DISJ bound allows randomness
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I
Simple Reduction to Index

Xx:101101—— 1,3,4,6

y: 5 — 5

F,: output the number of items in the stream

Input: the strings x and index y from INDEX

Reduction: if x[i]=1, putiin input; then puty in input
Analysis: if (1-g)F ,(xLy)>(1+g)F y(x) then x[y]=1, else itis O

Conclusion: Approximating F, for e<1/N requires QQ(N) bits
— Implies that space to approximate must be Q3(1/¢)
— Bound allows randomization
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I
Reduction to AUGINDEX [Clarkson Woodruff 09]

m Matrix-Multiplication: approximate A™B with error &?||Al|; ||B]|
— Forr x c matrices. A encodes string x, B encodes index y

r/log(cn)

A'B “reads off”
j’'th column of AT

O O O O
O O O O
O O O O
O O O O
O O O O

+1 -1|-2 =2| .. |[X2%k £2k| ..
-1 =11(-2 +2| .. [X2% 2% ..
C +1 +1[+2 -2 .. -J_rzk
-1 =1 |+2 +2| .. |£2k £2%| ..

m Bob uses suffix of x in y to remove heavy entries from A
IBll-=1 IAll: = cr/log (cn) *(1 + 4 + ... 22¢) < 4cr2%¢/3log (cn)

m Choose r= Iog(cn)/882 so permitted error is c 22X / 6&2

OO O OO0OOoOOoOOoOOo
O OO O OO oo oo

— Each error in sign in estimate of (ATB) contributes 2%¢ error
— Can tolerate error in at most 1/6 fraction of entries

m Matrix multiplication requires space Q(rc) = Q(c/e? log (cn))
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I
Streaming Lower Bounds

m Lower bounds for data streams
— Communication complexity bounds
— Simple reductions
— Hardness of Gap—-Hamming problem
— Reductions to Gap-Hamming

Alice

v

101110101 ..

A

Bob
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I
Gap Hamming

Gap-Hamming communication problem:

m Alice holds x € {0,1}N, Bob holdsy € {0,1}N

m Promise: Ham(x,y) is either < N/2 - VN or > N/2 + VN
m Which is the case?

m Model: one message from Alice to Bob

|

Sketching upper bound: need relative error ¢ = VN/F, = 1/VN
— Gives space O(1/¢?) = O(N)

Requires (2(N) bits of one-way randomized communication
[Indyk, Woodruff’03, Woodruff’04, Jayram, Kumar, Sivakumar '07]
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I
Hardness of Gap Hamming

m Reduction starts with an instance of INDEX
— Map stringxtouby1l—+1,0— -1 (i.e. u[i] = 2x[i] -1)

— Assume both Alice and Bob have access to public random
strings r;, where each bit of r; is iid {-1, +1}

— Assume w.l.0.g. that length of string n is odd (important!)
— Alice computes a; = sign(r; - u)
— Bob computes b, = sign(r;[y])
m Repeat N times with different random strings, and consider
the Hamming distance of a,... ay with b, ... b
— Argue if we solve Gap-Hamming on (a, b), we solve INDEX
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I
Probability of a Hamming Error

m Consider the pair a=sign(r; - u), b;=sign(r;[y])
m letw=2,, uli]ri
— wis asum of (n-1) values distributed iid uniform {-1,+1}
m Casel:w=#0. So |w|=2, since (n-1) is even
— so sign(a;) = sign(w), independent of x[y]
— Then Pr(a; # b;] = Pr[sign(w) = sign(r;[y])] = %
m Case2:w=0.
So a; = sign(r;-u) = sign(w + uly]r;[y]) = sign(u[y]r;[y])
— Then Pr[a; # b;] = Pr[sign(uly]r;[y]) = sign(r;[y])]
— This probability is 1 is u[y]=+1, 0 if u[y]=-1
— Completely biased by the answer to INDEX
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I
Finishing the Reduction

m So what is Pr[w=0]?

— wis sum of (n-1) iid uniform {-1,+1} values

_ Then: Priw=0] = 2™(n choose n/2) = ¢/\n, for some constant c
m Do some probability manipulation:

- Prlaj=b]=%+ c¢/2n if x[y]=1

- Prlaj=b]=7%- ¢/27n if x[y]=0
m Amplify this bias by making strings of length N=4n/c?

— Apply Chernoff bound on N instances

_ With prob>2/3, either Ham(a,b)>N/2 + YN or Ham(a,b)<N/2 - VN
m If we could solve Gap-Hamming, could solve INDEX

— Therefore, need QQ(N) = Q(n) bits for Gap-Hamming
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I
Streaming Lower Bounds

m Lower bounds for data streams
— Communication complexity bounds
— Simple reductions
— Hardness of Gap-Hamming problem
— Reductions to Gap—-Hamming

Alice

v

101110101 ..

A

Bob
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Lower Bound for Entropy

97

Gap-Hamming instance—Alice: x € {0,1}", Bob:y € {0,1}N
Entropy estimation algorithm A

Alice runs A on enc(x) = ((1,x,), (2,%5), ..., (N,xy))

Alice sends over memory contents to Bob

Bob continues A on enc(y) = {(1,y,), (2,¥,), ---, (N,yn))

0 1 0 0 1 1
Alice
(1,0) (2,1) (3,0) (4,0) (5,1) (6,1)
(1,1) (2,1) (3,0) (4,0) (5,1) (6,0)
Bob

1 1 0 0 1 0
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I
Lower Bound for Entropy

m Observe: there are
— 2Ham(x,y) tokens with frequency 1 each
— N-Ham(x,y) tokens with frequency 2 each
m So (after algebra), H(S) =log N + Ham(x,y)/N =log N + ¥4 = 1/VN

m If we separate two cases, size of Alice’s memory contents = CQ2(N)
Set € = 1/(V(N) log N) to show bound of Q(g/log 1/g)?)

0 1 0 0 1 1
Alice
(1,0) (2,1) (3,0) (4,0) (5,1) (6,1)
(1,1) (2,1) (3,0) (4,0) (5,1) (6,0)
Bob

1 1 0 0 1 0
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_
Lower Bound for F,

m Same encoding works for F, (Distinct Elements)
— 2Ham(x,y) tokens with frequency 1 each
— N-Ham(x,y) tokens with frequency 2 each

m F,(S)=N+Ham(x,y)

m Either Ham(x,y)>N/2 + YN or Ham(x,y)<N/2 - VN
— If we could approximate F, with ¢ < 1/7N, could separate
— But space bound = QQ(N) = Q(g?) bits

m Dependence on ¢ for F, is tight

m Similar arguments show Q(&2) bounds for F,
— Proof assumes k (and hence 2%) are constants
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I
Summary of Tools

m Vector equality: fingerprints

Approximate item frequencies:

— Count-min, Misra-Gries (L, guarantee), Count sketch (L, guarantee)
Euclidean norm, inner product: AMS sketch, JL sketches
Count-distinct: k-Minimum values, Hyperloglog
Compact set-representation: Bloom filters
Uniform Sampling
L,sampling: hashing and sparse recovery
L, sampling: via count-sketch
Graph sketching: L, samples of neighborhood
Frequency moments: via L, sampling

Matrix sketches: adapt AMS sketches, frequent directions
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I
Summary of Lower Bounds

m Can’t deterministically test equality
m Can’t retrieve arbitrary bits from a vector of n bits: INDEX

— Even if some unhelpful suffix of the vector is given: AUGINDEX
m Can’t determine whether two n bit vectors intersect: DISJ

m Can’t distinguish small differences in Hamming distance:
GAP-HAMMING
m These in turn provide lower bounds on the cost of
— Finding the maximum frequency
— Approximating the number of distinct items
— Approximating matrix multiplication
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Current Directions in Streaming and Sketching

m Sparse representations of high dimensional objects
— Compressed sensing, sparse fast fourier transform
m Numerical linear algebra for (large) matrices
— k-rank approximation, linear regression, PCA, SVD, eigenvalues
m Computations on large graphs
— Sparsification, clustering, matching
m Geometric (big) data
— Coresets, facility location, optimization, machine learning
m Use of summaries in distributed computation
— MapReduce, Continuous Distributed models
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Forthcoming Attractions

m Data Streams Mini Course @Simons
— Prof Andrew McGregor
— Starts early October

m Succinct Data Representations and Applications @ Simons

— September 16-19
O (mara)
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