Streaming, Sketching and Sufficient Statistics

Graham Cormode
University of Warwick
G.Cormode@Warwick.ac.uk
Data is Massive

- Data is growing faster than our ability to store or index it.
- There are 3 Billion Telephone Calls in US each day (100BN minutes), 30B emails daily, 4B SMS, IMs.
- Scientific data: NASA's observation satellites generate billions of readings each per day.
- IP Network Traffic: can be billions packets per hour per router. Each ISP has many (10s of thousands) routers!
- Whole genome readings for individual humans now available: each is many gigabytes in size.
Small Summaries and Sufficient Statistics

- A summary (approximately) allows answering such questions
- To earn the name, should be (very) small
 - Can keep in fast storage
- Should be able to build, update and query efficiently
- Key methods for summaries:
 - Create an empty summary
 - Update with one new tuple: streaming processing
 - Merge summaries together: distributed processing
 - Query: may tolerate some approximation
- A generalized notion of “sufficient statistics”
The CS Perspective

- **Cynical**: “The price of everything and the value of nothing”
 - Optimize the cost of quantities related to a computation
 - The space required to store the sufficient information
 - The time to process each new item, or answer a query
 - The accuracy of the answer (ε)
 - The amount of “true” randomness
 - In terms of size of input n, and chosen parameters

- **Pessimistic**: “A pessimist is never disappointed”
 - Rarely make strong assumptions about the input distribution
 - “the data is the data”: assume fixed input, adversarial ordering
 - Seek to compute a function of the input (not the distribution)
“Probably Approximately Correct”
- Preference for tail bounds on quantities
- Within error ε with probability $1-\delta$
- Use concentration of measure (Markov, Chebyshev, Chernoff...)

“High price of entr(op)y”: Randomness is a limited resource
- We often need “random” bits as a function of i
- Must either store the randomness
- Or use weaker hash functions with small random keys
- Occasionally, assume “fully independent hash functions”

Not too concerned about constant factors
- Most bounds given in $O()$ notation
Data Models

- We model data as a collection of simple tuples.
- Problems hard due to scale and dimension of input.
- Arrivals only model:
 - Example: \((x, 3), (y, 2), (x, 2)\) encodes the arrival of 3 copies of item \(x\), 2 copies of \(y\), then 2 copies of \(x\).
 - Could represent eg. packets on a network; power usage.
- Arrivals and departures:
 - Example: \((x, 3), (y, 2), (x, -2)\) encodes final state of \((x, 1), (y, 2)\).
 - Can represent fluctuating quantities, or measure differences between two distributions.
Part I: Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F_2
- Estimating F_0
- Extensions:
 - Higher frequency moments
 - Combined frequency moments
Part II: Advanced Topics

- Sampling and L_p Sampling
 - L_0 sampling and graph sketching
 - L_2 sampling and frequency moment estimation

- Matrix computations
 - Sketches for matrix multiplication
 - Sparse representation via frequent directions

- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions
Frequency Distributions

- Given set of items, let f_i be the number of occurrences of item i.
- Many natural questions on f_i values:
 - Find those i’s with large f_i values (heavy hitters)
 - Find the number of non-zero f_i values (count distinct)
 - Compute $F_k = \sum_i (f_i)^k$ – the k’th Frequency Moment
 - Compute $H = \sum_i (f_i/F_1) \log (F_1/f_i)$ – the (empirical) entropy

“Space Complexity of the Frequency Moments”
Alon, Matias, Szegedy in STOC 1996
- Awarded Gödel prize in 2005
- Set the pattern for many streaming algorithms to follow
Concentration Bounds

- Will provide randomized algorithms for these problems
- Each algorithm gives a (randomized) estimate of the answer
- Give confidence bounds on the final estimate X
 - Use probabilistic concentration bounds on random variables
- A concentration bound is typically of the form
 \[\Pr[|X - x| > \varepsilon y] < \delta \]
 - At most probability δ of being more than εy away from x
Markov Inequality

- Take any probability distribution X s.t. $\Pr[X < 0] = 0$
- Consider the event $X \geq k$ for some constant $k > 0$
- For any draw of X, $kI(X \geq k) \leq X$
 - Either $0 \leq X < k$, so $I(X \geq k) = 0$
 - Or $X \geq k$, $\text{lhs} = k$
- Take expectations of both sides: $k \Pr[X \geq k] \leq E[X]$
- **Markov inequality**: $\Pr[X \geq k] \leq E[X]/k$
 - Prob of random variable exceeding k times its expectation $< 1/k$
 - Relatively weak in this form, but still useful
Sketch Structures

- **Sketch** is a class of summary that is a linear transform of input
 - \(\text{Sketch}(x) = Sx \) for some matrix \(S \)
 - Hence, \(\text{Sketch}(\alpha x + \beta y) = \alpha \text{Sketch}(x) + \beta \text{Sketch}(y) \)
 - Trivial to update and merge

- Often describe \(S \) in terms of hash functions
 - If hash functions are simple, sketch is fast

- Aim for limited independence hash functions \(h: [n] \rightarrow [m] \)
 - If \(\Pr_{h \in H}[h(i_1)=j_1 \wedge h(i_2)=j_2 \wedge \ldots h(i_k)=j_k] = m^{-k} \)
 then \(H \) is \(k \)-wise independent family ("\(h \) is \(k \)-wise independent")
 - \(k \)-wise independent hash functions take time, space \(O(k) \)
A First Sketch: Fingerprints

- Test if two (distributed) binary vectors are equal:
 \[d = (x, y) = 0 \text{ iff } x = y, 1 \text{ otherwise} \]
- To test in small space: pick a suitable hash function \(h \)
- Test \(h(x) = h(y) \): small chance of false positive, no chance of false negative
- Compute \(h(x), h(y) \) incrementally as new bits arrive
 - How to choose the function \(h() \)?
Polynomial Fingerprints

- Pick \(h(x) = \sum_{i=1}^{n} x_i r^i \mod p \) for prime \(p \), random \(r \in \{1...p-1\} \)
 - Flexible: \(h(x) \) is linear function of \(x \)—easy to update and merge
- For accuracy, note that computation \(\mod p \) is over the field \(\mathbb{Z}_p \)
 - Consider the polynomial in \(\alpha, \sum_{i=1}^{n} (x_i - y_i) \alpha^i = 0 \)
 - Polynomial of degree \(n \) over \(\mathbb{Z}_p \) has at most \(n \) roots
- Probability that \(r \) happens to solve this polynomial is \(n/p \)
- So \(\Pr[h(x) = h(y) \mid x \neq y] \leq n/p \)
 - Pick \(p = \text{poly}(n) \), fingerprints are \(\log p = O(\log n) \) bits
- Fingerprints applied to small subsets of data to test equality
 - Will see several examples that use fingerprints as subroutine
Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F_2
- Estimating F_0
- Extensions:
 - Higher frequency moments
 - Combined frequency moments
Count-Min Sketch

- Simple sketch idea relies primarily on Markov inequality
- Model input data as a vector x of dimension U
- Creates a small summary as an array of $w \times d$ in size
- Use d hash function to map vector entries to $[1..w]$
- Works on arrivals only and arrivals & departures streams
Count-Min Sketch Structure

- Each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Estimate $x[j]$ by taking $\min_k CM[k,h_k(j)]$
 - Guarantees error less than εF_1 in size $O(1/\varepsilon \log 1/\delta)$
 - Probability of more error is less than $1-\delta$

$w = 2/\varepsilon$

$d = \log 1/\delta$

[C, Muthukrishnan '04]
Approximation of Point Queries

Approximate point query \(x'[j] = \min_k CM[k,h_k(j)] \)

- **Analysis:** In \(k \)'th row, \(CM[k,h_k(j)] = x[j] + X_{k,j} \)
 - \(X_{k,j} = \sum_i x[i] \text{I}(h_k(i) = h_k(j)) \)
 - \(E[X_{k,j}] = \sum_{i \neq j} x[i] \Pr[h_k(i) = h_k(j)] \)
 \(\leq \Pr[h_k(i) = h_k(j)] \sum_i x[i] \)
 \(= \varepsilon F_1/2 \) — requires only pairwise independence of \(h \)
 - \(\Pr[X_{k,j} \geq \varepsilon F_1] = \Pr[X_{k,j} \geq 2E[X_{k,j}]] \leq 1/2 \) by Markov inequality
- **So,** \(\Pr[x'[j] \geq x[j] + \varepsilon F_1] = \Pr[\forall k. X_{k,j} > \varepsilon F_1] \leq 1/2 \log 1/\delta = \delta \)
- **Final result:** with certainty \(x[j] \leq x'[j] \) and
 with probability at least \(1-\delta \), \(x'[j] < x[j] + \varepsilon F_1 \)
Applications of Count-Min to Heavy Hitters

- Count-Min sketch lets us estimate f_i for any i (up to εF_1)
- Heavy Hitters asks to find i such that f_i is large ($> \phi F_1$)
- Slow way: test every i after creating sketch
- Alternate way:
 - Keep binary tree over input domain: each node is a subset
 - Keep sketches of all nodes at same level
 - Descend tree to find large frequencies, discard ‘light’ branches
 - Same structure estimates arbitrary range sums
- A first step towards compressed sensing style results...
Application to Large Scale Machine Learning

- In machine learning, often have very large feature space
 - Many objects, each with huge, sparse feature vectors
 - Slow and costly to work in the full feature space
- "Hash kernels": work with a sketch of the features
 - Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09]
- Similar analysis explains why:
 - Essentially, not too much noise on the important features
Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F_2
- Estimating F_0
- Extensions:
 - Higher frequency moments
 - Combined frequency moments
Chebyshev Inequality

- Markov inequality is often quite weak
- But Markov inequality holds for any random variable
- Can apply to a random variable that is a function of X
- Set $Y = (X - E[X])^2$
- By Markov, $Pr[Y > kE[Y]] < 1/k$
 - $E[Y] = E[(X-E[X])^2] = Var[X]$
- Hence, $Pr[|X - E[X]| > \sqrt{k \ Var[X]}] < 1/k$

Chebyshev inequality: $Pr[|X - E[X]| > k] < \frac{Var[X]}{k^2}$
- If $Var[X] \leq \varepsilon^2 E[X]^2$, then $Pr[|X - E[X]| > \varepsilon E[X]] = O(1)$
F₂ estimation

- AMS sketch (for Alon-Matias-Szegedy) proposed in 1996
 - Allows estimation of F₂ (second frequency moment)
 - Used at the heart of many streaming and non-streaming applications: achieves dimensionality reduction
- Here, describe AMS sketch by generalizing CM sketch.
- Uses extra hash functions $g_1...g_{\log \frac{1}{\delta}} \{1...U\} \rightarrow \{+1,-1\}$
 - (Low independence) Rademacher variables
- Now, given update $(j,+c)$, set $CM[k,h_k(j)] += c^*g_k(j)$
Estimate $F_2 = \text{median}_k \sum_i \text{CM}[k,i]^2$

Each row’s result is $\sum_i g(i)^2 x[i]^2 + \sum_{h(i)=h(j)} 2 \ g(i) \ g(j) \ x[i] \ x[j]$

But $g(i)^2 = -1^2 = +1^2 = 1$, and $\sum_i x[i]^2 = F_2$

g(i)g(j) has 1/2 chance of +1 or −1: expectation is 0 ...

$w = 4/\varepsilon^2$

$d=8\log 1/\delta$
F_2 Variance

- Expectation of row estimate $R_k = \sum_i CM[k,i]^2$ is exactly F_2
- Variance of row k, $\text{Var}[R_k]$, is an expectation:
 - $\text{Var}[R_k] = E\left(\sum_{\text{buckets } b} (CM[k,b])^2 - F_2\right)^2$
 - Good exercise in algebra: expand this sum and simplify
 - Many terms are zero in expectation because of terms like $g(a)g(b)g(c)g(d)$ (degree at most 4)
 - Requires that hash function g is *four-wise independent*: it behaves uniformly over subsets of size four or smaller
 - Such hash functions are easy to construct
F_2 Variance

- Terms with odd powers of g(a) are zero in expectation
 - g(a)g(b)g^2(c), g(a)g(b)g(c)g(d), g(a)g^3(b)
- Leaves
 \[\text{Var}[R_k] \leq \sum_i g^4(i) x[i]^4 \]
 \[+ 2 \sum_{j \neq i} g^2(i) g^2(j) x[i]^2 x[j]^2 \]
 \[+ 4 \sum_{h(i) = h(j)} g^2(i) g^2(j) x[i]^2 x[j]^2 \]
 \[- (x[i]^4 + \sum_{j \neq i} 2x[i]^2 x[j]^2) \]
 \[\leq F_2^2/w \]

- Row variance can finally be bounded by \(F_2^2/w \)
 - Chebyshev for \(w=4/\varepsilon^2 \) gives probability \(\frac{1}{4} \) of failure:
 \[\Pr[|R_k - F_2| > \varepsilon^2 F_2] \leq \frac{1}{4} \]
 - How to amplify this to small \(\delta \) probability of failure?
 - Rescaling \(w \) has cost linear in \(1/\delta \)
Tail Inequalities for Sums

- We achieve stronger bounds on tail probabilities for the sum of independent *Bernoulli trials* via the Chernoff Bound:
 - Let X_1, \ldots, X_m be independent Bernoulli trials s.t. $\Pr[X_i=1] = p$
 ($\Pr[X_i=0] = 1-p$).
 - Let $X = \sum_{i=1}^{m} X_i$, and $\mu = mp$ be the expectation of X.
 - Then, for $\varepsilon > 0$, Chernoff bound states:
 $$\Pr[|X - \mu| \geq \varepsilon \mu] \leq 2 \exp(- \frac{1}{2} \mu \varepsilon^2)$$
 - Proved by applying Markov inequality to $Y = \exp(X_1 \cdot X_2 \cdot \ldots \cdot X_m)$
Applying Chernoff Bound

- Each row gives an estimate that is within ε relative error with probability $p' > \frac{3}{4}$

- Take d repetitions and find the median. Why the median?

 - Because bad estimates are either too small or too large
 - Good estimates form a contiguous group “in the middle”
 - At least $d/2$ estimates must be bad for median to be bad

- Apply Chernoff bound to d independent estimates, $p = 1/4$

 - $\Pr[\text{More than } d/2 \text{ bad estimates }] < 2^{\exp(-d/8)}$
 - So we set $d = \Theta(\ln 1/\delta)$ to give δ probability of failure

- Same outline used many times in summary construction
Applications and Extensions

- F_2 guarantee: estimate $\|x\|_2$ from sketch with error $\varepsilon \|x\|_2$
 - Since $\|x + y\|_2^2 = \|x\|_2^2 + \|y\|_2^2 + 2x \cdot y$
 Can estimate $(x \cdot y)$ with error $\varepsilon \|x\|_2 \|y\|_2$
 - If $y = e_j$, obtain $(x \cdot e_j) = x_j$ with error $\varepsilon \|x\|_2$:
 L_2 guarantee ("Count Sketch") vs L_1 guarantee (Count-Min)

- Can view the sketch as a low-independence realization of the Johnson-Lindenstrauss lemma
 - Best current JL methods have the same structure
 - JL is stronger: embeds directly into Euclidean space
 - JL is also weaker: requires $O(1/\varepsilon)$-wise hashing, $O(\log 1/\delta)$ independence [Kane, Nelson 12]
Sketches and Frequency Moments

- Frequency Moments and Sketches
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F_2
- Estimating F_0
- Extensions:
 - Higher frequency moments
 - Combined frequency moments
F₀ Estimation

- F₀ is the number of distinct items in the stream
 - a fundamental quantity with many applications
- Early algorithms by Flajolet and Martin [1983] gave nice hashing-based solution
 - analysis assumed fully independent hash functions
- Will describe a generalized version of the FM algorithm due to Bar-Yossef et. al with only pairwise independence
 - Known as the “k-Minimum values (KMV)” algorithm
\textbf{F_0 Algorithm}

- Let m be the domain of stream elements
 - Each item in data is from $[1...m]$
- Pick a random (pairwise) hash function $h: [m] \rightarrow [m^3]$
 - With probability at least $1-1/m$, no collisions under h
- For each stream item i, compute $h(i)$, and track the t distinct items achieving the smallest values of $h(i)$
 - \textbf{Note}: if same i is seen many times, $h(i)$ is same
 - Let $v_t = t$'th smallest (distinct) value of $h(i)$ seen
- If $F_0 < t$, give exact answer, else estimate $F'_0 = tm^3/v_t$
 - $v_t/m^3 \approx$ fraction of hash domain occupied by t smallest
Analysis of F_0 algorithm

- Suppose $F'_0 = \frac{tm^3}{v_t} > (1+\varepsilon) F_0$ [estimate is too high]

- So for input = set $S \in 2^m$, we have
 - $|\{ s \in S \mid h(s) < \frac{tm^3}{(1+\varepsilon)F_0} \}| > t$
 - Because $\varepsilon < 1$, we have $\frac{tm^3}{(1+\varepsilon)F_0} \leq (1-\varepsilon/2)\frac{tm^3}{F_0}$
 - $Pr[h(s) < (1-\varepsilon/2)\frac{tm^3}{F_0}] \approx 1/m^3 \ast (1-\varepsilon/2)\frac{tm^3}{F_0} = (1-\varepsilon/2)t/F_0$

- (this analysis outline hides some rounding issues)
Chebyshev Analysis

- Let \(Y \) be number of items hashing to under \(\frac{tm^3}{(1+\varepsilon)F_0} \)
 - \(E[Y] = F_0 \times Pr[h(s) < \frac{tm^3}{(1+\varepsilon)F_0}] = (1-\varepsilon/2)t \)
 - For each item \(i \), variance of the event = \(p(1-p) < p \)
 - \(\text{Var}[Y] = \sum_{s \in S} \text{Var}[h(s) < \frac{tm^3}{(1+\varepsilon)F_0}] < (1-\varepsilon/2)t \)
 - We sum variances because of pairwise independence

- Now apply Chebyshev inequality:
 - \(\Pr[Y > t] \leq \Pr[|Y - E[Y]| > \varepsilon t/2] \)
 \(\leq 4\text{Var}[Y]/\varepsilon^2 t^2 \)
 \(< 4t/(\varepsilon^2 t^2) \)
 - Set \(t=20/\varepsilon^2 \) to make this \(\text{Prob} \leq 1/5 \)
Completing the analysis

We have shown
\[\Pr[F'_0 > (1+\varepsilon) F_0] < 1/5 \]

Can show \(\Pr[F'_0 < (1-\varepsilon) F_0] < 1/5 \) similarly
 - too few items hash below a certain value

So \(\Pr[(1-\varepsilon) F_0 \leq F'_0 \leq (1+\varepsilon)F_0] > 3/5 \) [Good estimate]

Amplify this probability: repeat \(O(\log 1/\delta) \) times in parallel with different choices of hash function \(h \)
 - Take the median of the estimates, analysis as before
F₀ Issues

- **Space cost:**
 - Store t hash values, so $O(1/\varepsilon^2 \log m)$ bits
 - Can improve to $O(1/\varepsilon^2 + \log m)$ with additional tricks

- **Time cost:**
 - Find if hash value $h(i) < v_t$
 - Update v_t and list of t smallest if $h(i)$ not already present
 - Total time $O(\log 1/\varepsilon + \log m)$ worst case
Count-Distinct

- Engineering the best constants: Hyperloglog algorithm
 - Hash each item to one of $1/\varepsilon^2$ buckets (like Count-Min)
 - In each bucket, track the function $\max \lceil \log(h(x)) \rceil$
 - Can view as a coarsened version of KMV
 - Space efficient: need $\log \log m \approx 6$ bits per bucket
- Can estimate intersections between sketches
 - Make use of identity $|A \cap B| = |A| + |B| - |A \cup B|$
 - Error scales with $\varepsilon \sqrt{|A| \cdot |B|}$, so poor for small intersections
 - Higher order intersections via inclusion-exclusion principle
Bloom Filters

- **Bloom filters** compactly encode set membership
 - k hash functions map items to bit vector k times
 - Set all k entries to 1 to indicate item is present
 - Can lookup items, store set of size n in $O(n)$ bits

- Duplicate insertions do not change Bloom filters
- Can **merge** by OR-ing vectors (of same size)
Bloom Filter analysis

- How to set \(k \) (number of hash functions), \(m \) (size of filter)?
- False positive: when all \(k \) locations for an item are set
 - If \(\rho \) fraction of cells are empty, false positive probability is \((1-\rho)^k\)
- Consider probability of any cell being empty:
 - For \(n \) items, \(\Pr[\text{cell j is empty}] = (1 - 1/m)^{kn} \approx \rho \approx \exp(-kn/m) \)
 - False positive prob = \((1 - \rho)^k = \exp(k \ln(1 - \rho)) = \exp(-m/n \ln(\rho) \ln(1-\rho))\)
- For fixed \(n, m \), by symmetry minimized at \(\rho = \frac{1}{2} \)
 - Half cells are occupied, half are empty
 - Give \(k = (m/n)\ln 2 \), false positive rate is \(\frac{1}{2}^k \)
 - Choose \(m = cn \) to get constant FP rate, e.g. \(c=10 \) gives < 1% FP
Bloom Filters Applications

- Bloom Filters widely used in “big data” applications
 - Many problems require storing a large set of items
- Can generalize to allow deletions
 - Swap bits for counters: increment on insert, decrement on delete
 - If representing sets, small counters suffice: 4 bits per counter
 - If representing multisets, obtain sketches (next lecture)
- Bloom Filters are an active research area
 - Several papers on topic in every networking conference...
Frequency Moments

- Intro to frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F_2
- Estimating F_0

- Extensions:
 - Higher frequency moments
 - Combined frequency moments
Higher Frequency Moments

- F_k for $k>2$. Use a sampling trick [Alon et al 96]:
 - Uniformly pick an item from the stream length $1...n$
 - Set $r =$ how many times that item appears subsequently
 - Set estimate $F'_k = n (r^k - (r-1)^k)$

- $E[F'_k] = 1/n \cdot n \cdot [f_1^k - (f_1-1)^k + (f_1-1)^k - (f_1-2)^k + ... + 1^k - 0^k] + ...$
 - $= f_1^k + f_2^k + ... = F_k$

- $Var[F'_k] \leq 1/n \cdot n^2 \cdot [(f_1^k - (f_1-1)^k)^2 + ...]$
 - Use various bounds to bound the variance by $k \cdot m^{1-1/k} \cdot F_k^2$
 - Repeat $k \cdot m^{1-1/k}$ times in parallel to reduce variance

- Total space needed is $O(k \cdot m^{1-1/k})$ machine words
 - Not a sketch: does not distribute easily. See part 2!
Combined Frequency Moments

- Let $G[i,j] = 1$ if (i,j) appears in input. E.g. graph edge from i to j. Total of m distinct edges.
- Let $d_i = \sum_{j=1}^{n} G[i,j]$ (aka degree of node i).
- Find aggregates of d_i's:
 - Estimate heavy d_i's (people who talk to many).
 - Estimate frequency moments:
 - number of distinct d_i values, sum of squares
 - Range sums of d_i’s (subnet traffic)
- **Approach**: nest one sketch inside another, e.g. HLL inside CM
 - Requires new analysis to track overall error.
Range Efficiency

- Sometimes input is specified as a collection of ranges \([a,b]\)
 - \([a,b]\) means insert all items \((a, a+1, a+2 \ldots b)\)
 - Trivial solution: just insert each item in the range
- **Range efficient** \(F_0\) [Pavan, Tirthapura 05]
 - Start with an alg for \(F_0\) based on pairwise hash functions
 - Key problem: track which items hash into a certain range
 - Dives into hash fns to divide and conquer for ranges
- **Range efficient** \(F_2\) [Calderbank et al. 05, Rusu, Dobra 06]
 - Start with sketches for \(F_2\) which sum hash values
 - Design new hash functions so that range sums are fast
- **Rectangle Efficient** \(F_0\) [Tirthapura, Woodruff 12]
Forthcoming Attractions

- Data Streams Mini Course @Simons
 - Prof Andrew McGregor
 - Starts early October

- Succinct Data Representations and Applications @ Simons
 - September 16-19
Streaming, Sketching and Sufficient Statistics

Graham Cormode
University of Warwick
G.Cormode@Warwick.ac.uk
Recap

- Sketching Techniques summarize large data sets
- **Summarize vectors:**
 - Test equality (fingerprints)
 - Recover approximate entries (count-min, count sketch)
 - Approximate Euclidean norm (F_2) and dot product
 - Approximate number of non-zero entries (F_0)
 - Approximate set membership (Bloom filter)
Part II: Advanced Topics

- Sampling and L_p Sampling
 - L_0 sampling and graph sketching
 - L_2 sampling and frequency moment estimation

- Matrix computations
 - Sketches for matrix multiplication
 - Sparse representation via frequent directions

- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions
Sampling From a Large Input

- **Fundamental prob:** sample m items uniformly from data
 - **Useful:** approximate costly computation on small sample

- **Challenge:** don’t know how large total input is
 - So when/how often to sample?

- **Several solutions, apply to different situations:**
 - Reservoir sampling (dates from 1980s?)
 - Min-wise sampling (dates from 1990s?)
Min-wise Sampling

- For each item, pick a random fraction between 0 and 1
- Store item(s) with the smallest random tag [Nath et al.’04]

- Each item has same chance of least tag, so uniform
- Can run on multiple inputs separately, then merge
- Applications in geometry: basic ε-approximations are samples
 - Estimate number of points falling in a range (bounded VC dim)
Sampling from Sketches

- Given inputs with positive and negative weights
- Want to sample based on the overall frequency distribution
 - Sample from support set of n possible items
 - Sample proportional to (absolute) weights
 - Sample proportional to some function of weights
- How to do this sampling effectively?
- Recent approach: L_p sampling
L_p Sampling

- **L_p sampling**: use sketches to sample with prob $(1 \pm \varepsilon) \frac{f_i^p}{\|f\|_p^p}$
- “Efficient” solutions developed of size $O(\varepsilon^{-2} \log^2 n)$
 - [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11]
- **L_0 sampling** enables novel “graph sketching” techniques
 - Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12]
- **L_2 sampling** allows optimal estimation of frequency moments
L₀ Sampling

- L₀ sampling: sample with prob \((1\pm \varepsilon) \frac{f_i^0}{F_0}\)
 - i.e., sample (near) uniformly from items with non-zero frequency

- General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]
 - Sub-sample all items (present or not) with probability \(p\)
 - Generate a sub-sampled vector of frequencies \(f_p\)
 - Feed \(f_p\) to a \(k\)-sparse recovery data structure
 - Allows reconstruction of \(f_p\) if \(F_0 < k\)
 - If \(f_p\) is \(k\)-sparse, sample from reconstructed vector
 - Repeat in parallel for exponentially shrinking values of \(p\)
Sampling Process

- Exponential set of probabilities, \(p=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}...\ \frac{1}{U} \)
 - Let \(N = F_0 = |\{ i : f_i \neq 0\}| \)
 - Want there to be a level where k-sparse recovery will succeed
 - At level \(p \), expected number of items selected \(S \) is \(Np \)
 - Pick level \(p \) so that \(\frac{k}{3} < Np \leq \frac{2k}{3} \)

- Chernoff bound: with probability exponential in \(k \), \(1 \leq S \leq k \)
 - Pick \(k = O(\log \frac{1}{\delta}) \) to get \(1-\delta \) probability
k-Sparse Recovery

- Given vector x with at most k non-zeros, recover x via sketching
 - A core problem in compressed sensing/compressive sampling
- **First approach**: Use Count-Min sketch of x
 - Probe all U items, find those with non-zero estimated frequency
 - Slow recovery: takes $O(U)$ time
- **Faster approach**: also keep sum of item identifiers in each cell
 - Sum/count will reveal item id
 - Avoid false positives: keep fingerprint of items in each cell
- Can keep a sketch of size $O(k \log U)$ to recover up to k items

<table>
<thead>
<tr>
<th>Sum, $\sum_{i \cdot h(i) = j} i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count, $\sum_{i \cdot h(i) = j} x_i$</td>
</tr>
<tr>
<td>Fingerprint, $\sum_{i \cdot h(i) = j} x_i r_i$</td>
</tr>
</tbody>
</table>
Uniformity

- Also need to argue sample is uniform
 - Failure to recover could bias the process
- $\Pr[i \text{ would be picked if } k=n] = 1/F_0$ by symmetry
- $\Pr[i \text{ is picked }] = \Pr[i \text{ would be picked if } k=n \land S \leq k] \geq (1-\delta)/F_0$
- So $(1-\delta)/N \leq \Pr[i \text{ is picked }] \leq 1/N$
- Sufficiently uniform (pick $\delta = \varepsilon$)
Application: Graph Sketching

- Given L_0 sampler, use to sketch (undirected) graph properties
- **Connectivity**: want to test if there is a path between all pairs
- **Basic alg**: repeatedly contract edges between components
- Use L_0 sampling to provide edges on vector of adjacencies
- **Problem**: as components grow, sampling most likely to produce internal links
Graph Sketching

- **Idea**: use clever encoding of edges [Ahn, Guha, McGregor 12]
- Encode edge \((i, j)\) as \(((i, j), +1)\) for node \(i < j\), as \(((i, j), -1)\) for node \(j > i\)
- When node \(i\) and node \(j\) get merged, sum their \(L_0\) sketches
 - Contribution of edge \((i, j)\) exactly cancels out
- Only non-internal edges remain in the \(L_0\) sketches
- Use independent sketches for each iteration of the algorithm
 - Only need \(O(\log n)\) rounds with high probability
- **Result**: \(O(\text{poly-log } n)\) space per node for connectivity
Other Graph Results via sketching

- **K-connectivity via connectivity**
 - Use connectivity result to find and remove a spanning forest
 - Repeat k times to generate k spanning forests F_1, F_2, \ldots, F_k
 - **Theorem:** G is k-connected if $\cup_{i=1}^k F_i$ is k-connected

- **Bipartiteness via connectivity:**
 - Compute $c =$ number of connected components in G
 - Generate G' over $V \cup V'$ so $(u,v) \in E \Rightarrow (u, v') \in E'$, $(u', v) \in E'$
 - If G is bipartite, G' has $2c$ components, else it has $<2c$ components

- **Minimum spanning tree:**
 - Round edge weights to powers of $(1+\varepsilon)$
 - Define $n_i =$ number of components on edges lighter than $(1+\varepsilon)^i$
 - **Fact:** weight of MST on rounded weights is $\sum_i \varepsilon(1+\varepsilon)^i n_i$
Application: F_k via L_2 Sampling

- Recall, $F_k = \sum_i f_i^k$
- Suppose L_2 sampling samples f_i with probability f_i^2/F_2
 - And also estimates sampled f_i with relative error ϵ
- Estimator: $X = F_2 f_i^{k-2}$ (with estimates of F_2, f_i)
 - Expectation: $E[X] = F_2 \sum_i f_i^{k-2} \cdot f_i^2 / F_2 = F_k$
 - Variance: $Var[X] \leq E[X^2] = \sum_i f_i^2 / F_2 (F_2 f_i^{k-2})^2 = F_2 F_2k-2$

Rewriting the Variance

- Want to express variance $F_2 F_{2k-2}$ in terms of F_k and domain size n
- Hölder’s inequality: $\langle x, y \rangle \leq \|x\|_p \|y\|_q$ for $1 \leq p, q$ with $1/p + 1/q = 1$
 - Generalizes Cauchy-Shwarz inequality, where $p=q=2$.
- So pick $p = k/(k-2)$ and $q = k/2$ for $k > 2$. Then
 $$\langle 1^n, (f_i)^2 \rangle \leq \|1^n\|_{k/(k-2)} \|(f_i)^2\|_{k/2}$$
 $$F_2 \leq n^{(k-2)/k} F_k^{2/k}$$ (1)
- Also, since $\|x\|_{p+a} \leq \|x\|_p$ for any $p \geq 1, a > 0$
 - Thus $\|x\|_{2k-2} \leq \|x\|_k$ for $k \geq 2$
 - So $F_{2k-2} = \|f\|_{2k-2}^{2k-2} \leq \|f\|_k^{2k-2} = F_k^{2-2/k}$ (2)
- Multiply (1) * (2): $F_2 F_{2k-2} \leq n^{1-2/k} F_k^2$
 - So variance is bounded by $n^{1-2/k} F_k^2$
F_k Estimation

- For $k \geq 3$, we can estimate F_k via L_2 sampling:
 - Variance of our estimate is $O(F_k^2 n^{1-2/k})$
 - Take mean of $n^{1-2/k} \varepsilon^{-2}$ repetitions to reduce variance
 - Apply Chebyshev inequality: constant prob of good estimate
 - Chernoff bounds: $O(\log 1/\delta)$ repetitions reduces prob to δ

- How to instantiate this?
 - Design method for approximate L_2 sampling via sketches
 - Show that this gives relative error approximation of f_i
 - Use approximate value of F_2 from sketch
 - Complicates the analysis, but bound stays similar
L₂ Sampling Outline

- For each \(i \), draw \(u_i \) uniformly in the range 0...1
 - From vector of frequencies \(f \), derive \(g \) so \(g_i = f_i / \sqrt{u_i} \)
 - Sketch \(g_i \) vector

- **Sample**: return \((i, f_i)\) if there is unique \(i \) with \(g_i^2 > t = F_2 / \varepsilon \) threshold
 - \(\Pr[g_i^2 > t \land \forall j \neq i : g_j^2 < t] = \Pr[g_i^2 > t] \prod_{j \neq i} \Pr[g_j^2 < t] \)
 - \(= \Pr[u_i < \varepsilon f_i^2 / F_2] \prod_{j \neq i} \Pr[u_j > \varepsilon f_j^2 / F_2] \)
 - \(= (\varepsilon f_i^2 / F_2) \prod_{j \neq i} (1 - \varepsilon f_j^2 / F_2) \)
 - \(\approx \varepsilon f_i^2 / F_2 \)

- Probability of returning anything is not so big: \(\sum_i \varepsilon f_i^2 / F_2 = \varepsilon \)
 - Repeat \(O(1/\varepsilon \log 1/\delta) \) times to improve chance of sampling
L₂ sampling continued

- Given (estimated) \(g_i \) s.t. \(g_i^2 \geq F_2/\varepsilon \), estimate \(f_i = u_i g_i \)
- Sketch size \(O(\varepsilon^{-1} \log n) \) means estimate of \(f_i^2 \) has error \((\varepsilon f_i^2 + u_i^2) \)
 - With high prob, no \(u_i < 1/\text{poly}(n) \), and so \(F_2(g) = O(F_2(f) \log n) \)
 - Since estimated \(f_i^2/u_i^2 \geq F_2/\varepsilon \), \(u_i^2 \leq \varepsilon f_i^2/F_2 \)
- Estimating \(f_i^2 \) with error \(\varepsilon f_i^2 \) sufficient for estimating \(F_k \)

- Many details omitted
 - See Precision Sampling paper [Andoni Krauthgamer Onak 11]
Advanced Topics

- Sampling and L_p Sampling
 - L_0 sampling and graph sketching
 - L_2 sampling and frequency moment estimation
- Matrix computations
 - Sketches for matrix multiplication
 - Sparse representation via frequent directions
- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions
Matrix Sketching

- Given matrices A, B, want to approximate matrix product AB
- Compute normed error of approximation C: $\|AB - C\|$
- Give results for the Frobenius (entrywise) norm $\|\cdot\|_F$
 - $\|C\|_F = (\sum_{i,j} C_{i,j}^2)^{\frac{1}{2}}$
 - Results rely on sketches, so this norm is most natural
Direct Application of Sketches

- Build sketch of each row of A, each column of B
- Estimate $C_{i,j}$ by estimating inner product of A_i with B^j
- Absolute error in estimate is $\varepsilon \|A_i\|_2 \|B^j\|_2$ (whp)
- Sum over all entries in matrix, squared error is
 \[\varepsilon^2 \sum_{i,j} \|A_i\|_2^2 \|B^j\|_2^2 = \varepsilon^2 (\sum_i \|A_i\|_2^2)(\sum_j \|B^j\|_2^2) \]
 \[= \varepsilon^2 (\|A\|_F^2)(\|B\|_F^2) \]
- Hence, Frobenius norm of error is $\varepsilon \|A\|_F \|B\|_F$
- Problem: need the bound to hold for all sketches simultaneously
 - Requires polynomially small failure probability
 - Increases sketch size by logarithmic factors
Improved Matrix Multiplication Analysis

- Simple analysis is too pessimistic [Clarkson Woodruff 09]
 - It bounds probability of failure of each sketch independently
- A better approach is to directly analyze variance of error
 - Immediately, each estimate of (AB) has variance $\varepsilon^2 \|A\|_F^2 \|B\|_F^2$
 - Just need to apply Chebyshev inequality to sum... almost
- Problem: how to amplify probability of correctness?
 - ‘Median’ trick doesn’t work: what is median of set of matrices?
 - Find an estimate which is close to most others
 - Estimate $\|A\|_F^2 \|B\|_F^2 := d$ using sketches
 - Find an estimate that’s closer than $d/2$ to more than $\frac{1}{2}$ the rest
 - We find an estimate with this property with probability $1-\delta$
More directly approximate matrix multiplication:
- use more powerful hash functions in sketching
- obtain a single accurate estimate with high probability

Linear regression given matrix A and vector b:
find $x \in \mathbb{R}^d$ to (approximately) solve $\min_x \|Ax - b\|
- Approach: solve the minimization in “sketch space”
- Require a summary of size $O(d^2/\varepsilon \log 1/\delta)$
Frequent Items and Frequent Directions

- A deterministic algorithm for tracking item frequencies
 - With a recent analysis of its performance
 - Unusually, it is deterministic
- Inspiring an algorithm for tracking matrix properties
 - Due to [Liberty 13], extended by [Ghashami Phillips 13]
Misra-Gries Summary (1982)

- **Misra-Gries (MG) algorithm** finds up to k items that occur more than $1/k$ fraction of the time in the input.

- **Update**: Keep k different candidates in hand. For each item:
 - If item is monitored, increase its counter.
 - Else, if $< k$ items monitored, add new item with count 1.
 - Else, decrease all counts by 1.
Streaming MG analysis

- $N =$ total weight of input
- $M =$ sum of counters in data structure
- **Error** in any estimated count at most $(N - M)/(k + 1)$
 - Estimated count a lower bound on true count
 - Each decrement spread over $(k + 1)$ items: 1 new one and k in MG
 - Equivalent to deleting $(k + 1)$ distinct items from stream
 - At most $(N - M)/(k + 1)$ decrement operations
 - Hence, can have “deleted” $(N - M)/(k + 1)$ copies of any item
 - So estimated counts have at most this much error
Merging two MG Summaries [ACHPWY ‘12]

Merge algorithm:
- Merge the counter sets in the obvious way
- Take the \((k+1)\)th largest counter \(= C_{k+1}\), and subtract from all
- Delete non-positive counters
- Sum of remaining counters is \(M_{12}\)

This keeps the same guarantee as Update:
- Merge subtracts at least \((k+1)C_{k+1}\) from counter sums
- So \((k+1)C_{k+1} \leq (M_1 + M_2 - M_{12})\)
- By induction, error is
 \[
 ((N_1-M_1) + (N_2-M_2) + (M_1+M_2-M_{12}))/\!(k+1) = ((N_1+N_2) - M_{12})/(k+1)
 \]
 (prior error) (from merge) (as claimed)
A Powerful Summary

- MG summary with update and merge is very powerful
 - Builds a compact summary of the frequency distribution
 - Can also multiply the summary by any scalar
 - Hence can take (positive) linear combinations: $\alpha x + \beta y$
 - Useful for building models of data

- Ideas recently extended to matrix computations
Frequent Directions

- **Input**: An \(n \times d \) matrix \(A \), presented one row at a time
- Find \(k \times d \) matrix \(Q \) so for any vector \(x \), \(Qx \) approximates \(Ax \)
- **Simple idea**: use SVD to focus on most important directions
- Given current \(k \times d \) matrix \(Q \)
 - Replace last row with new row \(a_i \)
 - Compute SVD of \(Q \) as \(U\Sigma V \)
 - Set \(\Sigma' = \text{diag}(\sqrt{\sigma_1^2 - \sigma_k^2}, \sqrt{\sigma_2^2 - \sigma_k^2}, \ldots, \sqrt{\sigma_{k-1}^2 - \sigma_k^2}, \sqrt{\sigma_k^2 - \sigma_k^2}) = 0) \)
 - Rescale: \(Q' = \Sigma'V^T \)
- At step \(i \), have introduced error based on \(\delta_i = \Sigma_{k,k} = \sigma_k \)
Frequent Directions Analysis

- Error (in Frobenius norm) introduced at each step at most δ_i^2
 - Let v_j be j'th column of V_j and pick any x such that $\|x\|_2 = 1$
 - $\|Qx\|_2^2 = \sum_{j=1}^{k} \sigma_j^2 (v_j \cdot x)^2 = \sum_{j=1}^{k} (\sigma'_j^2 + \delta_i^2) (v_j \cdot x)^2$
 $= \sum_{j=1}^{k} \sigma'_j^2 (v_j \cdot x)^2 + \sum_{j=1}^{k} \delta_i^2 (v_j \cdot x)^2$
 $\leq \|Q'x\|_2^2 + \delta_i^2$

- Observe that $\|Q'\|_F^2 - \|Q\|_F^2 = \delta_i^2 + \delta_i^2 + ... = k \delta_i^2$
- Adding row a_i causes $\|Q\|_F^2$ to increase by $\|a_i\|_2^2$
- Hence, $\|A\|_F^2 = \sum_i \|a_i\|_2^2 = k \sum_i \delta_i^2$
- Summing over all steps, $0 \leq \|Ax\|_2^2 - \|Qx\|_2^2 \leq \sum_i \delta_i^2 = \|A\|_F/k$
 - “Relative error” bounds follow by increasing k [Ghashami Phillips 13]
Advanced Topics

- Sampling and L_p Sampling
 - L_0 sampling and graph sketching
 - L_2 sampling and frequency moment estimation

- Matrix computations
 - Sketches for matrix multiplication
 - Sparse representation via frequent directions

- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions
Streaming Lower Bounds

- Lower bounds for summaries
 - Communication and information complexity bounds
 - Simple reductions
 - Hardness of Gap-Hamming problem
 - Reductions to Gap-Hamming

1 0 1 1 1 0 1 0 1 ...

Alice

Bob
Computation As Communication

- Imagine Alice processing a prefix of the input
- Then takes the whole working memory, and sends to Bob
- Bob continues processing the remainder of the input
Suppose Alice’s part of the input corresponds to string x, and Bob’s part corresponds to string y...

...and computing the function corresponds to computing $f(x,y)$...

...then if $f(x,y)$ has communication complexity $\Omega(g(n))$, then the computation has a space lower bound of $\Omega(g(n))$

Proof by contradiction:
If there was an algorithm with better space usage, we could run it on x, then send the memory contents as a message, and hence solve the communication problem
Alice has string \(x \), Bob has string \(y \), want to test if \(x = y \)

Consider a deterministic (one-round, one-way) protocol that sends a message of length \(m < n \)

There are \(2^m \) possible messages, so some strings must generate the same message: this would cause error

So a deterministic message (sketch) must be \(\Omega(n) \) bits
 – In contrast, we saw a randomized sketch of size \(O(\log n) \)
Hard Communication Problems

- **INDEX**: Alice’s x is a binary string of length n
 Bob’s y is an index in $[n]$
 Goal: output $x[y]$
 Result: (one-way) (randomized) communication complexity of **INDEX** is $\Omega(n)$ bits

- **AUGINDEX**: as **INDEX**, but y additionally contains $x[y+1]...x[n]$
 Result: (one-way) (randomized) complexity of **AUGINDEX** is $\Omega(n)$ bits

- **DISJ**: Alice’s x and Bob’s y are both length n binary strings
 Goal: Output 1 if $\exists i: x[i]=y[i]=1$, else 0
 Result: (multi-round) (randomized) communication complexity of **DISJ** (disjointness) is $\Omega(n)$ bits
Hardness of INDEX

- Show hardness of INDEX via Information Complexity argument
 - Makes extensive use of Information Theory
- Entropy of random variable X: $H(X) = - \sum_x \Pr[X=x] \, \lg \Pr[X=x]$
 - (Expected) information (in bits) gained by learning value of X
 - If X takes on at most N values, $H(X) \leq \lg N$
- Conditional Entropy of X given Y: $H(X|Y) = \sum_y \Pr[y] \, H[X|Y=y]$
 - (Expected) information (bits) gained by learning value of X given Y
- Mutual Information: $I(X : Y) = I(Y : X) = H(X) - H(X | Y)$
 - Information (in bits) shared by X and Y
 - If X, Y are independent, $I(X : Y) = 0$ and $I(XY : Z) \geq I(X : Z) + I(Y : Z)$
Information Cost

- Use Information Theoretic properties to lower bound communication complexity
- Suppose Alice and Bob have random inputs \(X \) and \(Y \)
- Let \(M \) be the (random) message sent by Alice in protocol \(P \)
- The cost of (one-way) protocol \(P \) is \(\text{cost}(P) = \max |M| \)
 - Worst-case size of message (in bits) sent in the protocol
- Define information cost as \(\text{icost}(P) = I(M : X) \)
 - The information conveyed about \(X \) in \(M \)
 - \(\text{icost}(P) = I(M : X) = H(M) - H(M | X) \leq H(M) \leq \text{cost}(P) \)
Information Cost of INDEX

- Give Alice random input $X = n$ uniform random bits
- Given protocol P for INDEX, Alice sends message $M(X)$
- Give Bob input i. He should output X_i
- \[\text{icost}(P) = I(X_1 X_2 \ldots X_n : M) \geq I(X_1 : M) + I(X_2 : M) + \ldots + I(X_n : M) \]
- Now consider the mutual information of X_i and M
 - Have reduced the problem to n instances of a simpler problem
- **Intuition:** $I(X_j : M)$ should be at least constant, so $\text{cost}(P) = \Theta(n)$
Fano’s Inequality

- When forming estimate X' from X given (message) M, where X, X' have k possible values, let E denote $X \neq X'$. We have:
 \[H(E) + \Pr[E] \log(k-1) \geq H(X \mid M) \]
 where $H(E) = -\Pr[E] \lg \Pr[E] - (1-\Pr[E]) \lg(1-\Pr[E])$

- Here, $k=2$, so we get $I(X : M) = H(X) - H(X \mid M) \geq H(X) - H(E)$
 - $H(X) = 1$. If $\Pr[E]=\delta$, we have $H(E) < \frac{1}{2}$ for $\delta<0.1$
 - Hence $I(X_i : M) > \frac{1}{2}$

- Thus $\text{cost}(P) \geq \text{i}cost(P) > \frac{1}{2} n$ if P succeeds w/prob $1-\delta$
 - Protocols for INDEX must send $\Omega(n)$ bits
 - Hardness of AUGINDEX follows similarly
Outline for DISJOINTNESS hardness

- Hardness for **DISJ** follows a similar outline
- Reduce to n instances of the problem "**AND**"
 - "**AND**" problem: test whether $X_i = Y_i = 1$
- Show that the information cost of **DISJ** protocol is sufficient to solve all n instances of **AND**
- Show that the information cost of each instance is $\Omega(1)$
- Proves that communication cost of **DISJ** is $\Omega(1)$
 - Even allowing *multiple rounds* of communication
Simple Reduction to Disjointness

- F_∞: output the highest frequency in the input
- Input: the two strings x and y from disjointness instance
- Reduction: if $x[i]=1$, then put i in input; then same for y
 - A streaming reduction (compare to polynomial-time reductions)
- Analysis: if $F_\infty=2$, then intersection; if $F_\infty\leq 1$, then disjoint.
- Conclusion: Giving exact answer to F_∞ requires $\Omega(N)$ bits
 - Even approximating up to 50% relative error is hard
 - Even with randomization: DISJ bound allows randomness

$x: 1\ 0\ 1\ 1\ 0\ 1 \rightarrow 1,\ 3,\ 4,\ 6$

$y: 0\ 0\ 0\ 1\ 1\ 0 \rightarrow 4,\ 5$
Simple Reduction to Index

- \(F_0 \): output the number of items in the stream
- **Input**: the strings \(x \) and index \(y \) from **INDEX**
- **Reduction**: if \(x[i]=1 \), put \(i \) in input; then put \(y \) in input
- **Analysis**: if \((1-\varepsilon)F'_0(x \cup y) > (1+\varepsilon)F'_0(x)\) then \(x[y]=1 \), else it is 0
- **Conclusion**: Approximating \(F_0 \) for \(\varepsilon < 1/N \) requires \(\Omega(N) \) bits
 - Implies that space to approximate must be \(\Omega(1/\varepsilon) \)
 - Bound allows randomization
Matrix-Multiplication: approximate $A^T B$ with error $\varepsilon^2 \|A\|_F \|B\|_F$

- For $r \times c$ matrices. A encodes string x, B encodes index y

\[
\begin{pmatrix}
 +1 & -1 & -2 & -2 & \ldots & \pm 2^k & \pm 2^k & \ldots & 0 & 0 & 0 & 0 \\
 -1 & -1 & -2 & +2 & \ldots & \pm 2^k & \pm 2^k & \ldots & 0 & 0 & 0 & 0 \\
 +1 & +1 & +2 & -2 & \ldots & \pm 2^k & \pm 2^k & \ldots & 0 & 0 & 0 & 0 \\
 -1 & -1 & +2 & +2 & \ldots & \pm 2^k & \pm 2^k & \ldots & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

$A^T B$ “reads off” j’th column of A^T

- Bob uses suffix of x in y to remove heavy entries from A
 $\|B\|_F = 1 \quad \|A\|_F = cr/\log (cn) \ast (1 + 4 + \ldots 2^{2k}) \leq 4cr2^{2k}/3\log (cn)$

- Choose $r = \log(cn)/8\varepsilon^2$ so permitted error is $c 2^{2k} / 6\varepsilon^2$
 - Each error in sign in estimate of $(A^T B)$ contributes 2^{2k} error
 - Can tolerate error in at most $1/6$ fraction of entries

- Matrix multiplication requires space $\Omega(rc) = \Omega(c/\varepsilon^2 \log (cn))$
Streaming Lower Bounds

- Lower bounds for data streams
 - Communication complexity bounds
 - Simple reductions
 - Hardness of Gap-Hamming problem
 - Reductions to Gap-Hamming
Gap Hamming

Gap-Hamming communication problem:

- Alice holds $x \in \{0,1\}^N$, Bob holds $y \in \{0,1\}^N$
- **Promise**: $\text{Ham}(x,y)$ is either $\leq N/2 - \sqrt{N}$ or $\geq N/2 + \sqrt{N}$
- Which is the case?
- **Model**: one message from Alice to Bob
- Sketching upper bound: need relative error $\epsilon = \sqrt{N/F_2} = 1/\sqrt{N}$
 - Gives space $O(1/\epsilon^2) = O(N)$

Requires $\Omega(N)$ bits of one-way randomized communication

[Indyk, Woodruff’03, Woodruff’04, Jayram, Kumar, Sivakumar ’07]
Reduction starts with an instance of **INDEX**
- Map string x to u by $1 \rightarrow +1$, $0 \rightarrow -1$ (i.e. $u[i] = 2x[i] - 1$)
- Assume both Alice and Bob have access to public random strings r_j, where each bit of r_j is iid $\{-1, +1\}$
- Assume w.l.o.g. that length of string n is odd (important!)
- Alice computes $a_j = \text{sign}(r_j \cdot u)$
- Bob computes $b_j = \text{sign}(r_j[y])$

Repeat N times with different random strings, and consider the Hamming distance of $a_1...a_N$ with $b_1...b_N$
- Argue if we solve **Gap-Hamming** on (a, b), we solve **INDEX**
Consider the pair $a_j = \text{sign}(r_j \cdot u)$, $b_j = \text{sign}(r_j[y])$

Let $w = \sum_{i \neq y} u[i] r_j[i]$

- w is a sum of $(n-1)$ values distributed iid uniform $\{-1, +1\}$

Case 1: $w \neq 0$. So $|w| \geq 2$, since $(n-1)$ is even

- so $\text{sign}(a_j) = \text{sign}(w)$, independent of $x[y]$
- Then $\Pr[a_j \neq b_j] = \Pr[\text{sign}(w) \neq \text{sign}(r_j[y])] = \frac{1}{2}$

Case 2: $w = 0$

So $a_j = \text{sign}(r_j \cdot u) = \text{sign}(w + u[y]r_j[y]) = \text{sign}(u[y]r_j[y])$

- Then $\Pr[a_j \neq b_j] = \Pr[\text{sign}(u[y]r_j[y]) = \text{sign}(r_j[y])]$
- This probability is 1 is $u[y]=+1$, 0 if $u[y]=-1$
- Completely biased by the answer to **INDEX**
Finishing the Reduction

- So what is $\Pr[w=0]$?
 - w is sum of $(n-1)$ iid uniform $\{-1,+1\}$ values
 - Then: $\Pr[w=0] = 2^{-n}(n \text{ choose } n/2) = c/\sqrt{n}$, for some constant c

- Do some probability manipulation:
 - $\Pr[a_j = b_j] = \frac{1}{2} + c/2\sqrt{n}$ if $x[y]=1$
 - $\Pr[a_j = b_j] = \frac{1}{2} - c/2\sqrt{n}$ if $x[y]=0$

- Amplify this bias by making strings of length $N=4n/c^2$
 - Apply Chernoff bound on N instances
 - With prob $>2/3$, either $\text{Ham}(a,b)>N/2 + \sqrt{N}$ or $\text{Ham}(a,b)<N/2 - \sqrt{N}$

- If we could solve Gap-Hamming, could solve INDEX
 - Therefore, need $\Omega(N) = \Omega(n)$ bits for Gap-Hamming
Streaming Lower Bounds

- Lower bounds for data streams
 - Communication complexity bounds
 - Simple reductions
 - Hardness of *Gap-Hamming* problem
 - Reductions to *Gap-Hamming*
Gap-Hamming instance—Alice: $x \in \{0,1\}^N$, Bob: $y \in \{0,1\}^N$

Entropy estimation algorithm A

- Alice runs A on $\text{enc}(x) = \langle (1,x_1), (2,x_2), \ldots, (N,x_N) \rangle$
- Alice sends over memory contents to Bob
- Bob continues A on $\text{enc}(y) = \langle (1,y_1), (2,y_2), \ldots, (N,y_N) \rangle$

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0)</td>
<td>1</td>
</tr>
<tr>
<td>(2,1)</td>
<td>1</td>
</tr>
<tr>
<td>(3,0)</td>
<td>0</td>
</tr>
<tr>
<td>(4,0)</td>
<td>0</td>
</tr>
<tr>
<td>(5,1)</td>
<td>1</td>
</tr>
<tr>
<td>(6,1)</td>
<td>1</td>
</tr>
<tr>
<td>(1,1)</td>
<td>0</td>
</tr>
<tr>
<td>(2,1)</td>
<td>0</td>
</tr>
<tr>
<td>(3,0)</td>
<td>0</td>
</tr>
<tr>
<td>(4,0)</td>
<td>1</td>
</tr>
<tr>
<td>(5,1)</td>
<td>0</td>
</tr>
<tr>
<td>(6,0)</td>
<td>0</td>
</tr>
</tbody>
</table>
Lower Bound for Entropy

- Observe: there are
 - $2\text{Ham}(x,y)$ tokens with frequency 1 each
 - $N\text{-Ham}(x,y)$ tokens with frequency 2 each
- So (after algebra), $H(S) = \log N + \text{Ham}(x,y)/N = \log N + \frac{1}{2} \pm \frac{1}{\sqrt{N}}$
- If we separate two cases, size of Alice’s memory contents $= \Omega(N)$
 Set $\epsilon = \frac{1}{(\sqrt{N} \log N)}$ to show bound of $\Omega(\epsilon/\log 1/\epsilon)^{-2}$

<table>
<thead>
<tr>
<th>Alice</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1,0)</td>
<td>(2,1)</td>
<td>(3,0)</td>
<td>(4,0)</td>
<td>(5,1)</td>
<td>(6,1)</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(1,1)</td>
<td>(2,1)</td>
<td>(3,0)</td>
<td>(4,0)</td>
<td>(5,1)</td>
<td>(6,0)</td>
</tr>
</tbody>
</table>
Lower Bound for F_0

- Same encoding works for F_0 (Distinct Elements)
 - 2$\text{Ham}(x,y)$ tokens with frequency 1 each
 - N-$\text{Ham}(x,y)$ tokens with frequency 2 each

- $F_0(S) = N + \text{Ham}(x,y)$

- Either $\text{Ham}(x,y) > N/2 + \sqrt{N}$ or $\text{Ham}(x,y) < N/2 - \sqrt{N}$
 - If we could approximate F_0 with $\varepsilon < 1/\sqrt{N}$, could separate
 - But space bound = $\Omega(N) = \Omega(\varepsilon^{-2})$ bits

- Dependence on ε for F_0 is tight

- Similar arguments show $\Omega(\varepsilon^{-2})$ bounds for F_k
 - Proof assumes k (and hence 2^k) are constants
Summary of Tools

- Vector equality: fingerprints
- Approximate item frequencies:
 - Count-min, Misra-Gries (L_1 guarantee), Count sketch (L_2 guarantee)
- Euclidean norm, inner product: AMS sketch, JL sketches
- Count-distinct: k-Minimum values, Hyperloglog
- Compact set-representation: Bloom filters
- Uniform Sampling
- L_0 sampling: hashing and sparse recovery
- L_2 sampling: via count-sketch
- Graph sketching: L_0 samples of neighborhood
- Frequency moments: via L_2 sampling
- Matrix sketches: adapt AMS sketches, frequent directions
Summary of Lower Bounds

- Can’t deterministically test equality
- Can’t retrieve arbitrary bits from a vector of n bits: INDEX
 - Even if some unhelpful suffix of the vector is given: AUGINDEX
- Can’t determine whether two n bit vectors intersect: DISJ
- Can’t distinguish small differences in Hamming distance: GAP-HAMMING

These in turn provide lower bounds on the cost of
- Finding the maximum frequency
- Approximating the number of distinct items
- Approximating matrix multiplication
Current Directions in Streaming and Sketching

- **Sparse representations** of high dimensional objects
 - Compressed sensing, sparse fast Fourier transform
- **Numerical linear algebra** for (large) matrices
 - k-rank approximation, linear regression, PCA, SVD, eigenvalues
- **Computations on large graphs**
 - Sparsification, clustering, matching
- **Geometric** (big) data
 - Coresets, facility location, optimization, machine learning
- **Use of summaries in** distributed computation
 - MapReduce, Continuous Distributed models
Forthcoming Attractions

- Data Streams Mini Course @Simons
 - Prof Andrew McGregor
 - Starts early October

- Succinct Data Representations and Applications @ Simons
 - September 16-19