Streaming, Sketching and Sufficient Statistics

Graham Cormode

University of Warwick G.Cormode@Warwick.ac.uk

Data is Massive

2

Data is growing faster than our ability to store or index it

- There are 3 Billion Telephone Calls in US each day (100BN minutes), 30B emails daily, 4B SMS, IMs.
- Scientific data: NASA's observation satellites generate billions of readings each per day.
- IP Network Traffic: can be billions packets per hour per router. Each ISP has many (10s of thousands) routers!
- Whole genome readings for individual humans now available: each is many gigabytes in size

Small Summaries and Sufficient Statistics

- A summary (approximately) allows answering such questions
- To earn the name, should be (very) small
 - Can keep in fast storage
- Should be able to build, update and query efficiently
- Key methods for summaries:
 - Create an empty summary
 - Update with one new tuple: streaming processing
 - Merge summaries together: distributed processing
 - Query: may tolerate some approximation
- A generalized notion of "sufficient statistics"

The CS Perspective

Cynical: "The price of everything and the value of nothing"

- Optimize the cost of quantities related to a computation
 - The space required to store the sufficient information
 - The time to process each new item, or answer a query
 - The accuracy of the answer (ε)
 - The amount of "true" randomness
- In terms of size of input n, and chosen parameters

Pessimistic: "A pessimist is never disappointed"

- Rarely make strong assumptions about the input distribution
- "the data is the data": assume fixed input, adversarial ordering
- Seek to compute a function of the input (not the distribution)

The CS Perspective II

- "Probably Approximately Correct"
 - Preference for tail bounds on quantities
 - Within error ϵ with probability 1- δ

- Use concentration of measure (Markov, Chebyshev, Chernoff...)
- "High price of entr(op)y": Randomness is a limited resource
 - We often need "random" bits as a function of i
 - Must either store the randomness
 - Or use weaker hash functions with small random keys
 - Occasionally, assume "fully independent hash functions"
- Not too concerned about constant factors
 - Most bounds given in O() notation

Data Models

- We model data as a collection of simple tuples
- Problems hard due to scale and dimension of input
- Arrivals only model:
 - Example: (x, 3), (y, 2), (x, 2) encodes the arrival of 3 copies of item x, 2 copies of y, then 2 copies of x.
 - Could represent eg. packets on a network; power usage
- Arrivals and departures:
 - Example: (x, 3), (y,2), (x, -2) encodes
 final state of (x, 1), (y, 2).
 - Can represent fluctuating quantities, or measure differences between two distributions

Part I: Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

Part II: Advanced Topics

- Sampling and L_p Sampling
 - L₀ sampling and graph sketching
 - L₂ sampling and frequency moment estimation
- Matrix computations
 - Sketches for matrix multiplication
 - Sparse representation via frequent directions
- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions

Frequency Distributions

- Given set of items, let f_i be the number of occurrences of item i
- Many natural questions on f_i values:
 - Find those i's with large f_i values (heavy hitters)
 - Find the number of non-zero f_i values (count distinct)
 - Compute $F_k = \sum_i (f_i)^k$ the k'th Frequency Moment
 - Compute $H = \sum_{i} (f_i/F_1) \log (F_1/f_i)$ the (empirical) entropy
- "Space Complexity of the Frequency Moments" Alon, Matias, Szegedy in STOC 1996
 - Awarded Gödel prize in 2005
 - Set the pattern for many streaming algorithms to follow

Concentration Bounds

- Will provide randomized algorithms for these problems
- Each algorithm gives a (randomized) estimate of the answer
- Give confidence bounds on the final estimate X
 - Use probabilistic concentration bounds on random variables
- A concentration bound is typically of the form $\Pr[|X - x| > \varepsilon y] < \delta$
 - At most probability δ of being more than ϵy away from x

Markov Inequality

- Take any probability distribution X s.t. Pr[X < 0] = 0</p>
- Consider the event $X \ge k$ for some constant k > 0
- For any draw of X, $kI(X \ge k) \le X$
 - Either $0 \le X < k$, so $I(X \ge k) = 0$
 - Or $X \ge k$, lhs = k

- Markov inequality: $Pr[X \ge k] \le E[X]/k$
 - Prob of random variable exceeding k times its expectation < 1/k
 - Relatively weak in this form, but still useful

Sketch Structures

Sketch is a class of summary that is a linear transform of input

- Sketch(x) = Sx for some matrix S
- Hence, Sketch($\alpha x + \beta y$) = α Sketch(x) + β Sketch(y)
- Trivial to update and merge
- Often describe S in terms of hash functions
 - If hash functions are simple, sketch is fast
- Aim for limited independence hash functions h: $[n] \rightarrow [m]$
 - If $Pr_{h \in H}[h(i_1)=j_1 \land h(i_2)=j_2 \land ... h(i_k)=j_k] = m^{-k}$, then H is k-wise independent family ("h is k-wise independent")
 - k-wise independent hash functions take time, space O(k)

A First Sketch: Fingerprints

- Test if two (distributed) binary vectors are equal d₌ (x,y) = 0 iff x=y, 1 otherwise
- To test in small space: pick a suitable hash function h
- Test h(x)=h(y) : small chance of false positive, no chance of false negative
- Compute h(x), h(y) incrementally as new bits arrive
 - How to choose the function h()?

Polynomial Fingerprints

- Pick $h(x) = \sum_{i=1}^{n} x_i r^i \mod p$ for prime p, random $r \in \{1...p-1\}$
 - Flexible: h(x) is linear function of x—easy to update and merge
- For accuracy, note that computation mod p is over the field Z_p
 - Consider the polynomial in α , $\sum_{i=1}^{n} (x_i y_i) \alpha^i = 0$
 - Polynomial of degree n over Z_p has at most n roots
- Probability that r happens to solve this polynomial is n/p
- So $\Pr[h(x) = h(y) | x \neq y] \le n/p$
 - Pick p = poly(n), fingerprints are log p = O(log n) bits
- Fingerprints applied to small subsets of data to test equality
 - Will see several examples that use fingerprints as subroutine

Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

Count-Min Sketch

- Simple sketch idea relies primarily on Markov inequality
- Model input data as a vector x of dimension U
- Creates a small summary as an array of w × d in size
- Use d hash function to map vector entries to [1..w]
- Works on arrivals only and arrivals & departures streams

Streaming, Sketching and Sufficient Statistics

Count-Min Sketch Structure

- Each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Estimate x[j] by taking min_k CM[k,h_k(j)]
 - Guarantees error less than εF_1 in size O(1/ $\varepsilon \log 1/\delta$)
 - Probability of more error is less than $1-\delta$

[C, Muthukrishnan '04]

Approximation of Point Queries

Approximate point query x'[j] = min_k CM[k,h_k(j)]

- Analysis: In k'th row, CM[k,h_k(j)] = x[j] + X_{k,j}
 - $X_{k,j} = \sum_i x[i] I(h_k(i) = h_k(j))$
 - $\begin{array}{ll} & \ \mathsf{E}[\mathsf{X}_{k,j}] & = \sum_{i \neq j} \, x[i]^* \mathsf{Pr}[\mathsf{h}_k(i) = \mathsf{h}_k(j)] \\ & \leq \mathsf{Pr}[\mathsf{h}_k(i) = \mathsf{h}_k(j)] \, * \, \Sigma_i \, x[i] \\ & = \epsilon \, \mathsf{F}_1/2 \mathsf{requires only pairwise independence of } \mathsf{h} \end{array}$

– $\Pr[X_{k,j} \ge \epsilon F_1] = \Pr[X_{k,j} \ge 2E[X_{k,j}]] \le 1/2$ by Markov inequality

- So, $\Pr[x'[j] \ge x[j] + \varepsilon F_1] = \Pr[\forall k. X_{k,j} > \varepsilon F_1] \le 1/2^{\log 1/\delta} = \delta$
- Final result: with certainty x[j] ≤ x'[j] and with probability at least 1-δ, x'[j] < x[j] + εF₁

Applications of Count-Min to Heavy Hitters

- Count-Min sketch lets us estimate f_i for any i (up to εF_1)
- Heavy Hitters asks to find i such that f_i is large (> \oplus F₁)
- Slow way: test every i after creating sketch
- Alternate way:
 - Keep binary tree over input domain: each node is a subset
 - Keep sketches of all nodes at same level
 - Descend tree to find large frequencies, discard 'light' branches
 - Same structure estimates arbitrary range sums
- A first step towards compressed sensing style results...

Application to Large Scale Machine Learning

- In machine learning, often have very large feature space
 - Many objects, each with huge, sparse feature vectors
 - Slow and costly to work in the full feature space
- "Hash kernels": work with a sketch of the features
 - Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg '09]
- Similar analysis explains *why*:
 - Essentially, not too much noise on the important features

Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

Chebyshev Inequality

- Markov inequality is often quite weak
- But Markov inequality holds for any random variable
- Can apply to a random variable that is a function of X
- Set Y = (X E[X])²
- By Markov, Pr[Y > kE[Y]] < 1/k</p>
 - $E[Y] = E[(X-E[X])^2] = Var[X]$
- Hence, Pr[|X E[X]| > V(k Var[X])] < 1/k
- Chebyshev inequality: Pr[|X E[X]| > k] < Var[X]/k²
 - If $Var[X] \le \varepsilon^2 E[X]^2$, then $Pr[|X E[X]| > \varepsilon E[X]] = O(1)$

F₂ estimation

AMS sketch (for Alon-Matias-Szegedy) proposed in 1996

- Allows estimation of F₂ (second frequency moment)
- Used at the heart of many streaming and non-streaming applications: achieves dimensionality reduction
- Here, describe AMS sketch by generalizing CM sketch.
- Uses extra hash functions $g_1...g_{\log 1/\delta}$ {1...U} → {+1,-1}
 - (Low independence) Rademacher variables
- Now, given update (j,+c), set CM[k,h_k(j)] += c*g_k(j)

F₂ analysis

• Estimate F_2 = median_k $\sum_i CM[k,i]^2$

- Each row's result is $\sum_{i} g(i)^2 x[i]^2 + \sum_{h(i)=h(j)} 2 g(i) g(j) x[i] x[j]$
- But $g(i)^2 = -1^2 = +1^2 = 1$, and $\sum_i x[i]^2 = F_2$
- g(i)g(j) has 1/2 chance of +1 or -1 : expectation is 0 ...

F₂ Variance

- Expectation of row estimate $R_k = \sum_i CM[k,i]^2$ is exactly F_2
- Variance of row k, Var[Rk], is an expectation:
 - $Var[R_k] = E[(\sum_{buckets b} (CM[k,b])^2 F_2)^2]$
 - Good exercise in algebra: expand this sum and simplify
 - Many terms are zero in expectation because of terms like g(a)g(b)g(c)g(d) (degree at most 4)
 - Requires that hash function g is *four-wise independent*: it behaves uniformly over subsets of size four or smaller
 - Such hash functions are easy to construct

F₂ Variance

Terms with odd powers of g(a) are zero in expectation

 $- g(a)g(b)g^{2}(c), g(a)g(b)g(c)g(d), g(a)g^{3}(b)$

Leaves

$$\begin{split} \text{Var}[\mathsf{R}_k] &\leq \sum_i g^4(i) \; x[i]^4 \\ &+ 2 \sum_{j \neq i} g^2(i) \; g^2(j) \; x[i]^2 \; x[j]^2 \\ &+ 4 \sum_{h(i) = h(j)} g^2(i) \; g^2(j) \; x[i]^2 \; x[j]^2 \\ &- (x[i]^4 + \sum_{j \neq i} 2x[i]^2 \; x[j]^2) \\ &\leq F_2^2/w \end{split}$$

- Row variance can finally be bounded by F_2^2/w
 - Chebyshev for w=4/ ϵ^2 gives probability ¼ of failure: Pr[$|R_k - F_2| > \epsilon^2 F_2$] $\leq \frac{1}{4}$
 - How to amplify this to small δ probability of failure?
 - Rescaling w has cost linear in $1/\delta$

Tail Inequalities for Sums

- We achieve stronger bounds on tail probabilities for the sum of independent *Bernoulli trials* via the Chernoff Bound:
 - Let X₁, ..., X_m be independent Bernoulli trials s.t. Pr[X_i=1] = p (Pr[X_i=0] = 1-p).
 - Let $X = \sum_{i=1}^{m} X_i$, and $\mu = mp$ be the expectation of X.
 - Then, for $\varepsilon > 0$, Chernoff bound states:

 $\Pr[|X - \mu| \ge \varepsilon\mu] \le 2 \exp(-\frac{1}{2} \mu\varepsilon^2)$

- Proved by applying Markov inequality to $Y = \exp(X_1 \cdot X_2 \cdot ... \cdot X_m)$

Applying Chernoff Bound

- Each row gives an estimate that is within ε relative error with probability p' > ³/₄
- Take d repetitions and find the median. Why the median?

- Because bad estimates are either too small or too large
- Good estimates form a contiguous group "in the middle"
- At least d/2 estimates must be bad for median to be bad
- Apply Chernoff bound to d independent estimates, p=1/4
 - Pr[More than d/2 bad estimates] < 2exp(-d/8)</p>
 - So we set $d = \Theta(\ln 1/\delta)$ to give δ probability of failure
- Same outline used many times in summary construction

Applications and Extensions

F₂ guarantee: estimate $\|\mathbf{x}\|_2$ from sketch with error $\varepsilon \|\mathbf{x}\|_2$

- Since $||x + y||_2^2 = ||x||_2^2 + ||y||_2^2 + 2x \cdot y$ Can estimate $(x \cdot y)$ with error $\varepsilon ||x||_2 ||y||_2$
- If $y = e_j$, obtain $(x \cdot e_j) = x_j$ with error $\varepsilon ||x||_2$: L₂ guarantee ("Count Sketch") vs L₁ guarantee (Count-Min)
- Can view the sketch as a low-independence realization of the Johnson-Lindendestraus lemma
 - Best current JL methods have the same structure
 - JL is stronger: embeds directly into Euclidean space
 - JL is also weaker: requires $O(1/\epsilon)$ -wise hashing, $O(\log 1/\delta)$ independence [Kane, Nelson 12]

Sketches and Frequency Moments

- Frequency Moments and Sketches
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

F₀ Estimation

- F₀ is the number of distinct items in the stream
 - a fundamental quantity with many applications
- Early algorithms by Flajolet and Martin [1983] gave nice hashing-based solution
 - analysis assumed fully independent hash functions
- Will describe a generalized version of the FM algorithm due to Bar-Yossef et. al with only pairwise indendence
 - Known as the "k-Minimum values (KMV)" algorithm

F₀ Algorithm

- Let m be the domain of stream elements
 - Each item in data is from [1...m]
- Pick a random (pairwise) hash function h: $[m] \rightarrow [m^3]$
 - With probability at least 1-1/m, no collisions under h

- For each stream item i, compute h(i), and track the t distinct items achieving the smallest values of h(i)
 - Note: if same i is seen many times, h(i) is same
 - Let v_t = t'th smallest (distinct) value of h(i) seen
- If $F_0 < t$, give exact answer, else estimate $F'_0 = tm^3/v_t$
 - $v_t/m^3 \approx$ fraction of hash domain occupied by t smallest

Analysis of F₀ algorithm

Suppose $F'_0 = tm^3/v_t > (1+\varepsilon) F_0$ [estimate is too high]

- So for input = set S ∈ 2^[m], we have
 - $|{s ∈ S | h(s) < tm³/(1+ε)F₀}| > t$
 - Because $\varepsilon < 1$, we have $tm^3/(1+\varepsilon)F_0 \le (1-\varepsilon/2)tm^3/F_0$
 - Pr[h(s) < $(1-\epsilon/2)tm^3/F_0$] $\approx 1/m^3 * (1-\epsilon/2)tm^3/F_0 = (1-\epsilon/2)t/F_0$
 - (this analysis outline hides some rounding issues)

Chebyshev Analysis

• Let Y be number of items hashing to under $tm^3/(1+\epsilon)F_0$

- $E[Y] = F_0 * Pr[h(s) < tm^3/(1+\epsilon)F_0] = (1-\epsilon/2)t$
- For each item i, variance of the event = p(1-p) < p</p>
- Var[Y] = $\sum_{s \in S} Var[h(s) < tm^3/(1+\epsilon)F_0] < (1-\epsilon/2)t$
 - We sum variances because of pairwise independence
- Now apply Chebyshev inequality:
 - $\begin{array}{ll} & \Pr[Y > t] \\ & \leq \Pr[|Y E[Y]| > \epsilon t/2] \\ & \leq 4 \operatorname{Var}[Y]/\epsilon^2 t^2 \\ & < 4 t/(\epsilon^2 t^2) \end{array}$

– Set $t=20/\epsilon^2$ to make this Prob $\leq 1/5$

Completing the analysis

We have shown Pr[F'₀ > (1+ε) F₀] < 1/5

- Can show $\Pr[F'_0 < (1-\varepsilon)F_0] < 1/5$ similarly
 - too few items hash below a certain value
- So $Pr[(1-\epsilon) F_0 \le F'_0 \le (1+\epsilon)F_0] > 3/5$ [Good estimate]
- Amplify this probability: repeat O(log 1/δ) times in parallel with different choices of hash function h
 - Take the median of the estimates, analysis as before

F₀ Issues

Space cost:

- Store t hash values, so $O(1/\epsilon^2 \log m)$ bits
- Can improve to $O(1/\epsilon^2 + \log m)$ with additional tricks

Time cost:

- Find if hash value $h(i) < v_t$
- Update v_t and list of t smallest if h(i) not already present
- Total time $O(\log 1/\epsilon + \log m)$ worst case
Count-Distinct

Engineering the best constants: Hyperloglog algorithm

- Hash each item to one of $1/\epsilon^2$ buckets (like Count-Min)
- In each bucket, track the function $\max \lfloor \log(h(x)) \rfloor$
 - Can view as a coarsened version of KMV
 - Space efficient: need log log m ≈ 6 bits per bucket
- Can estimate intersections between sketches
 - Make use of identity $|A \cap B| = |A| + |B| |A \cup B|$
 - Error scales with $\varepsilon \sqrt{(|A||B|)}$, so poor for small intersections
 - Higher order intersections via inclusion-exclusion principle

Bloom Filters

Bloom filters compactly encode set membership

- k hash functions map items to bit vector k times
- Set all k entries to 1 to indicate item is present
- Can lookup items, store set of size n in O(n) bits

- Duplicate insertions do not change Bloom filters
- Can merge by OR-ing vectors (of same size)

Bloom Filter analysis

- How to set k (number of hash functions), m (size of filter)?
- False positive: when all k locations for an item are set
 - If ρ fraction of cells are empty, false positive probability is $(1-\rho)^k$
- Consider probability of any cell being empty:
 - For n items, Pr[cell j is empty] = $(1 1/m)^{kn} \approx \rho \approx exp(-kn/m)$
 - False positive prob = $(1 \rho)^k = \exp(k \ln(1 \rho))$

= exp(-m/n ln(ρ) ln(1- ρ))

- For fixed n, m, by symmetry minimized at $\rho = \frac{1}{2}$
 - Half cells are occupied, half are empty
 - Give $k = (m/n) \ln 2$, false positive rate is $\frac{1}{2}^k$
 - Choose m = cn to get constant FP rate, e.g. c=10 gives < 1% FP</p>

Bloom Filters Applications

- Bloom Filters widely used in "big data" applications
 - Many problems require storing a large set of items
- Can generalize to allow deletions
 - Swap bits for counters: increment on insert, decrement on delete
 - If representing sets, small counters suffice: 4 bits per counter
 - If representing multisets, obtain sketches (next lecture)
- Bloom Filters are an active research area
 - Several papers on topic in every networking conference...

Frequency Moments

- Intro to frequency distributions and Concentration bounds
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

Higher Frequency Moments

■ F_k for k>2. Use a sampling trick [Alon et al 96]:

- Uniformly pick an item from the stream length 1...n
- Set r = how many times that item appears subsequently
- Set estimate $F'_k = n(r^k (r-1)^k)$
- $E[F'_k] = 1/n^*n^*[f_1^k (f_1-1)^k + (f_1-1)^k (f_1-2)^k + ... + 1^k 0^k] + ... = f_1^k + f_2^k + ... = F_k$
- $Var[F'_k] \le 1/n^* n^{2*}[(f_1^k (f_1 1)^k)^2 + ...]$
 - Use various bounds to bound the variance by $k m^{1-1/k} F_k^2$
 - Repeat k m^{1-1/k} times in parallel to reduce variance
- Total space needed is O(k m^{1-1/k}) machine words
 - Not a sketch: does not distribute easily. See part 2!

Combined Frequency Moments

- Let G[i,j] = 1 if (i,j) appears in input.
 E.g. graph edge from i to j. Total of m distinct edges
- Let $d_i = \sum_{j=1}^{n} G[i,j]$ (aka degree of node i)
- Find aggregates of d's:
 - Estimate heavy d_i's (people who talk to many)
 - Estimate frequency moments: number of distinct d_i values, sum of squares
 - Range sums of d_i's (subnet traffic)
- Approach: nest one sketch inside another, e.g. HLL inside CM
 - Requires new analysis to track overall error

Range Efficiency

Sometimes input is specified as a collection of ranges [a,b]

- [a,b] means insert all items (a, a+1, a+2 ... b)
- Trivial solution: just insert each item in the range
- Range efficient F₀ [Pavan, Tirthapura 05]
 - Start with an alg for F_0 based on pairwise hash functions
 - Key problem: track which items hash into a certain range
 - Dives into hash fns to divide and conquer for ranges
- Range efficient F₂ [Calderbank et al. 05, Rusu, Dobra 06]
 - Start with sketches for F_2 which sum hash values
 - Design new hash functions so that range sums are fast
- Rectangle Efficient F₀ [Tirthapura, Woodruff 12]

Forthcoming Attractions

- Data Streams Mini Course @Simons
 - Prof Andrew McGregor
 - Starts early October

- Succinct Data Representations and Applications @ Simons
 - September 16-19

Streaming, Sketching and Sufficient Statistics

Graham Cormode

University of Warwick G.Cormode@Warwick.ac.uk

Recap

- Sketching Techniques summarize large data sets
- Summarize vectors:
 - Test equality (fingerprints)
 - Recover approximate entries (count-min, count sketch)
 - Approximate Euclidean norm (F₂) and dot product
 - Approximate number of non-zero entries (F_0)
 - Approximate set membership (Bloom filter)

Part II: Advanced Topics

- Sampling and L_p Sampling
 - L_0 sampling and graph sketching
 - L₂ sampling and frequency moment estimation
- Matrix computations
 - Sketches for matrix multiplication
 - Sparse representation via frequent directions
- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions

Sampling From a Large Input

Fundamental prob: sample m items uniformly from data

- Useful: approximate costly computation on small sample
- Challenge: don't know how large total input is
 - So when/how often to sample?
- Several solutions, apply to different situations:
 - Reservoir sampling (dates from 1980s?)
 - Min-wise sampling (dates from 1990s?)

Min-wise Sampling

- For each item, pick a random fraction between 0 and 1
- Store item(s) with the smallest random tag [Nath et al.'04]

- Each item has same chance of least tag, so uniform
- Can run on multiple inputs separately, then merge
- Applications in geometry: basic ε-approximations are samples
 - Estimate number of points falling in a range (bounded VC dim)

Sampling from Sketches

- Given inputs with positive and negative weights
- Want to sample based on the overall frequency distribution
 - Sample from support set of n possible items
 - Sample proportional to (absolute) weights
 - Sample proportional to some function of weights
- How to do this sampling effectively?
- Recent approach: L_p sampling

L_p Sampling

- **L**_p sampling: use sketches to sample i w/prob $(1\pm\epsilon) f_i^p / ||f||_p^p$
- "Efficient" solutions developed of size O(ε⁻² log² n)
 - [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11]
- L₀ sampling enables novel "graph sketching" techniques
 - Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12]
- L₂ sampling allows optimal estimation of frequency moments

L₀ Sampling

- L_0 sampling: sample with prob $(1\pm\epsilon) f_i^0/F_0$
 - i.e., sample (near) uniformly from items with non-zero frequency
- General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]
 - Sub-sample all items (present or not) with probability p
 - Generate a sub-sampled vector of frequencies f_p
 - Feed f_p to a k-sparse recovery data structure
 - Allows reconstruction of f_p if $F_0 < k$
 - If f_p is k-sparse, sample from reconstructed vector
 - Repeat in parallel for exponentially shrinking values of p

Sampling Process

- Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16... 1/U
 - Let N = $F_0 = |\{i : f_i \neq 0\}|$
 - Want there to be a level where k-sparse recovery will succeed
 - At level p, expected number of items selected S is Np
 - Pick level p so that $k/3 < Np \le 2k/3$
- Chernoff bound: with probability exponential in k, $1 \le S \le k$
 - Pick k = O(log $1/\delta$) to get $1-\delta$ probability

k-Sparse Recovery

- Given vector x with at most k non-zeros, recover x via sketching
 - A core problem in compressed sensing/compressive sampling
- First approach: Use Count-Min sketch of x
 - Probe all U items, find those with non-zero estimated frequency
 - Slow recovery: takes O(U) time
- Faster approach: also keep sum of item identifiers in each cell
 - Sum/count will reveal item id
 - Avoid false positives: keep fingerprint of items in each cell
- Can keep a sketch of size O(k log U) to recover up to k items

	Sum, $\sum_{i:h(i)=j} i$
	Count, $\sum_{i:h(i)=j} x_i$
	Fingerprint, $\sum_{i:h(i)=j} x_i r^i$
Streamin	d. Sketching and Sumpleht Statistics

Uniformity

- Also need to argue sample is uniform
 - Failure to recover could bias the process
- Pr[i would be picked if k=n] = 1/F₀ by symmetry
- Pr[i is picked] = Pr[i would be picked if k=n \land S≤k] \ge (1- δ)/F₀
- So $(1-\delta)/N \le \Pr[i \text{ is picked}] \le 1/N$
- Sufficiently uniform (pick $\delta = \varepsilon$)

Application: Graph Sketching

- Given L₀ sampler, use to sketch (undirected) graph properties
- Connectivity: want to test if there is a path between all pairs
- Basic alg: repeatedly contract edges between components
- Use L₀ sampling to provide edges on vector of adjacencies
- Problem: as components grow, sampling most likely to produce internal links

Graph Sketching

- Idea: use clever encoding of edges [Ahn, Guha, McGregor 12]
- Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i
- When node i and node j get merged, sum their L₀ sketches
 - Contribution of edge (i,j) exactly cancels out

- Only non-internal edges remain in the L₀ sketches
- Use independent sketches for each iteration of the algorithm
 - Only need O(log n) rounds with high probability
- Result: O(poly-log n) space per node for connectivity

Other Graph Results via sketching

K-connectivity via connectivity

- Use connectivity result to find and remove a spanning forest
- Repeat k times to generate k spanning forests F_1 , F_2 , ... F_k
- Theorem: G is k-connected if $\bigcup_{i=1}^{k} F_{i}$ is k-connected
- Bipartiteness via connectivity:
 - Compute c = number of connected components in G
 - Generate G' over $V \cup V'$ so $(u,v) \in E \Rightarrow (u, v') \in E'$, $(u', v) \in E'$
 - If G is bipartite, G' has 2c components, else it has <2c components
- Minimum spanning tree:
 Round edge weights to powers of (1+ε)
 Define n_i = number of components on edges lighter than (1+ε)ⁱ
 Fact: weight of MST on rounded weights is Σ_i ε(1+ε)ⁱn_i

Application: F_k via L₂ Sampling

- Recall, $F_k = \sum_i f_i^k$
- Suppose L₂ sampling samples f_i with probability f_i²/F₂
 - And also estimates sampled f_i with relative error ϵ
- Estimator: $X = F_2 f_i^{k-2}$ (with estimates of F_2 , f_i)
 - Expectation: $E[X] = F_2 \sum_i f_i^{k-2} \cdot f_i^2 / F_2 = F_k$
 - Variance: Var[X] $\leq E[X^2] = \sum_i f_i^2 / F_2 (F_2 f_i^{k-2})^2 = F_2 F_{2k-2}$

Rewriting the Variance

- Want to express variance $F_2 F_{2k-2}$ in terms of F_k and domain size n
- Hölder's inequality: $\langle x, y \rangle \le ||x||_p ||y||_q$ for $1 \le p$, q with 1/p+1/q=1
 - Generalizes Cauchy-Shwarz inequality, where p=q=2.
- So pick p=k/(k-2) and q = k/2 for k > 2. Then $\langle 1^{n}, (f_{i})^{2} \rangle \leq \|1^{n}\|_{k/(k-2)} \|(f_{i})^{2}\|_{k/2}$ $F_{2} \leq n^{(k-2)/k} F_{k}^{2/k}$ (1)
- Also, since $\|\mathbf{x}\|_{p+a} \leq \|\mathbf{x}\|_p$ for any $p \geq 1$, a > 0
 - Thus $\|x\|_{2k-2} \leq \|x\|_k$ for $k \geq 2$
 - So $F_{2k-2} = \|f\|_{2k-2}^{2k-2} \le \|f\|_{k}^{2k-2} = F_{k}^{2-2/k}$ (2)
- Multiply (1) * (2) : $F_2 F_{2k-2} \le n^{1-2/k} F_k^2$
 - So variance is bounded by $n^{1-2/k} F_k^2$

F_k Estimation

For $k \ge 3$, we can estimate F_k via L_2 sampling:

- Variance of our estimate is $O(F_k^2 n^{1-2/k})$
- Take mean of $n^{1-2/k}\epsilon^{-2}$ repetitions to reduce variance
- Apply Chebyshev inequality: constant prob of good estimate
- Chernoff bounds: O(log 1/ δ) repetitions reduces prob to δ
- How to instantiate this?
 - Design method for approximate L₂ sampling via sketches
 - Show that this gives relative error approximation of f_i
 - Use approximate value of F₂ from sketch
 - Complicates the analysis, but bound stays similar

L₂ Sampling Outline

For each i, draw u_i uniformly in the range 0...1

- From vector of frequencies f, derive g so $g_i = f_i/Vu_i$
- Sketch g_i vector

Sample: return (i, f_i) if there is unique i with $g_i^2 > t = F_2/\epsilon$ threshold

-
$$\Pr[g_i^2 > t \land \forall j \neq i : g_j^2 < t] = \Pr[g_i^2 > t] \prod_{j \neq i} \Pr[g_j^2 < t]$$

= $\Pr[u_i < \varepsilon f_i^2 / F_2] \prod_{j \neq i} \Pr[u_j > \varepsilon f_j^2 / F_2]$
= $(\varepsilon f_i^2 / F_2) \prod_{j \neq i} (1 - \varepsilon f_j^2 / F_2)$
 $\approx \varepsilon f_i^2 / F_2$

Probability of returning anything is not so big: $\sum_i \varepsilon f_i^2 / F_2 = \varepsilon$

- Repeat O($1/\epsilon \log 1/\delta$) times to improve chance of sampling

L₂ sampling continued

- Given (estimated) g_i s.t. $g_i^2 \ge F_2/\epsilon$, estimate $f_i = u_i g_i$
- Sketch size $O(\epsilon^{-1} \log n)$ means estimate of f_i^2 has error $(\epsilon f_i^2 + u_i^2)$
 - With high prob, no $u_i < 1/poly(n)$, and so $F_2(g) = O(F_2(f) \log n)$
 - Since estimated $f_i^2/u_i^2 \ge F_2/\epsilon$, $u_i^2 \le \epsilon f_i^2/F_2$
- Estimating f_i^2 with error εf_i^2 sufficient for estimating F_k
- Many details omitted
 - See Precision Sampling paper [Andoni Krauthgamer Onak 11]

Advanced Topics

- Sampling and L_p Sampling
 - L₀ sampling and graph sketching
 - L₂ sampling and frequency moment estimation
- Matrix computations
 - Sketches for matrix multiplication
 - Sparse representation via frequent directions
- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions

Matrix Sketching

- Given matrices A, B, want to approximate matrix product AB
- Compute normed error of approximation C: |AB C|
- Give results for the Frobenius (entrywise) norm ||·||_F
 - $\|C\|_{F} = (\sum_{i,j} C_{i,j}^{2})^{\frac{1}{2}}$
 - Results rely on sketches, so this norm is most natural

Direct Application of Sketches

- Build sketch of each row of A, each column of B
- Estimate C_{i,i} by estimating inner product of A_i with B^j
- Absolute error in estimate is $\varepsilon \|A_i\|_2 \|B^j\|_2$ (whp)
- Sum over all entries in matrix, squared error is $\epsilon^{2} \sum_{i,j} \|A_{i}\|_{2}^{2} \|B^{j}\|_{2}^{2} = \epsilon^{2} (\sum_{i} \|A_{i}\|_{2}^{2}) (\sum_{j} \|B_{j}\|_{2}^{2})$ $= \epsilon^{2} (\|A\|_{F}^{2}) (\|B\|_{F}^{2})$
- Hence, Frobenius norm of error is $\varepsilon \|A\|_{F} \|B\|_{F}$
- Problem: need the bound to hold for all sketches simultaneously
 - Requires polynomially small failure probability
 - Increases sketch size by logarithmic factors

Improved Matrix Multiplication Analysis

- Simple analysis is too pessimistic [Clarkson Woodruff 09]
 - It bounds probability of failure of each sketch independently
- A better approach is to directly analyze variance of error
 - Immediately, each estimate of (AB) has variance $\varepsilon^2 \|A\|_{F}^2 \|B\|_{F}^2$
 - Just need to apply Chebyshev inequality to sum... almost
- Problem: how to amplify probability of correctness?
 - 'Median' trick doesn't work: what is median of set of matrices?
 - Find an estimate which is close to most others
 - Estimate ||A||_F² ||B||_F² := d using sketches
 - Find an estimate that's closer than d/2 to more than ½ the rest
 - \blacksquare We find an estimate with this property with probability 1- δ

Advanced Linear Algebra

- More directly approximate matrix multiplication:
 - use more powerful hash functions in sketching
 - obtain a single accurate estimate with high probability
- Linear regression given matrix A and vector b: find x ∈ R^d to (approximately) solve min_x ||Ax − b||
 - Approach: solve the minimization in "sketch space"
 - Require a summary of size $O(d^2/\epsilon \log 1/\delta)$

Frequent Items and Frequent Directions

- A deterministic algorithm for tracking item frequencies
 - With a recent analysis of its performance
 - Unusually, it is deterministic
- Inspiring an algorithm for tracking matrix properties
 - Due to [Liberty 13], extended by [Ghashami Phillips 13]

Misra-Gries Summary (1982)

Misra-Gries (MG) algorithm finds up to k items that occur more than 1/k fraction of the time in the input

Update: Keep k different candidates in hand. For each item:

- If item is monitored, increase its counter
- Else, if < k items monitored, add new item with count 1
- Else, decrease all counts by 1

Streaming MG analysis

- N = total weight of input
- M = sum of counters in data structure
- Error in any estimated count at most (N-M)/(k+1)
 - Estimated count a lower bound on true count
 - Each decrement spread over (k+1) items: 1 new one and k in MG
 - Equivalent to deleting (k+1) distinct items from stream
 - At most (N-M)/(k+1) decrement operations
 - Hence, can have "deleted" (N-M)/(k+1) copies of any item
 - So estimated counts have at most this much error

Merging two MG Summaries [ACHPWY '12]

Merge algorithm:

- Merge the counter sets in the obvious way
- Take the (k+1)th largest counter = C_{k+1} , and subtract from all
- Delete non-positive counters
- Sum of remaining counters is M₁₂
- This keeps the same guarantee as Update:
 - Merge subtracts at least (k+1)C_{k+1} from counter sums
 - So $(k+1)C_{k+1} \leq (M_1 + M_2 M_{12})$
 - By induction, error is $((N_1-M_1) + (N_2-M_2) + (M_1+M_2-M_{12}))/(k+1) = ((N_1+N_2) - M_{12})/(k+1)$

(prior error) (from merge) (as claimed)

A Powerful Summary

MG summary with update and merge is very powerful

- Builds a compact summary of the frequency distribution
- Can also multiply the summary by any scalar
- Hence can take (positive) linear combinations: $\alpha x + \beta y$
- Useful for building models of data
- Ideas recently extended to matrix computations

Frequent Directions

- Input: An n × d matrix A, presented one row at a time
- Find k × d matrix Q so for any vector x, Qx approximates Ax
- Simple idea: use SVD to focus on most important directions
- Given current k × d matrix Q
 - Replace last row with new row a_i
 - Compute SVD of Q as $U\Sigma V$
 - Set $\Sigma' = \text{diag}(\sqrt{(\sigma_1^2 \sigma_k^2)}, \sqrt{(\sigma_2^2 \sigma_k^2)}, \dots, \sqrt{(\sigma_{k-1}^2 \sigma_k^2)}, \sqrt{(\sigma_k^2 \sigma_k^2)}=0)$
 - Rescale: $\mathbf{Q}' = \Sigma' \mathbf{V}^{\mathsf{T}}$
- At step i, have introduced error based on $\delta_i = \Sigma_{k,k} = \sigma_k$

Frequent Directions Analysis

Error (in Frobenius norm) introduced at each step at most δ_i^2

- Let v_i be j'th column of V_i and pick any x such that $||x||_2 = 1$

$$- \|Qx\|_{2}^{2} = \sum_{j=1}^{k} \sigma_{j}^{2} (v_{j} \cdot x)^{2} = \sum_{j=1}^{k} (\sigma_{j}'^{2} + \delta_{i}^{2}) (v_{j} \cdot x)^{2}$$

= $\sum_{j=1}^{k} \sigma_{j}'^{2} (v_{j} \cdot x)^{2} + \sum_{j=1}^{k} \delta_{i}^{2} (v_{j} \cdot x)^{2}$
 $\leq \|Q'x\|_{2}^{2} + \delta_{i}^{2}$

- Observe that $\|\mathbf{Q'}\|_{F^{2}} \|\mathbf{Q}\|_{F^{2}} = \delta_{i}^{2} + \delta_{i}^{2} + \dots = k \delta_{i}^{2}$
- Adding row a_i causes ||Q||_F² to increase by ||a_i||₂²
- Hence, $\|A\|_{F}^{2} = \sum_{i} \|a_{i}\|_{2}^{2} = k \sum_{i} \delta_{i}^{2}$
- Summing over all steps, $0 \le \|Ax\|_2^2 \|Qx\|_2^2 \le \sum_i \delta_i^2 = \|A\|_F/k$
 - "Relative error" bounds follow by increasing k [Ghashami Phillips 13]

Advanced Topics

- Sampling and L_p Sampling
 - L₀ sampling and graph sketching
 - L₂ sampling and frequency moment estimation
- Matrix computations
 - Sketches for matrix multiplication
 - Sparse representation via frequent directions
- Lower bounds for streaming and sketching
 - Basic hard problems (Index, Disjointness)
 - Hardness via reductions

Streaming Lower Bounds

- Lower bounds for summaries
 - Communication and information complexity bounds
 - Simple reductions
 - Hardness of Gap-Hamming problem
 - Reductions to Gap-Hamming

Computation As Communication

- Imagine Alice processing a prefix of the input
- Then takes the whole working memory, and sends to Bob
- Bob continues processing the remainder of the input

Computation As Communication

- Suppose Alice's part of the input corresponds to string x, and Bob's part corresponds to string y...
- ...and computing the function corresponds to computing f(x,y)...
- ...then if f(x,y) has communication complexity Ω(g(n)), then the computation has a *space lower bound* of Ω(g(n))
- Proof by contradiction:

If there was an algorithm with better space usage, we could run it on x, then send the memory contents as a message, and hence solve the communication problem

Deterministic Equality Testing

- Alice has string x, Bob has string y, want to test if x=y
- Consider a deterministic (one-round, one-way) protocol that sends a message of length m < n
- There are 2^m possible messages, so some strings must generate the same message: this would cause error
- So a deterministic message (sketch) must be $\Omega(n)$ bits
 - In contrast, we saw a randomized sketch of size O(log n)

Hard Communication Problems

INDEX: Alice's x is a binary string of length n
 Bob's y is an index in [n]
 Goal: output x[y]
 Result: (one-way) (randomized) communication complexity of INDEX is Ω(n) bits

- AUGINDEX: as INDEX, but y additionally contains x[y+1]...x[n] Result: (one-way) (randomized) complexity of AUGINDEX is Ω(n) bits
- DISJ: Alice's x and Bob's y are both length n binary strings Goal: Output 1 if ∃i: x[i]=y[i]=1, else 0 Result: (multi-round) (randomized) communication complexity of DISJ (disjointness) is Ω(n) bits

Hardness of INDEX

- Show hardness of INDEX via Information Complexity argument
 - Makes extensive use of Information Theory
- Entropy of random variable X: $H(X) = -\sum_{x} Pr[X=x] lg Pr[X=x]$
 - (Expected) information (in bits) gained by learning value of X
 - If X takes on at most N values, $H(X) \le \lg N$
- Conditional Entropy of X given Y: $H(X|Y) = \sum_{y} Pr[y] H[X|Y=y]$
 - (Expected) information (bits) gained by learning value of X given Y
- Mutual Information: I(X : Y) = I(Y : X) = H(X) H(X | Y)
 - Information (in bits) shared by X and Y
 - If X, Y are independent, I(X : Y) = 0 and $I(XY : Z) \ge I(X : Z) + I(Y : Z)$

Information Cost

- Use Information Theoretic properties to lower bound communication complexity
- Suppose Alice and Bob have random inputs X and Y
- Let M be the (random) message sent by Alice in protocol P
- The cost of (one-way) protocol P is cost(P) = max |M|
 - Worst-case size of message (in bits) sent in the protocol
- Define information cost as icost(P) = I(M : X)
 - The information conveyed about X in M
 - icost(P) = I(M : X) = H(M) H(M | X) \leq H(M) \leq cost(P)

Information Cost of INDEX

- Give Alice random input X = n uniform random bits
- Given protocol P for INDEX, Alice sends message M(X)
- Give Bob input i. He should output X_i
- icost(P) = $I(X_1 X_2 ... X_n : M)$ ≥ $I(X_1 : M) + I(X_2 : M) + ... + I(X_n : M)$
- Now consider the mutual information of X_i and M
 - Have reduced the problem to n instances of a simpler problem
- Intuition: I(X_i : M) should be at least constant, so cost(P) = ⊖(n)

Fano's Inequality

- When forming estimate X' from X given (message) M, where X, X' have k possible values, let E denote X ≠ X'. We have: H(E) + Pr[E] log(k-1) ≥ H(X | M) where H(E) = -Pr[E]Ig Pr[E] - (1-Pr[E]) Ig(1-Pr[E])
- Here, k=2, so we get $I(X : M) = H(X) H(X | M) \ge H(X) H(E)$
 - H(X) = 1. If Pr[E]= δ , we have H(E) < $\frac{1}{2}$ for δ <0.1
 - Hence $I(X_i : M) > \frac{1}{2}$
- Thus $cost(P) \ge icost(P) > \frac{1}{2} n$ if P succeeds w/prob $1-\delta$
 - Protocols for **INDEX** must send $\Omega(n)$ bits
 - Hardness of AUGINDEX follows similarly

Outline for DISJOINTNESS hardness

- Hardness for **DISJ** follows a similar outline
- Reduce to n instances of the problem "AND"
 - "AND" problem: test whether $X_i = Y_i = 1$
- Show that the information cost of **DISJ** protocol is sufficient to solve all n instances of **AND**
- Show that the information cost of each instance is $\Omega(1)$
- Proves that communication cost of **DISJ** is $\Omega(1)$
 - Even allowing multiple rounds of communication

Simple Reduction to Disjointness

x:
$$101101 \longrightarrow 1, 3, 4, 6$$

y: 0 0 0 1 1 0 → 4, 5

- **F** $_{\infty}$: output the highest frequency in the input
- Input: the two strings x and y from disjointness instance
- Reduction: if x[i]=1, then put i in input; then same for y
 - A streaming reduction (compare to polynomial-time reductions)
- Analysis: if $F_{\infty}=2$, then intersection; if $F_{\infty}\leq 1$, then disjoint.
- **Conclusion**: Giving exact answer to F_{∞} requires $\Omega(N)$ bits
 - Even approximating up to 50% relative error is hard
 - Even with randomization: **DISJ** bound allows randomness

Simple Reduction to Index

$$\mathbf{x:} \ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \longrightarrow \ \mathbf{1}, \ \mathbf{3}, \ \mathbf{4}, \ \mathbf{6}$$

y: 5 \longrightarrow 5

- F₀: output the number of items in the stream
- Input: the strings x and index y from INDEX
- Reduction: if x[i]=1, put i in input; then put y in input
- Analysis: if $(1-\varepsilon)F'_0(x \cup y) > (1+\varepsilon)F'_0(x)$ then x[y]=1, else it is 0
- Conclusion: Approximating F_0 for $\varepsilon < 1/N$ requires $\Omega(N)$ bits
 - Implies that space to approximate must be $\Omega(1/\epsilon)$
 - Bound allows randomization

Reduction to AUGINDEX [Clarkson Woodruff 09]

Matrix-Multiplication: approximate A^TB with error $\varepsilon^2 \|A\|_{F} \|B\|_{F}$

- For $\mathbf{r} \times \mathbf{c}$ matrices. A encodes string x, B encodes index y

- Bob uses suffix of x in y to remove heavy entries from A $\|B\|_{F} = 1$ $\|A\|_{F} = cr/log(cn) * (1 + 4 + ... 2^{2k}) \le 4cr2^{2k}/3log(cn)$
- Choose $r = \log(cn)/8\epsilon^2$ so permitted error is $c 2^{2k} / 6\epsilon^2$
 - Each error in sign in estimate of (A^TB) contributes 2^{2k} error
 - Can tolerate error in at most 1/6 fraction of entries
- Matrix multiplication requires space $\Omega(rc) = \Omega(c/\epsilon^2 \log (cn))$

Streaming Lower Bounds

- Lower bounds for data streams
 - Communication complexity bounds
 - Simple reductions
 - Hardness of Gap-Hamming problem
 - Reductions to Gap-Hamming

Gap Hamming

Gap-Hamming communication problem:

- Alice holds $x \in \{0,1\}^N$, Bob holds $y \in \{0,1\}^N$
- Promise: Ham(x,y) is either $\leq N/2 \sqrt{N}$ or $\geq N/2 + \sqrt{N}$
- Which is the case?
- Model: one message from Alice to Bob
- Sketching upper bound: need relative error $\varepsilon = \sqrt{N/F_2} = 1/\sqrt{N}$
 - Gives space $O(1/\epsilon^2) = O(N)$

Requires Ω(N) bits of one-way randomized communication [Indyk, Woodruff'03, Woodruff'04, Jayram, Kumar, Sivakumar '07]

Hardness of Gap Hamming

Reduction starts with an instance of INDEX

- Map string x to u by $1 \rightarrow +1$, $0 \rightarrow -1$ (i.e. u[i] = 2x[i] -1)
- Assume both Alice and Bob have access to public random strings r_i, where each bit of r_i is iid {-1, +1}
- Assume w.l.o.g. that length of string n is odd (important!)
- Alice computes $a_i = sign(r_i \cdot u)$
- Bob computes $b_i = sign(r_i[y])$
- Repeat N times with different random strings, and consider the Hamming distance of a₁... a_N with b₁ ... b_N
 - Argue if we solve **Gap-Hamming** on (a, b), we solve **INDEX**

Probability of a Hamming Error

- Consider the pair a_j = sign(r_j · u), b_j = sign(r_j[y])
- Let $w = \sum_{i \neq y} u[i] r_j[i]$
 - w is a sum of (n-1) values distributed iid uniform {-1,+1}
- Case 1: $w \neq 0$. So $|w| \ge 2$, since (n-1) is even
 - so sign(a_i) = sign(w), independent of x[y]
 - Then $Pr[a_j \neq b_j] = Pr[sign(w) \neq sign(r_j[y])] = \frac{1}{2}$
- Case 2: w = 0.
 - So $a_i = sign(r_i \cdot u) = sign(w + u[y]r_i[y]) = sign(u[y]r_i[y])$
 - Then $Pr[a_j \neq b_j] = Pr[sign(u[y]r_j[y]) = sign(r_j[y])]$
 - This probability is 1 is u[y]=+1, 0 if u[y]=-1
 - Completely biased by the answer to INDEX

Finishing the Reduction

- So what is Pr[w=0]?
 - w is sum of (n-1) iid uniform {-1,+1} values
 - Then: $Pr[w=0] = 2^{-n}(n \text{ choose } n/2) = c/\sqrt{n}$, for some constant c
- Do some probability manipulation:
 - $Pr[a_i = b_i] = \frac{1}{2} + \frac{c}{2}\sqrt{n}$ if x[y]=1
 - $Pr[a_j = b_j] = \frac{1}{2} \frac{c}{2}\sqrt{n}$ if x[y]=0
- Amplify this bias by making strings of length N=4n/c²
 - Apply Chernoff bound on N instances
 - With prob>2/3, either Ham(a,b)>N/2 + \sqrt{N} or Ham(a,b)<N/2 \sqrt{N}
- If we could solve Gap-Hamming, could solve INDEX
 - Therefore, need $\Omega(N) = \Omega(n)$ bits for **Gap-Hamming**

Streaming Lower Bounds

- Lower bounds for data streams
 - Communication complexity bounds
 - Simple reductions
 - Hardness of Gap-Hamming problem
 - Reductions to Gap-Hamming

Lower Bound for Entropy

Gap-Hamming instance—Alice: $x \in \{0,1\}^N$, Bob: $y \in \{0,1\}^N$ Entropy estimation algorithm **A**

- Alice runs **A** on enc(x) = $\langle (1, x_1), (2, x_2), ..., (N, x_N) \rangle$
- Alice sends over memory contents to Bob
- Bob continues **A** on enc(y) = $\langle (1,y_1), (2,y_2), ..., (N,y_N) \rangle$

Streaming, Sketching and Sufficient Statistics

Lower Bound for Entropy

Observe: there are

- 2Ham(x,y) tokens with frequency 1 each
- N-Ham(x,y) tokens with frequency 2 each
- So (after algebra), H(S) = $\log N + Ham(x,y)/N = \log N + \frac{1}{2} \pm \frac{1}{\sqrt{N}}$
- If we separate two cases, size of Alice's memory contents = Ω(N)
 Set ε = 1/(V(N) log N) to show bound of Ω(ε/log 1/ε)⁻²)

Streaming, Sketching and Sufficient Statistics

Lower Bound for F₀

- Same encoding works for F₀ (Distinct Elements)
 - 2Ham(x,y) tokens with frequency 1 each
 - N-Ham(x,y) tokens with frequency 2 each
- $F_0(S) = N + Ham(x,y)$
- Either Ham(x,y)>N/2 + \sqrt{N} or Ham(x,y)<N/2 \sqrt{N}
 - If we could approximate F_0 with $\varepsilon < 1/\sqrt{N}$, could separate
 - But space bound = $\Omega(N) = \Omega(\epsilon^{-2})$ bits
- Dependence on ε for F_0 is tight
- Similar arguments show $\Omega(\varepsilon^{-2})$ bounds for F_k
 - Proof assumes k (and hence 2^k) are constants

Summary of Tools

- Vector equality: fingerprints
- Approximate item frequencies:
 - Count-min, Misra-Gries (L₁ guarantee), Count sketch (L₂ guarantee)
- Euclidean norm, inner product: AMS sketch, JL sketches
- Count-distinct: k-Minimum values, Hyperloglog
- Compact set-representation: Bloom filters
- Uniform Sampling
- L₀ sampling: hashing and sparse recovery
- L₂ sampling: via count-sketch
- Graph sketching: L₀ samples of neighborhood
- Frequency moments: via L₂ sampling
- Matrix sketches: adapt AMS sketches, frequent directions

Summary of Lower Bounds

- Can't deterministically test equality
- Can't retrieve arbitrary bits from a vector of n bits: INDEX
 - Even if some unhelpful suffix of the vector is given: AUGINDEX
- Can't determine whether two n bit vectors intersect: DISJ
- Can't distinguish small differences in Hamming distance:
 GAP-HAMMING
- These in turn provide lower bounds on the cost of
 - Finding the maximum frequency
 - Approximating the number of distinct items
 - Approximating matrix multiplication

Current Directions in Streaming and Sketching

- Sparse representations of high dimensional objects
 - Compressed sensing, sparse fast fourier transform
- Numerical linear algebra for (large) matrices
 - k-rank approximation, linear regression, PCA, SVD, eigenvalues
- Computations on large graphs
 - Sparsification, clustering, matching
- Geometric (big) data
 - Coresets, facility location, optimization, machine learning
- Use of summaries in distributed computation
 - MapReduce, Continuous Distributed models

Forthcoming Attractions

- Data Streams Mini Course @Simons
 - Prof Andrew McGregor
 - Starts early October

- Succinct Data Representations and Applications @ Simons
 - September 16-19

