Streaming, Sketching and Sufficient Statistics

000000000000000000000000000

 000000000000000000 -०००००००

Graham Cormode
University of Warwick
G.Cormode@Warwick.ac.uk

Data is Massive

- Data is growing faster than our ability to store or index it
- There are 3 Billion Telephone Calls in US each day (100BN minutes), 30B emails daily, 4B SMS, IMs.

■ Scientific data: NASA's observation satellites generate billions of readings each per day.

- IP Network Traffic: can be billions packets per hour per router. Each ISP has many (10s of thousands) routers!
- Whole genome readings for individual humans now available: each is many gigabytes in size

Small Summaries and Sufficient Statistics

- A summary (approximately) allows answering such questions
- To earn the name, should be (very) small
- Can keep in fast storage
- Should be able to build, update and query efficiently

■ Key methods for summaries:

- Create an empty summary
- Update with one new tuple: streaming processing
- Merge summaries together: distributed processing
- Query: may tolerate some approximation
- A generalized notion of "sufficient statistics"

The CS Perspective

- Cynical: "The price of everything and the value of nothing"
- Optimize the cost of quantities related to a computation
- The space required to store the sufficient information
- The time to process each new item, or answer a query
- The accuracy of the answer (ε)
- The amount of "true" randomness
- In terms of size of input n, and chosen parameters
- Pessimistic: "A pessimist is never disappointed"
- Rarely make strong assumptions about the input distribution
- "the data is the data": assume fixed input, adversarial ordering
- Seek to compute a function of the input (not the distribution)

The CS Perspective II

■ "Probably Approximately Correct"

- Preference for tail bounds on quantities
- Within error ε with probability 1- δ - $8 / 2$

- Use concentration of measure (Markov, Chebyshev, Chernoff...)

■ "High price of entr(op)y": Randomness is a limited resource

- We often need "random" bits as a function of i
- Must either store the randomness
- Or use weaker hash functions with small random keys
- Occasionally, assume "fully independent hash functions"

■ Not too concerned about constant factors

- Most bounds given in $O()$ notation

Data Models

- We model data as a collection of simple tuples
- Problems hard due to scale and dimension of input
- Arrivals only model:
- Example: ($x, 3$), $(y, 2),(x, 2)$ encodes the arrival of 3 copies of item x, 2 copies of y, then 2 copies of x.
- Could represent eg. packets on a network; power usage
- Arrivals and departures:
- Example: $(x, 3),(y, 2),(x,-2)$ encodes final state of ($x, 1$), ($\mathrm{y}, 2$).

- Can represent fluctuating quantities, or measure differences between two distributions

Part I: Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F_{2}
- Estimating F_{0}
- Extensions:
- Higher frequency moments
- Combined frequency moments

Part II: Advanced Topics

- Sampling and L_{p} Sampling
- L_{0} sampling and graph sketching
- L_{2} sampling and frequency moment estimation
- Matrix computations
- Sketches for matrix multiplication
- Sparse representation via frequent directions
- Lower bounds for streaming and sketching
- Basic hard problems (Index, Disjointness)
- Hardness via reductions

Frequency Distributions

■ Given set of items, let f_{i} be the number of occurrences of item i

- Many natural questions on f_{i} values:
- Find those i's with large f_{i} values (heavy hitters)
- Find the number of non-zero f_{i} values (count distinct)
- Compute $F_{k}=\sum_{i}\left(f_{i}\right)^{k}$ - the k^{\prime} th Frequency Moment
- Compute $H=\sum_{i}\left(f_{i} / F_{1}\right) \log \left(F_{1} / f_{i}\right)$ - the (empirical) entropy

■ "Space Complexity of the Frequency Moments"
Alon, Matias, Szegedy in STOC 1996

- Awarded Gödel prize in 2005
- Set the pattern for many streaming algorithms to follow

Concentration Bounds

- Will provide randomized algorithms for these problems
- Each algorithm gives a (randomized) estimate of the answer

■ Give confidence bounds on the final estimate X

- Use probabilistic concentration bounds on random variables
- A concentration bound is typically of the form

$$
\operatorname{Pr}[|X-x|>\varepsilon y]<\delta
$$

- At most probability δ of being more than εy away from x

Markov Inequality

- Take any probability distribution X s.t. $\operatorname{Pr}[\mathrm{X}<0]=0$

■ Consider the event $X \geq k$ for some constant $k>0$

- For any draw of $X, k I(X \geq k) \leq X$
- Either $0 \leq X<k$, so $I(X \geq k)=0$
- $\operatorname{Or} X \geq k, \operatorname{lhs}=k$

■ Take expectations of both sides: $\mathrm{kr}[\mathrm{X} \geq \mathrm{k}] \leq \mathrm{E}[\mathrm{X}]$
■ Markov inequality: $\operatorname{Pr}[X \geq k] \leq E[X] / k$

- Prob of random variable exceeding k times its expectation $<1 / k$
- Relatively weak in this form, but still useful

Sketch Structures

- Sketch is a class of summary that is a linear transform of input
- Sketch(x) = Sx for some matrix S
- Hence, Sketch $(\alpha x+\beta y)=\alpha \operatorname{Sketch}(x)+\beta$ Sketch (y)
- Trivial to update and merge
- Often describe S in terms of hash functions
- If hash functions are simple, sketch is fast
- Aim for limited independence hash functions $h:[n] \rightarrow[m]$
- If $\operatorname{Pr}_{h \in H}\left[h\left(i_{1}\right)=j_{1} \wedge h\left(i_{2}\right)=j_{2} \wedge \ldots h\left(i_{k}\right)=j_{k}\right]=m^{-k}$, then H is k -wise independent family (" h is k -wise independent")
- k-wise independent hash functions take time, space $O(k)$

A First Sketch: Fingerprints

■ Test if two (distributed) binary vectors are equal $d_{=}(x, y)=0$ iff $x=y, 1$ otherwise

- To test in small space: pick a suitable hash function h
- Test $h(x)=h(y)$: small chance of false positive, no chance of false negative
- Compute $h(x), h(y)$ incrementally as new bits arrive
- How to choose the function $h()$?

Polynomial Fingerprints

- Pick $h(x)=\sum_{i=1}{ }^{n} x_{i} r^{i}$ mod p for prime p, random $r \in\{1 \ldots p-1\}$
- Flexible: $h(x)$ is linear function of x-easy to update and merge
- For accuracy, note that computation mod p is over the field Z_{p}
- Consider the polynomial in $\alpha, \sum_{i=1}{ }^{n}\left(x_{i}-y_{i}\right) \alpha^{i}=0$
- Polynomial of degree n over Z_{p} has at most n roots
- Probability that r happens to solve this polynomial is n / p
- So $\operatorname{Pr}[h(x)=h(y) \mid x \neq y] \leq n / p$
- Pick $p=$ poly (n), fingerprints are $\log p=O(\log n)$ bits

■ Fingerprints applied to small subsets of data to test equality

- Will see several examples that use fingerprints as subroutine

Sketches and Frequency Moments

■ Frequency distributions and Concentration bounds

- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F_{2}
- Estimating F_{0}

■ Extensions:

- Higher frequency moments
- Combined frequency moments

Count-Min Sketch

■ Simple sketch idea relies primarily on Markov inequality

- Model input data as a vector x of dimension U
- Creates a small summary as an array of $w \times d$ in size
- Use d hash function to map vector entries to [1..w]

■ Works on arrivals only and arrivals \& departures streams

Count-Min Sketch Structure

■ Each entry in vector x is mapped to one bucket per row.

- Merge two sketches by entry-wise summation
- Estimate $x[j]$ by taking $\min _{k} C M\left[k, h_{k}(j)\right]$
- Guarantees error less than εF_{1} in size $O(1 / \varepsilon \log 1 / \delta)$
- Probability of more error is less than 1- δ
[C, Muthukrishnan '04]

Approximation of Point Queries

Approximate point query $x^{\prime}[j]=\min _{k} C M\left[k, h_{k}(j)\right]$

- Analysis: In k'th row, $\mathrm{CM}\left[\mathrm{k}, \mathrm{h}_{\mathrm{k}}(\mathrm{j})\right]=\mathrm{x}[\mathrm{j}]+\mathrm{X}_{\mathrm{k}, \mathrm{j}}$
- $X_{k, j}=\Sigma_{i} x[i] I\left(h_{k}(i)=h_{k}(j)\right)$
$-E\left[X_{k, j}\right]=\Sigma_{i \neq j} x[i] * \operatorname{Pr}\left[h_{k}(i)=h_{k}(j)\right]$
$\leq \operatorname{Pr}\left[\mathrm{h}_{\mathrm{k}}(\mathrm{i})=\mathrm{h}_{\mathrm{k}}(\mathrm{j})\right] * \Sigma_{\mathrm{i}} \mathrm{x}[\mathrm{i}]$
$=\varepsilon F_{1} / 2$ - requires only pairwise independence of h
$-\operatorname{Pr}\left[\mathrm{X}_{\mathrm{k}, \mathrm{j}} \geq \varepsilon \mathrm{F}_{1}\right]=\operatorname{Pr}\left[\mathrm{X}_{\mathrm{k}, \mathrm{j}} \geq 2 \mathrm{E}\left[\mathrm{X}_{\mathrm{k}, \mathrm{j}}\right]\right] \leq 1 / 2$ by Markov inequality
- So, $\operatorname{Pr}\left[x^{\prime}[j] \geq x[j]+\varepsilon F_{1}\right]=\operatorname{Pr}\left[\forall\right.$ k. $\left.X_{k, j}>\varepsilon F_{1}\right] \leq 1 / 2^{\log 1 / \delta}=\delta$
- Final result: with certainty $x[j] \leq x^{\prime}[j]$ and with probability at least $1-\delta, x^{\prime}[j]<x[j]+\varepsilon F_{1}$

Applications of Count-Min to Heavy Hitters

■ Count-Min sketch lets us estimate f_{i} for any $i\left(u p\right.$ to εF_{1})

- Heavy Hitters asks to find i such that f_{i} is large ($>\phi F_{1}$)

■ Slow way: test every i after creating sketch

- Alternate way:
- Keep binary tree over input domain: each node is a subset
- Keep sketches of all nodes at same level
- Descend tree to find large frequencies, discard 'light’ branches
- Same structure estimates arbitrary range sums

■ A first step towards compressed sensing style results...

Application to Large Scale Machine Learning

- In machine learning, often have very large feature space
- Many objects, each with huge, sparse feature vectors
- Slow and costly to work in the full feature space

■ "Hash kernels": work with a sketch of the features

- Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg '09]
- Similar analysis explains why:
- Essentially, not too much noise on the important features

Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F_{2}
- Estimating F_{0}

■ Extensions:

- Higher frequency moments
- Combined frequency moments

Chebyshev Inequality

■ Markov inequality is often quite weak

- But Markov inequality holds for any random variable
- Can apply to a random variable that is a function of X
- Set $Y=(X-E[X])^{2}$
- By Markov, $\operatorname{Pr}[\mathrm{Y}>\mathrm{kE}[\mathrm{Y}]]<1 / k$
$-E[Y]=E\left[(X-E[X])^{2}\right]=\operatorname{Var}[X]$
- Hence, $\operatorname{Pr}[|X-E[X]|>V(k \operatorname{Var}[X])]<1 / k$
- Chebyshev inequality: $\operatorname{Pr}[|X-E[X]|>k]<\operatorname{Var}[X] / k^{2}$
- If $\operatorname{Var}[\mathrm{X}] \leq \varepsilon^{2} \mathrm{E}[\mathrm{X}]^{2}$, then $\operatorname{Pr}[|\mathrm{X}-\mathrm{E}[\mathrm{X}]|>\varepsilon \mathrm{E}[\mathrm{X}]]=\mathrm{O}(1)$

F_{2} estimation

■ AMS sketch (for Alon-Matias-Szegedy) proposed in 1996

- Allows estimation of F_{2} (second frequency moment)
- Used at the heart of many streaming and non-streaming applications: achieves dimensionality reduction
■ Here, describe AMS sketch by generalizing CM sketch.
■ Uses extra hash functions $g_{1} \ldots \mathrm{~g}_{\log 1 / \delta}\{1 \ldots \mathrm{U}\} \rightarrow\{+1,-1\}$
- (Low independence) Rademacher variables

■ Now, given update $(j,+c)$, set $C M\left[k, h_{k}(j)\right]+=c^{*} g_{k}(j)$

F_{2} analysis

- Estimate $\mathrm{F}_{2}=$ median $_{\mathrm{k}} \sum_{\mathrm{i}} \mathrm{CM}[\mathrm{k}, \mathrm{i}]^{2}$
- Each row's result is $\sum_{i} g(i)^{2} x[i]^{2}+\sum_{h(i)=h(i)} 2 g(i) g(j) x[i] x[j]$
- But $g(i)^{2}=-1^{2}=+1^{2}=1$, and $\sum_{i} \times[i]^{2}=F_{2}$
- $g(i) g(j)$ has $1 / 2$ chance of +1 or -1 : expectation is 0 ...

F_{2} Variance

- Expectation of row estimate $R_{k}=\sum_{i} C M[k, i]^{2}$ is exactly F_{2}
- Variance of row $k, \operatorname{Var}\left[R_{k}\right]$, is an expectation:
$-\operatorname{Var}\left[R_{k}\right]=E\left[\left(\sum_{\text {buckets b }}(C M[k, b])^{2}-F_{2}\right)^{2}\right]$
- Good exercise in algebra: expand this sum and simplify
- Many terms are zero in expectation because of terms like $\mathrm{g}(\mathrm{a}) \mathrm{g}(\mathrm{b}) \mathrm{g}(\mathrm{c}) \mathrm{g}(\mathrm{d})$ (degree at most 4)
- Requires that hash function g is four-wise independent: it behaves uniformly over subsets of size four or smaller
- Such hash functions are easy to construct

F_{2} Variance

■ Terms with odd powers of $g(a)$ are zero in expectation

- $g(a) g(b) g^{2}(c), g(a) g(b) g(c) g(d), g(a) g^{3}(b)$
- Leaves
$\operatorname{Var}\left[\mathrm{R}_{\mathrm{k}}\right] \leq \sum_{\mathrm{i}} \mathrm{g}^{4}(\mathrm{i}) \times[\mathrm{i}]^{4}$

$$
\begin{aligned}
& +2 \sum_{j \neq i} g^{2}(i) g^{2}(j) x[i]^{2} x[j]^{2} \\
& +4 \sum_{h(i)=h(i)} g^{2}(i) g^{2}(j) x[i]^{2} x[j]^{2} \\
& -\left(x[i]^{4}+\sum_{j \neq i} 2 x[i]^{2} x[j]^{2}\right) \\
& \leq F_{2}^{2} / w
\end{aligned}
$$

- Row variance can finally be bounded by $\mathrm{F}_{2}{ }^{2} / \mathrm{w}$
- Chebyshev for $w=4 / \varepsilon^{2}$ gives probability $1 / 4$ of failure:

$$
\operatorname{Pr}\left[\left|R_{k}-F_{2}\right|>\varepsilon^{2} F_{2}\right] \leq 1 / 4
$$

- How to amplify this to small δ probability of failure?
- Rescaling w has cost linear in $1 / \delta$

Tail Inequalities for Sums

■ We achieve stronger bounds on tail probabilities for the sum of independent Bernoulli trials via the Chernoff Bound:

- Let X_{1}, \ldots, X_{m} be independent Bernoulli trials s.t. $\operatorname{Pr}\left[X_{i}=1\right]=p$ $\left(\operatorname{Pr}\left[X_{i}=0\right]=1-p\right)$.
- Let $X=\sum_{i=1}{ }^{m} X_{i}$, and $\mu=m p$ be the expectation of X.
- Then, for $\varepsilon>0$, Chernoff bound states:

$$
\operatorname{Pr}[|X-\mu| \geq \varepsilon \mu] \leq 2 \exp \left(-1 / 2 \mu \varepsilon^{2}\right)
$$

- Proved by applying Markov inequality to $Y=\exp \left(X_{1} \cdot X_{2} \cdot \ldots \cdot X_{m}\right)$

Applying Chernoff Bound

- Each row gives an estimate that is within ε relative error with probability $\mathrm{p}^{\prime}>3 / 4$
- Take d repetitions and find the median. Why the median?

- Because bad estimates are either too small or too large
- Good estimates form a contiguous group "in the middle"
- At least d/2 estimates must be bad for median to be bad
- Apply Chernoff bound to d independent estimates, $p=1 / 4$
- $\operatorname{Pr}[$ More than $d / 2$ bad estimates $]<2 \exp (-d / 8)$
- So we set $d=\Theta(\ln 1 / \delta)$ to give δ probability of failure
- Same outline used many times in summary construction

Applications and Extensions

- F_{2} guarantee: estimate $\|x\|_{2}$ from sketch with error $\varepsilon\|x\|_{2}$
- Since $\|x+y\|_{2}{ }^{2}=\|x\|_{2}{ }^{2}+\|y\|_{2}{ }^{2}+2 x \cdot y$

Can estimate ($x \cdot y$) with error $\varepsilon\|x\|_{2}\|y\|_{2}$

- If $y=e_{i}$, obtain $\left(x \cdot e_{j}\right)=x_{j}$ with error $\varepsilon\|x\|_{2}$: L_{2} guarantee ("Count Sketch") vs L_{1} guarantee (Count-Min)
- Can view the sketch as a low-independence realization of the Johnson-Lindendestraus lemma
- Best current JL methods have the same structure
- JL is stronger: embeds directly into Euclidean space
- JL is also weaker: requires $O(1 / \varepsilon)$-wise hashing, $O(\log 1 / \delta)$ independence [Kane, Nelson 12]

Sketches and Frequency Moments

- Frequency Moments and Sketches
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F_{2}
- Estimating F_{0}

■ Extensions:

- Higher frequency moments
- Combined frequency moments

F_{0} Estimation

- F_{0} is the number of distinct items in the stream
- a fundamental quantity with many applications
- Early algorithms by Flajolet and Martin [1983] gave nice hashing-based solution
- analysis assumed fully independent hash functions
- Will describe a generalized version of the FM algorithm due to Bar-Yossef et. al with only pairwise indendence
- Known as the "k-Minimum values (KMV)" algorithm

F_{0} Algorithm

- Let m be the domain of stream elements
- Each item in data is from [1...m]

■ Pick a random (pairwise) hash function $\mathrm{h}:[\mathrm{m}] \rightarrow\left[\mathrm{m}^{3}\right]$

- With probability at least 1-1/m, no collisions under h

- For each stream item i, compute $h(i)$, and track the t distinct items achieving the smallest values of $h(i)$
- Note: if same i is seen many times, $h(i)$ is same
- Let $v_{t}=t^{\prime}$ th smallest (distinct) value of $h(i)$ seen
- If $F_{0}<t$, give exact answer, else estimate $F_{0}^{\prime}=t m^{3} / v_{t}$
$-v_{t} / m^{3} \approx$ fraction of hash domain occupied by t smallest

Analysis of F_{0} algorithm

■ Suppose $\mathrm{F}_{0}=\mathrm{tm}^{3} / \mathrm{v}_{\mathrm{t}}>(1+\varepsilon) \mathrm{F}_{0}$ [estimate is too high]

- So for input = set $S \in 2^{[m]}$, we have
- $\left|\left\{s \in S \mid h(s)<\mathrm{tm}^{3} /(1+\varepsilon) \mathrm{F}_{0}\right\}\right|>\mathrm{t}$
- Because $\varepsilon<1$, we have $\mathrm{tm}^{3} /(1+\varepsilon) \mathrm{F}_{0} \leq(1-\varepsilon / 2) \mathrm{tm}^{3} / \mathrm{F}_{0}$
$-\operatorname{Pr}\left[\mathrm{h}(\mathrm{s})<(1-\varepsilon / 2) \mathrm{tm}^{3} / \mathrm{F}_{0}\right] \approx 1 / \mathrm{m}^{3} *(1-\varepsilon / 2) \mathrm{tm}^{3} / \mathrm{F}_{0}=(1-\varepsilon / 2) \mathrm{t} / \mathrm{F}_{0}$
- (this analysis outline hides some rounding issues)

Chebyshev Analysis

- Let Y be number of items hashing to under $\mathrm{tm}^{3} /(1+\varepsilon) \mathrm{F}_{0}$
- $\mathrm{E}[\mathrm{Y}]=\mathrm{F}_{0} * \operatorname{Pr}\left[\mathrm{~h}(\mathrm{~s})<\mathrm{tm}^{3} /(1+\varepsilon) \mathrm{F}_{0}\right]=(1-\varepsilon / 2) \mathrm{t}$
- For each item i, variance of the event $=p(1-p)<p$
$-\operatorname{Var}[\mathrm{Y}]=\sum_{\mathrm{s} \in \mathrm{S}} \operatorname{Var}\left[\mathrm{h}(\mathrm{s})<\mathrm{tm}^{3} /(1+\varepsilon) \mathrm{F}_{0}\right]<(1-\varepsilon / 2) \mathrm{t}$
- We sum variances because of pairwise independence

■ Now apply Chebyshev inequality:

$$
\begin{aligned}
-\operatorname{Pr}[Y>t] & \leq \operatorname{Pr}[|Y-E[Y]|>\varepsilon t / 2] \\
& \leq 4 \operatorname{Var}[Y] / \varepsilon^{2} t^{2} \\
& <4 t /\left(\varepsilon^{2} \mathrm{t}^{2}\right)
\end{aligned}
$$

- Set $\mathrm{t}=20 / \varepsilon^{2}$ to make this $\operatorname{Prob} \leq 1 / 5$

Completing the analysis

- We have shown

$$
\operatorname{Pr}\left[F_{0}^{\prime}>(1+\varepsilon) F_{0}\right]<1 / 5
$$

■ Can show $\operatorname{Pr}\left[\mathrm{F}_{0}^{\prime}<(1-\varepsilon) \mathrm{F}_{0}\right]<1 / 5$ similarly

- too few items hash below a certain value

■ So $\operatorname{Pr}\left[(1-\varepsilon) \mathrm{F}_{0} \leq \mathrm{F}_{0}{ }_{0} \leq(1+\varepsilon) \mathrm{F}_{0}\right]>3 / 5$ [Good estimate]

- Amplify this probability: repeat $O(\log 1 / \delta)$ times in parallel with different choices of hash function h
- Take the median of the estimates, analysis as before

F_{0} Issues

- Space cost:
- Store t hash values, so $O\left(1 / \varepsilon^{2} \log m\right)$ bits
- Can improve to $\mathrm{O}\left(1 / \varepsilon^{2}+\log m\right)$ with additional tricks

- Time cost:
- Find if hash value $h(i)<v_{t}$
- Update v_{t} and list of t smallest if $h(i)$ not already present
- Total time $O(\log 1 / \varepsilon+\log m)$ worst case

Count-Distinct

■ Engineering the best constants: Hyperloglog algorithm

- Hash each item to one of $1 / \varepsilon^{2}$ buckets (like Count-Min)
- In each bucket, track the function max $\lfloor\log (\mathrm{h}(\mathrm{x}))\rfloor$
- Can view as a coarsened version of KMV
- Space efficient: need log log $\mathrm{m} \approx 6$ bits per bucket
- Can estimate intersections between sketches
- Make use of identity $|A \cap B|=|A|+|B|-|A \cup B|$
- Error scales with $\varepsilon V(|A||B|)$, so poor for small intersections
- Higher order intersections via inclusion-exclusion principle

Bloom Filters

- Bloom filters compactly encode set membership
- k hash functions map items to bit vector k times
- Set all k entries to 1 to indicate item is present
- Can lookup items, store set of size n in $\mathrm{O}(\mathrm{n})$ bits

- Duplicate insertions do not change Bloom filters
- Can merge by OR-ing vectors (of same size)

Bloom Filter analysis

■ How to set k (number of hash functions), m (size of filter)?

- False positive: when all k locations for an item are set
- If ρ fraction of cells are empty, false positive probability is $(1-\rho)^{k}$
- Consider probability of any cell being empty:
- For n items, $\operatorname{Pr}[$ cell j is empty $]=(1-1 / m)^{\mathrm{kn}} \approx \rho \approx \exp (-\mathrm{kn} / \mathrm{m})$
- False positive prob $=(1-\rho)^{\mathrm{k}}=\exp (\mathrm{k} \ln (1-\rho))$

$$
=\exp (-m / n \ln (\rho) \ln (1-\rho))
$$

- For fixed n, m, by symmetry minimized at $\rho=1 / 2$
- Half cells are occupied, half are empty
- Give $k=(m / n) \ln 2$, false positive rate is $1 / 2^{k}$
- Choose $m=c n$ to get constant FP rate, e.g. $\mathrm{c}=10$ gives $<1 \%$ FP

Bloom Filters Applications

■ Bloom Filters widely used in "big data" applications

- Many problems require storing a large set of items
- Can generalize to allow deletions
- Swap bits for counters: increment on insert, decrement on delete
- If representing sets, small counters suffice: 4 bits per counter
- If representing multisets, obtain sketches (next lecture)
- Bloom Filters are an active research area
- Several papers on topic in every networking conference...

Frequency Moments

- Intro to frequency distributions and Concentration bounds
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F_{2}
- Estimating F_{0}
- Extensions:
- Higher frequency moments
- Combined frequency moments

Higher Frequency Moments

- F_{k} for $\mathrm{k}>2$. Use a sampling trick [Alon et al 96]:
- Uniformly pick an item from the stream length 1...n
- Set r = how many times that item appears subsequently
- Set estimate $F_{k}^{\prime}=n\left(r^{k}-(r-1)^{k}\right)$

■ $E\left[F^{\prime}{ }_{k}\right]=1 / n * n^{*}\left[f_{1}{ }^{k}-\left(f_{1}-1\right)^{k}+\left(f_{1}-1\right)^{k}-\left(f_{1}-2\right)^{k}+\ldots+1^{k}-0^{k}\right]+\ldots$

$$
=f_{1}{ }^{k}+f_{2}{ }^{k}+\ldots=F_{k}
$$

- $\operatorname{Var}\left[F_{k}^{\prime}\right] \leq 1 / n^{*} n^{2 *}\left[\left(f_{1}{ }^{k}-\left(f_{1}-1\right)^{k}\right)^{2}+\ldots\right]$
- Use various bounds to bound the variance by $\mathrm{k} \mathrm{m}^{1-1 / \mathrm{k}} \mathrm{F}_{\mathrm{k}}{ }^{2}$
- Repeat k $\mathrm{m}^{1-1 / \mathrm{k}}$ times in parallel to reduce variance
- Total space needed is $\mathrm{O}\left(\mathrm{k} \mathrm{m}^{1-1 / \mathrm{k}}\right)$ machine words
- Not a sketch: does not distribute easily. See part 2!

Combined Frequency Moments

- Let $\mathrm{G}[\mathrm{i}, \mathrm{j}]=1$ if (i, j) appears in input.
E.g. graph edge from i to j. Total of m distinct edges
- Let $\mathrm{d}_{\mathrm{i}}=\sum_{\mathrm{j}=1}{ }^{\mathrm{n}} \mathrm{G}[\mathrm{i}, \mathrm{j}]$ (aka degree of node i)
- Find aggregates of d_{i} ' s :
- Estimate heavy d_{i} 's (people who talk to many)
- Estimate frequency moments: number of distinct d_{i} values, sum of squares
- Range sums of d_{i} 's (subnet traffic)

■ Approach: nest one sketch inside another, e.g. HLL inside CM

- Requires new analysis to track overall error

Range Efficiency

- Sometimes input is specified as a collection of ranges [a,b]
- $[a, b]$ means insert all items (a, a+1, a+2 ... b)
- Trivial solution: just insert each item in the range

■ Range efficient F_{0} [Pavan, Tirthapura 05]

- Start with an alg for F_{0} based on pairwise hash functions
- Key problem: track which items hash into a certain range
- Dives into hash fns to divide and conquer for ranges

■ Range efficient F_{2} [Calderbank et al. 05, Rusu,Dobra 06]

- Start with sketches for F_{2} which sum hash values
- Design new hash functions so that range sums are fast

■ Rectangle Efficient F_{0} [Tirthapura, Woodruff 12]

Forthcoming Attractions

■ Data Streams Mini Course @Simons

- Prof Andrew McGregor
- Starts early October

- Succinct Data Representations and Applications @ Simons
- September 16-19

DATA

Streaming, Sketching and Sufficient Statistics

Graham Cormode
University of Warwick
G.Cormode@Warwick.ac.uk

Recap

- Sketching Techniques summarize large data sets

■ Summarize vectors:

- Test equality (fingerprints)
- Recover approximate entries (count-min, count sketch)
- Approximate Euclidean norm $\left(F_{2}\right)$ and dot product
- Approximate number of non-zero entries $\left(F_{0}\right)$
- Approximate set membership (Bloom filter)

Part II: Advanced Topics

- Sampling and L_{p} Sampling
- L_{0} sampling and graph sketching
- L_{2} sampling and frequency moment estimation
- Matrix computations
- Sketches for matrix multiplication
- Sparse representation via frequent directions
- Lower bounds for streaming and sketching
- Basic hard problems (Index, Disjointness)
- Hardness via reductions

Sampling From a Large Input

- Fundamental prob: sample m items uniformly from data
- Useful: approximate costly computation on small sample
- Challenge: don't know how large total input is
- So when/how often to sample?

■ Several solutions, apply to different situations:

- Reservoir sampling (dates from 1980s?)
- Min-wise sampling (dates from 1990s?)

Min-wise Sampling

- For each item, pick a random fraction between 0 and 1

■ Store item(s) with the smallest random tag [Nath et al.'04]

■ Each item has same chance of least tag, so uniform

- Can run on multiple inputs separately, then merge

■ Applications in geometry: basic ε-approximations are samples

- Estimate number of points falling in a range (bounded VC dim)

Sampling from Sketches

- Given inputs with positive and negative weights
- Want to sample based on the overall frequency distribution
- Sample from support set of n possible items
- Sample proportional to (absolute) weights
- Sample proportional to some function of weights
- How to do this sampling effectively?
- Recent approach: L_{p} sampling

L_{p} Sampling

■ L_{p} sampling: use sketches to sample $i w / p r o b(1 \pm \varepsilon) f_{i}^{p} /\|f\|_{p}^{p}$
■ "Efficient" solutions developed of size $\mathrm{O}\left(\varepsilon^{-2} \log ^{2} \mathrm{n}\right)$

- [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11]
- L_{0} sampling enables novel "graph sketching" techniques
- Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12]

■ L_{2} sampling allows optimal estimation of frequency moments

L_{0} Sampling

- L_{0} sampling: sample with prob ($1 \pm \varepsilon$) f_{i} / F_{0}
- i.e., sample (near) uniformly from items with non-zero frequency

■ General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]

- Sub-sample all items (present or not) with probability p
- Generate a sub-sampled vector of frequencies f_{p}
- Feed f_{p} to a k-sparse recovery data structure
- Allows reconstruction of f_{p} if $F_{0}<k$
- If f_{p} is k-sparse, sample from reconstructed vector
- Repeat in parallel for exponentially shrinking values of p

Sampling Process

- Exponential set of probabilities, $p=1,1 / 2,1 / 4,1 / 8,1 / 16 \ldots 1 / \mathrm{U}$
- Let $N=F_{0}=\left|\left\{i: f_{i} \neq 0\right\}\right|$
- Want there to be a level where k-sparse recovery will succeed
- At level p, expected number of items selected S is $N p$
- Pick level p so that $k / 3<N p \leq 2 k / 3$

■ Chernoff bound: with probability exponential in $\mathrm{k}, 1 \leq \mathrm{S} \leq \mathrm{k}$

- Pick $k=O(\log 1 / \delta)$ to get $1-\delta$ probability

k-Sparse Recovery

■ Given vector x with at most k non-zeros, recover x via sketching

- A core problem in compressed sensing/compressive sampling

■ First approach: Use Count-Min sketch of x

- Probe all U items, find those with non-zero estimated frequency
- Slow recovery: takes O(U) time

■ Faster approach: also keep sum of item identifiers in each cell

- Sum/count will reveal item id
- Avoid false positives: keep fingerprint of items in each cell
- Can keep a sketch of size $\mathrm{O}(\mathrm{k} \log \mathrm{U})$ to recover up to k items

Uniformity

- Also need to argue sample is uniform
- Failure to recover could bias the process
- $\operatorname{Pr}[i$ would be picked if $k=n]=1 / F_{0}$ by symmetry

■ $\operatorname{Pr}[i$ is picked $]=\operatorname{Pr}[i$ would be picked if $k=n \wedge S \leq k]$

$$
\geq(1-\delta) / F_{0}
$$

- So (1- δ) $/ \mathrm{N} \leq \operatorname{Pr}[\mathrm{i}$ is picked $] \leq 1 / \mathrm{N}$
- Sufficiently uniform (pick $\delta=\varepsilon$)

Application: Graph Sketching

■ Given L_{0} sampler, use to sketch (undirected) graph properties

- Connectivity: want to test if there is a path between all pairs

■ Basic alg: repeatedly contract edges between components

- Use L_{0} sampling to provide edges on vector of adjacencies
- Problem: as components grow, sampling most likely to produce internal links

Graph Sketching

■ Idea: use clever encoding of edges [Ahn, Guha, McGregor 12]
■ Encode edge (i, j) as ($(\mathrm{i}, \mathrm{j}),+1$) for node $\mathrm{i}<\mathrm{j}$, as ($(\mathrm{i}, \mathrm{j}),-1$) for node $\mathrm{j}>\mathrm{i}$

- When node i and node j get merged, sum their L_{0} sketches
- Contribution of edge (i,j) exactly cancels out

■ Only non-internal edges remain in the L_{0} sketches
■ Use independent sketches for each iteration of the algorithm

- Only need $O(\log n)$ rounds with high probability
- Result: O(poly-log n) space per node for connectivity

Other Graph Results via sketching

■ K-connectivity via connectivity

- Use connectivity result to find and remove a spanning forest
- Repeat k times to generate k spanning forests $F_{1}, F_{2}, \ldots F_{k}$
- Theorem: G is k-connected if $\cup_{i=1}{ }^{k} F_{i}$ is k-connected

■ Bipartiteness via connectivity:

- Compute $c=$ number of connected components in G
- Generate G^{\prime} over $V \cup V^{\prime}$ so $(u, v) \in E \Rightarrow\left(u, v^{\prime}\right) \in E^{\prime},\left(u^{\prime}, v\right) \in E^{\prime}$
- If G is bipartite, G^{\prime} has 2 c components, else it has $<2 \mathrm{c}$ components
- Minimum spanning treef.

Round $\underset{\sim}{\text { edge wights to powers of }(1+a)}$

- Define $n_{i}=$ number of d qmponents on edqes lighterthan $(q+\varepsilon)^{i}$
- Fact: weight of MST on rounded weights is $\sum_{i} \varepsilon(1+\varepsilon)^{\prime} n_{i}$

Application: F_{k} via $\mathrm{L}_{\mathbf{2}}$ Sampling

- Recall, $\mathrm{F}_{\mathrm{k}}=\sum_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}{ }^{\mathrm{k}}$
- Suppose L_{2} sampling samples f_{i} with probability f_{i}^{2} / F_{2}
- And also estimates sampled f_{i} with relative error ε

■ Estimator: $X=F_{2} f_{i}^{k-2}$ (with estimates of F_{2}, f_{i})

- Expectation: $E[X]=F_{2} \sum_{i} f_{i}^{k-2} \cdot f_{i}^{2} / F_{2}=F_{k}$
- Variance: $\operatorname{Var}[\mathrm{X}] \leq E\left[X^{2}\right]=\sum_{i} f_{i}^{2} / F_{2}\left(F_{2} f_{i}^{k-2}\right)^{2}=F_{2} F_{2 k-2}$

Rewriting the Variance

- Want to express variance $F_{2} F_{2 k-2}$ in terms of F_{k} and domain size n
- Hölder's inequality: $\langle x, y\rangle \leq\|x\|_{p}\|y\|_{q}$ for $1 \leq p$, q with $1 / p+1 / q=1$
- Generalizes Cauchy-Shwarz inequality, where $p=q=2$.
- So pick $p=k /(k-2)$ and $q=k / 2$ for $k>2$. Then

$$
\begin{gather*}
\left\langle 1^{n},\left(f_{i}\right)^{2}\right\rangle \leq\left\|1^{n}\right\|_{k /(k-2)}\left\|\left(f_{i}\right)^{2}\right\|_{k / 2} \\
F_{2} \leq n^{(k-2) / k} F_{k}^{2 / k} \tag{1}
\end{gather*}
$$

- Also, since $\|x\|_{p+a} \leq\|x\|_{p}$ for any $p \geq 1$, $a>0$
- Thus $\|x\|_{2 k-2} \leq\|x\|_{k}$ for $k \geq 2$
- So $F_{2 k-2}=\|f\|_{2 k-2}{ }^{2 k-2} \leq\|f\|_{k}^{2 k-2}=F_{k}^{2-2 / k}$
- Multiply (1) * (2) : $\mathrm{F}_{2} \mathrm{~F}_{2 \mathrm{k}-2} \leq \mathrm{n}^{1-2 / \mathrm{k}} \mathrm{F}_{\mathrm{k}}{ }^{2}$
- So variance is bounded by $n^{1-2 / k} F_{k}^{2}$

F_{k} Estimation

- For $k \geq 3$, we can estimate F_{k} via L_{2} sampling:
- Variance of our estimate is $O\left(F_{k}^{2} n^{1-2 / k}\right)$
- Take mean of $n^{1-2 / k} \varepsilon^{-2}$ repetitions to reduce variance
- Apply Chebyshev inequality: constant prob of good estimate
- Chernoff bounds: $\mathrm{O}(\log 1 / \delta)$ repetitions reduces prob to δ
- How to instantiate this?
- Design method for approximate L_{2} sampling via sketches
- Show that this gives relative error approximation of f_{i}
- Use approximate value of F_{2} from sketch
- Complicates the analysis, but bound stays similar

L_{2} Sampling Outline

- For each i, draw u_{i} uniformly in the range $0 . . .1$
- From vector of frequencies f, derive g so $g_{i}=f_{i} / v u_{i}$
- Sketch g_{i} vector

■ Sample: return (i, f_{i}) if there is unique i with $g_{i}^{2}>t=F_{2} / \varepsilon$ threshold

$$
\begin{aligned}
-\operatorname{Pr}\left[g_{i}^{2}>t \wedge \forall j \neq i: g_{j}^{2}<t\right] & =\operatorname{Pr}\left[g_{i}^{2}>t\right] \prod_{j \neq i} \operatorname{Pr}\left[g_{j}^{2}<t\right] \\
& =\operatorname{Pr}\left[u_{i}<\varepsilon f_{i}^{2} / F_{2}\right] \prod_{j \neq i} \operatorname{Pr}\left[u_{j}>\varepsilon f_{j}^{2} / F_{2}\right] \\
& =\left(\varepsilon f_{i}^{2} / F_{2}\right) \prod_{j \neq i}\left(1-\varepsilon f_{j}^{2} / F_{2}\right) \\
& \approx \varepsilon f_{i}^{2} / F_{2}
\end{aligned}
$$

- Probability of returning anything is not so big: $\sum_{i} \varepsilon f_{i}^{2} / F_{2}=\varepsilon$
- Repeat $O(1 / \varepsilon \log 1 / \delta)$ times to improve chance of sampling

L_{2} sampling continued

■ Given (estimated) g_{i} s.t. $g_{i}^{2} \geq F_{2} / \varepsilon$, estimate $f_{i}=u_{i} g_{i}$
■ Sketch size $O\left(\varepsilon^{-1} \log n\right)$ means estimate of f_{i}^{2} has error $\left(\varepsilon_{i}{ }^{2}+u_{i}{ }^{2}\right)$

- With high prob, no $u_{i}<1 /$ poly (n), and so $F_{2}(g)=O\left(F_{2}(f) \log n\right)$
- Since estimated $f_{i}^{2} / u_{i}^{2} \geq F_{2} / \varepsilon, u_{i}^{2} \leq \varepsilon f_{i}^{2} / F_{2}$

■ Estimating f_{i}^{2} with error εf_{i}^{2} sufficient for estimating F_{k}

- Many details omitted
- See Precision Sampling paper [Andoni Krauthgamer Onak 11]

Advanced Topics

- Sampling and L_{p} Sampling
- L_{0} sampling and graph sketching
- L_{2} sampling and frequency moment estimation
- Matrix computations
- Sketches for matrix multiplication
- Sparse representation via frequent directions

■ Lower bounds for streaming and sketching

- Basic hard problems (Index, Disjointness)
- Hardness via reductions

Matrix Sketching

- Given matrices A, B, want to approximate matrix product $A B$
- Compute normed error of approximation C : $\|A B-C\|$

■ Give results for the Frobenius (entrywise) norm $\|\cdot\|_{F}$
$-\|C\|_{F}=\left(\sum_{i, j} C_{i, j}\right)^{2 / 2}$

- Results rely on sketches, so this norm is most natural

Direct Application of Sketches

- Build sketch of each row of A, each column of B
- Estimate $C_{i, j}$ by estimating inner product of A_{i} with B^{j}
- Absolute error in estimate is $\varepsilon\left\|A_{i}\right\|_{2}\left\|B^{j}\right\|_{2}$ (whp)
- Sum over all entries in matrix, squared error is

$$
\begin{aligned}
\varepsilon^{2} \sum_{i, j}\left\|A_{i}\right\|_{2}^{2}\left\|B^{j}\right\|_{2}^{2} & =\varepsilon^{2}\left(\sum_{i}\left\|A_{i}\right\|_{2}^{2}\right)\left(\sum_{j}\left\|B_{j}\right\|_{2}^{2}\right) \\
& =\varepsilon^{2}\left(\|A\|_{F}^{2}\right)\left(\|B\|_{F}^{2}\right)
\end{aligned}
$$

- Hence, Frobenius norm of error is $\varepsilon\|A\|_{F}\|B\|_{F}$

■ Problem: need the bound to hold for all sketches simultaneously

- Requires polynomially small failure probability
- Increases sketch size by logarithmic factors

Improved Matrix Multiplication Analysis

■ Simple analysis is too pessimistic [Clarkson Woodruff 09]

- It bounds probability of failure of each sketch independently

■ A better approach is to directly analyze variance of error

- Immediately, each estimate of (AB) has variance $\varepsilon^{2}\|A\|_{F}^{2}\|B\|_{F}^{2}$
- Just need to apply Chebyshev inequality to sum... almost

■ Problem: how to amplify probability of correctness?

- 'Median' trick doesn't work: what is median of set of matrices?
- Find an estimate which is close to most others
- Estimate $\|A\|_{F}{ }^{2}\|B\|_{F}{ }^{2}:=d$ using sketches
- Find an estimate that's closer than $\mathrm{d} / 2$ to more than $1 / 2$ the rest
- We find an estimate with this property with probability 1- δ

Advanced Linear Algebra

- More directly approximate matrix multiplication:
- use more powerful hash functions in sketching
- obtain a single accurate estimate with high probability
- Linear regression given matrix A and vector b : find $x \in R^{d}$ to (approximately) solve $\min _{x}\|A x-b\|$
- Approach: solve the minimization in "sketch space"
- Require a summary of size $O\left(d^{2} / \varepsilon \log 1 / \delta\right)$

Frequent Items and Frequent Directions

- A deterministic algorithm for tracking item frequencies
- With a recent analysis of its performance
- Unusually, it is deterministic

■ Inspiring an algorithm for tracking matrix properties

- Due to [Liberty 13], extended by [Ghashami Phillips 13]

Misra-Gries Summary (1982)

■ Misra-Gries (MG) algorithm finds up to k items that occur more than $1 / k$ fraction of the time in the input
■ Update: Keep k different candidates in hand. For each item:

- If item is monitored, increase its counter
- Else, if < k items monitored, add new item with count 1
- Else, decrease all counts by 1

Streaming MG analysis

- $N=$ total weight of input

■ M = sum of counters in data structure

- Error in any estimated count at most ($\mathrm{N}-\mathrm{M}$)/($\mathrm{k}+1$)
- Estimated count a lower bound on true count
- Each decrement spread over ($k+1$) items: 1 new one and k in MG
- Equivalent to deleting $(k+1)$ distinct items from stream
- At most ($N-M$)/($k+1$) decrement operations
- Hence, can have "deleted" (N-M)/(k+1) copies of any item
- So estimated counts have at most this much error

Merging two MG Summaries [ACHPWY ‘12]

- Merge algorithm:
- Merge the counter sets in the obvious way
- Take the ($k+1$)th largest counter $=C_{k+1}$, and subtract from all
- Delete non-positive counters
- Sum of remaining counters is M_{12}

■ This keeps the same guarantee as Update:

- Merge subtracts at least $(k+1) C_{k+1}$ from counter sums
- So $(k+1) C_{k+1} \leq\left(M_{1}+M_{2}-M_{12}\right)$
- By induction, error is

$$
\left(\left(N_{1}-M_{1}\right)+\left(N_{2}-M_{2}\right)+\left(M_{1}+M_{2}-M_{12}\right)\right) /(k+1)=\left(\left(N_{1}+N_{2}\right)-M_{12}\right) /(k+1)
$$

(prior error) (from merge) (as claimed)

A Powerful Summary

- MG summary with update and merge is very powerful
- Builds a compact summary of the frequency distribution
- Can also multiply the summary by any scalar
- Hence can take (positive) linear combinations: $\alpha x+\beta y$
- Useful for building models of data
- Ideas recently extended to matrix computations

Frequent Directions

- Input: An $\mathrm{n} \times \mathrm{d}$ matrix A , presented one row at a time
- Find $\mathrm{k} \times \mathrm{d}$ matrix Q so for any vector x , Qx approximates Ax
- Simple idea: use SVD to focus on most important directions
- Given current $k \times d$ matrix Q
- Replace last row with new row a_{i}
- Compute SVD of Q as UEV
- Set $\Sigma^{\prime}=\operatorname{diag}\left(\mathrm{V}\left(\sigma_{1}^{2}-\sigma_{\mathrm{k}}{ }^{2}\right), \mathrm{V}\left(\sigma_{2}{ }^{2}-\sigma_{\mathrm{k}}{ }^{2}\right), \ldots, \mathrm{V}\left(\sigma_{\mathrm{k}-1}{ }^{2}-\sigma_{\mathrm{k}}{ }^{2}\right), \mathrm{V}\left(\sigma_{\mathrm{k}}{ }^{2}-\sigma_{\mathrm{k}}{ }^{2}\right)=0\right)$
- Rescale: $Q^{\prime}=\Sigma^{\prime} V^{\top}$
- At step i, have introduced error based on $\delta_{i}=\Sigma_{k, k}=\sigma_{k}$

Frequent Directions Analysis

- Error (in Frobenius norm) introduced at each step at most $\delta_{i}{ }^{2}$
- Let v_{j} be j 'th column of V_{j} and pick any x such that $\|x\|_{2}=1$
- $\|\mathrm{Qx}\|_{2}{ }^{2}=\sum_{\mathrm{j}=1}{ }^{k} \sigma_{\mathrm{j}}{ }^{2}\left(\mathrm{v}_{\mathrm{j}} \cdot \mathrm{x}\right)^{2}=\sum_{\mathrm{j}=1}{ }^{\mathrm{k}}\left(\sigma_{\mathrm{j}}^{\prime}{ }^{2}+\delta_{\mathrm{i}}{ }^{2}\right)\left(\mathrm{v}_{\mathrm{j}} \cdot \mathrm{x}\right)^{2}$
$=\sum_{j=1}{ }^{k} \sigma_{j}^{\prime}{ }^{2}\left(v_{j} \cdot x\right)^{2}+\sum_{j=1}{ }^{k} \delta_{i}{ }^{2}\left(v_{j} \cdot x\right)^{2}$
$\leq\left\|Q^{\prime} x\right\|_{2}{ }^{2}+\delta_{i}{ }^{2}$
■ Observe that $\left\|Q^{\prime}\right\|_{F}{ }^{2}-\|Q\|_{F}^{2}=\delta_{i}^{2}+\delta_{i}^{2}+\ldots=k \delta_{i}^{2}$
- Adding row a_{i} causes $\|Q\|_{F}{ }^{2}$ to increase by $\left\|a_{i}\right\|_{2}{ }^{2}$
- Hence, $\|A\|_{F}{ }^{2}=\sum_{i}\left\|a_{i}\right\|_{2}{ }^{2}=k \sum_{i} \delta_{i}^{2}$

■ Summing over all steps, $0 \leq\|A x\|_{2}{ }^{2}-\|Q x\|_{2}{ }^{2} \leq \sum_{i} \delta_{i}^{2}=\|A\|_{F} / k$

- "Relative error" bounds follow by increasing k [Ghashami Phillips 13]

Advanced Topics

- Sampling and L_{p} Sampling
- L_{0} sampling and graph sketching
- L_{2} sampling and frequency moment estimation
- Matrix computations
- Sketches for matrix multiplication
- Sparse representation via frequent directions

■ Lower bounds for streaming and sketching

- Basic hard problems (Index, Disjointness)
- Hardness via reductions

Streaming Lower Bounds

- Lower bounds for summaries
- Communication and information complexity bounds
- Simple reductions
- Hardness of Gap-Hamming problem
- Reductions to Gap-Hamming

Computation As Communication

- Imagine Alice processing a prefix of the input
- Then takes the whole working memory, and sends to Bob
- Bob continues processing the remainder of the input

Computation As Communication

- Suppose Alice's part of the input corresponds to string x, and Bob's part corresponds to string y...
■ ...and computing the function corresponds to computing $f(x, y) \ldots$
- ...then if $f(x, y)$ has communication complexity $\Omega(g(n))$, then the computation has a space lower bound of $\Omega(\mathrm{g}(\mathrm{n}))$
- Proof by contradiction:

If there was an algorithm with better space usage, we could run it on x, then send the memory contents as a message, and hence solve the communication problem

Deterministic Equality Testing

- Alice has string x, Bob has string y, want to test if $x=y$

■ Consider a deterministic (one-round, one-way) protocol that sends a message of length $m<n$

- There are 2^{m} possible messages, so some strings must generate the same message: this would cause error
- So a deterministic message (sketch) must be $\Omega(\mathrm{n})$ bits
- In contrast, we saw a randomized sketch of size O(log n)

Hard Communication Problems

- INDEX: Alice's x is a binary string of length n Bob's y is an index in [n] Goal: output $x[y]$ Result: (one-way) (randomized) communication complexity of INDEX is $\Omega(n)$ bits

■ AUGINDEX: as INDEX, but y additionally contains $x[y+1] \ldots x[n]$ Result: (one-way) (randomized) complexity of AUGINDEX is $\Omega(\mathrm{n})$ bits

- DISJ: Alice's x and Bob's y are both length n binary strings Goal: Output 1 if $\exists \mathrm{i}: x[i]=y[i]=1$, else 0 Result: (multi-round) (randomized) communication complexity of DISJ (disjointness) is $\Omega(\mathrm{n})$ bits

Hardness of INDEX

■ Show hardness of INDEX via Information Complexity argument

- Makes extensive use of Information Theory

■ Entropy of random variable $X: H(X)=-\sum_{x} \operatorname{Pr}[X=x] \lg \operatorname{Pr}[X=x]$

- (Expected) information (in bits) gained by learning value of X
- If X takes on at most N values, $H(X) \leq \lg N$
- Conditional Entropy of X given $Y: H(X \mid Y)=\sum_{y} \operatorname{Pr}[y] H[X \mid Y=y]$
- (Expected) information (bits) gained by learning value of X given Y

■ Mutual Information: $I(X: Y)=I(Y: X)=H(X)-H(X \mid Y)$

- Information (in bits) shared by X and Y
- If X, Y are independent, $I(X: Y)=0$ and $I(X Y: Z) \geq I(X: Z)+I(Y: Z)$

Information Cost

■ Use Information Theoretic properties to lower bound communication complexity

- Suppose Alice and Bob have random inputs X and Y

■ Let M be the (random) message sent by Alice in protocol P
■ The cost of (one-way) protocol P is $\operatorname{cost}(P)=\max |M|$

- Worst-case size of message (in bits) sent in the protocol
- Define information cost as icost $(\mathrm{P})=\mathrm{I}(\mathrm{M}: \mathrm{X})$
- The information conveyed about X in M
$-\operatorname{icost}(P)=I(M: X)=H(M)-H(M \mid X) \leq H(M) \leq \operatorname{cost}(P)$

Information Cost of INDEX

- Give Alice random input $\mathrm{X}=\mathrm{n}$ uniform random bits

■ Given protocol P for INDEX, Alice sends message $M(X)$
■ Give Bob input i. He should output X_{i}

- $\operatorname{icost}(P) \quad=I\left(X_{1} X_{2} \ldots X_{n}: M\right)$

$$
\geq I\left(X_{1}: M\right)+I\left(X_{2}: M\right)+\ldots+I\left(X_{n}: M\right)
$$

- Now consider the mutual information of X_{i} and M
- Have reduced the problem to n instances of a simpler problem

■ Intuition: $\mathrm{I}\left(\mathrm{X}_{\mathrm{j}}: \mathrm{M}\right)$ should be at least constant, so $\operatorname{cost}(\mathrm{P})=\Theta(\mathrm{n})$

Fano's Inequality

- When forming estimate X^{\prime} from X given (message) M, where X, X^{\prime} have k possible values, let E denote $X \neq X^{\prime}$. We have:

$$
H(E)++4[C] \log (*-1) \geq H(X \mid M)
$$

where $H(E)=-\operatorname{Pr}[E] \lg \operatorname{Pr}[E]-(1-\operatorname{Pr}[E]) \lg (1-\operatorname{Pr}[E])$
■ Here, $k=2$, so we get $I(X: M)=H(X)-H(X \mid M) \geq H(X)-H(E)$

- $H(X)=1$. If $\operatorname{Pr}[E]=\delta$, we have $H(E)<1 / 2$ for $\delta<0.1$
- Hence $I\left(X_{i}: M\right)>1 / 2$
- Thus $\operatorname{cost}(P) \geq i \operatorname{cost}(P)>1 / 2 n$ if P succeeds $w / p r o b 1-\delta$
- Protocols for INDEX must send $\Omega(\mathrm{n})$ bits
- Hardness of AUGINDEX follows similarly

Outline for DISJOINTNESS hardness

■ Hardness for DISJ follows a similar outline

- Reduce to n instances of the problem "AND"
- "AND" problem: test whether $X_{i}=Y_{i}=1$
- Show that the information cost of DISJ protocol is sufficient to solve all n instances of AND
- Show that the information cost of each instance is $\Omega(1)$
- Proves that communication cost of DISJ is $\Omega(1)$
- Even allowing multiple rounds of communication

Simple Reduction to Disjointness

$$
\begin{aligned}
& x: 101101 \longrightarrow 4,3,4,6 \\
& y: 000110 \longrightarrow 4,5
\end{aligned}
$$

- F_{∞} : output the highest frequency in the input
- Input: the two strings x and y from disjointness instance
- Reduction: if $x[i]=1$, then put i in input; then same for y
- A streaming reduction (compare to polynomial-time reductions)

■ Analysis: if $\mathrm{F}_{\infty}=2$, then intersection; if $\mathrm{F}_{\infty} \leq 1$, then disjoint.

- Conclusion: Giving exact answer to F_{∞} requires $\Omega(\mathrm{N})$ bits
- Even approximating up to 50% relative error is hard
- Even with randomization: DISJ bound allows randomness

Simple Reduction to Index

$\mathrm{x}: 101101 \longrightarrow$ 1, 3, 4, 6
 y: 5

- F_{0} : output the number of items in the stream

■ Input: the strings x and index y from INDEX

- Reduction: if $x[i]=1$, put i in input; then put y in input

■ Analysis: if $(1-\varepsilon) F_{0}{ }_{0}(x \cup y)>(1+\varepsilon) F^{\prime}{ }_{0}(x)$ then $x[y]=1$, else it is 0

- Conclusion: Approximating F_{0} for $\varepsilon<1 / \mathrm{N}$ requires $\Omega(\mathrm{N})$ bits
- Implies that space to approximate must be $\Omega(1 / \varepsilon)$
- Bound allows randomization

Reduction to AUGINDEX [Clarkson Woodruff 09]

■ Matrix-Multiplication: approximate $A^{\top} B$ with error $\varepsilon^{2}\|A\|_{F}\|B\|_{F}$

- For $r \times c$ matrices. A encodes string x, B encodes index y

- Bob uses suffix of x in y to remove heavy entries from A $\|B\|_{F}=1 \quad\|A\|_{F}=c r / \log (c n)^{*}\left(1+4+\ldots 2^{2 k}\right) \leq 4 c r 2^{2 k} / 3 \log (c n)$
- Choose $r=\log (\mathrm{cn}) / 8 \varepsilon^{2}$ so permitted error is $c 2^{2 k} / 6 \varepsilon^{2}$
- Each error in sign in estimate of ($\mathrm{A}^{\top} \mathrm{B}$) contributes $2^{2 \mathrm{k}}$ error
- Can tolerate error in at most 1/6 fraction of entries
- Matrix multiplication requires space $\Omega(\mathrm{rc})=\Omega\left(\mathrm{c} / \varepsilon^{2} \log (\mathrm{cn})\right)$

Streaming Lower Bounds

- Lower bounds for data streams
- Communication complexity bounds
- Simple reductions
- Hardness of Gap-Hamming problem
- Reductions to Gap-Hamming

Gap Hamming

Gap-Hamming communication problem:

- Alice holds $x \in\{0,1\}^{N}$, Bob holds $y \in\{0,1\}^{N}$
- Promise: $\operatorname{Ham}(x, y)$ is either $\leq N / 2-V N$ or $\geq N / 2+V N$
- Which is the case?
- Model: one message from Alice to Bob

■ Sketching upper bound: need relative error $\varepsilon=V N / F_{2}=1 / V N$

- Gives space $O\left(1 / \varepsilon^{2}\right)=O(N)$

Requires $\Omega(\mathrm{N})$ bits of one-way randomized communication
[Indyk, Woodruff'03, Woodruff'04, Jayram, Kumar, Sivakumar '07]

Hardness of Gap Hamming

- Reduction starts with an instance of INDEX
- Map string x to u by $1 \rightarrow+1,0 \rightarrow-1$ (i.e. $u[i]=2 x[i]-1$)
- Assume both Alice and Bob have access to public random strings r_{j}, where each bit of r_{j} is iid $\{-1,+1\}$
- Assume w.l.o.g. that length of string n is odd (important!)
- Alice computes $a_{j}=\operatorname{sign}\left(r_{j} \cdot u\right)$
- Bob computes $b_{j}=\operatorname{sign}\left(r_{j}[y]\right)$
- Repeat N times with different random strings, and consider the Hamming distance of $a_{1} \ldots a_{N}$ with $b_{1} \ldots b_{N}$
- Argue if we solve Gap-Hamming on (a, b), we solve INDEX

Probability of a Hamming Error

- Consider the pair $\mathrm{a}_{\mathrm{j}}=\operatorname{sign}\left(\mathrm{r}_{\mathrm{j}} \cdot \mathrm{u}\right), \mathrm{b}_{\mathrm{j}}=\operatorname{sign}\left(\mathrm{r}_{\mathrm{j}}[\mathrm{y}]\right)$
- Let $w=\sum_{i \neq y} u[i] r_{j}[i]$
- w is a sum of ($n-1$) values distributed iid uniform $\{-1,+1\}$
- Case 1: $w \neq 0$. So $|w| \geq 2$, since ($n-1$) is even
- so $\operatorname{sign}\left(a_{j}\right)=\operatorname{sign}(w)$, independent of $x[y]$
- Then $\operatorname{Pr}\left[a_{j} \neq b_{j}\right]=\operatorname{Pr}\left[\operatorname{sign}(w) \neq \operatorname{sign}\left(r_{j}[y]\right)\right]=1 / 2$
- Case 2: $\mathrm{w}=0$.

So $a_{j}=\operatorname{sign}\left(r_{j} \cdot u\right)=\operatorname{sign}\left(w+u[y] r_{j}[y]\right)=\operatorname{sign}\left(u[y] r_{j}[y]\right)$

- Then $\operatorname{Pr}\left[a_{j} \neq b_{j}\right]=\operatorname{Pr}\left[\operatorname{sign}\left(u[y] r_{j}[y]\right)=\operatorname{sign}\left(r_{j}[y]\right)\right]$
- This probability is 1 is $u[y]=+1,0$ if $u[y]=-1$
- Completely biased by the answer to INDEX

Finishing the Reduction

- So what is $\operatorname{Pr}[w=0]$?
- w is sum of $(n-1)$ iid uniform $\{-1,+1\}$ values
- Then: $\operatorname{Pr}[w=0]=2^{-n}(n$ choose $n / 2)=c / \sqrt{n}$, for some constant c
- Do some probability manipulation:
$-\operatorname{Pr}\left[a_{j}=b_{j}\right]=1 / 2+c / 2 \sqrt{ }$ if $x[y]=1$
$-\operatorname{Pr}\left[a_{j}=b_{j}\right]=1 / 2-c / 2 \sqrt{ } n$ if $x[y]=0$
- Amplify this bias by making strings of length $N=4 n / c^{2}$
- Apply Chernoff bound on N instances
- With prob>2/3, either $\operatorname{Ham}(a, b)>N / 2+\sqrt{ } N$ or $\operatorname{Ham}(a, b)<N / 2-\sqrt{ } N$
- If we could solve Gap-Hamming, could solve INDEX
- Therefore, need $\Omega(\mathrm{N})=\Omega(\mathrm{n})$ bits for Gap-Hamming

Streaming Lower Bounds

- Lower bounds for data streams
- Communication complexity bounds
- Simple reductions
- Hardness of Gap-Hamming problem
- Reductions to Gap-Hamming

Lower Bound for Entropy

Gap-Hamming instance-Alice: $x \in\{0,1\}^{N}$, Bob: $y \in\{0,1\}^{N}$
Entropy estimation algorithm \mathbf{A}

- Alice runs A on $\operatorname{enc}(x)=\left\langle\left(1, x_{1}\right),\left(2, x_{2}\right), \ldots,\left(N, x_{N}\right)\right\rangle$
- Alice sends over memory contents to Bob
- Bob continues \boldsymbol{A} on enc $(\mathrm{y})=\left\langle\left(1, \mathrm{y}_{1}\right),\left(2, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{N}, \mathrm{y}_{\mathrm{N}}\right)\right\rangle$

	0	1	0	0	1	1
Alice	$(1,0)$	$(2,1)$	$(3,0)$	$(4,0)$	$(5,1)$	$(6,1)$
	$(1,1)$	$(2,1)$	$(3,0)$	$(4,0)$	$(5,1)$	$(6,0)$
Bob	1	1	0	0	1	0

Lower Bound for Entropy

■ Observe: there are

- $2 \mathrm{Ham}(x, y)$ tokens with frequency 1 each
- N-Ham(x, y) tokens with frequency 2 each

■ So (after algebra), $H(S)=\log N+\operatorname{Ham}(x, y) / N=\log N+1 / 2 \pm 1 / V N$
■ If we separate two cases, size of Alice's memory contents $=\Omega(N)$ Set $\varepsilon=1 /(V(N) \log N)$ to show bound of $\left.\Omega(\varepsilon / \log 1 / \varepsilon)^{-2}\right)$

	0	1	0	0	1	1
Alice	$(1,0)$	$(2,1)$	$(3,0)$	$(4,0)$	$(5,1)$	$(6,1)$
	$(1,1)$	$(2,1)$	$(3,0)$	$(4,0)$	$(5,1)$	$(6,0)$
Bob	1	1	0	0	1	0

Lower Bound for F_{0}

■ Same encoding works for F_{0} (Distinct Elements)

- $2 \mathrm{Ham}(\mathrm{x}, \mathrm{y})$ tokens with frequency 1 each
- N-Ham(x, y) tokens with frequency 2 each
- $F_{0}(S)=N+\operatorname{Ham}(x, y)$
- Either $\operatorname{Ham}(x, y)>N / 2+\sqrt{ } N$ or $\operatorname{Ham}(x, y)<N / 2-\sqrt{ } N$
- If we could approximate F_{0} with $\varepsilon<1 / \sqrt{ } N$, could separate
- But space bound $=\Omega(\mathrm{N})=\Omega\left(\varepsilon^{-2}\right)$ bits
- Dependence on ε for F_{0} is tight
- Similar arguments show $\Omega\left(\varepsilon^{-2}\right)$ bounds for F_{k}
- Proof assumes k (and hence 2^{k}) are constants

Summary of Tools

- Vector equality: fingerprints
- Approximate item frequencies:
- Count-min, Misra-Gries (L_{1} guarantee), Count sketch (L_{2} guarantee)

■ Euclidean norm, inner product: AMS sketch, JL sketches
■ Count-distinct: k-Minimum values, Hyperloglog

- Compact set-representation: Bloom filters
- Uniform Sampling
- L_{0} sampling: hashing and sparse recovery
- L_{2} sampling: via count-sketch

■ Graph sketching: L_{0} samples of neighborhood

- Frequency moments: via L_{2} sampling

■ Matrix sketches: adapt AMS sketches, frequent directions

Summary of Lower Bounds

- Can't deterministically test equality
- Can't retrieve arbitrary bits from a vector of n bits: INDEX
- Even if some unhelpful suffix of the vector is given: AUGINDEX

■ Can't determine whether two n bit vectors intersect: DISJ
■ Can't distinguish small differences in Hamming distance: GAP-HAMMING

- These in turn provide lower bounds on the cost of
- Finding the maximum frequency
- Approximating the number of distinct items
- Approximating matrix multiplication

Current Directions in Streaming and Sketching

- Sparse representations of high dimensional objects
- Compressed sensing, sparse fast fourier transform
- Numerical linear algebra for (large) matrices
- k-rank approximation, linear regression, PCA, SVD, eigenvalues
- Computations on large graphs
- Sparsification, clustering, matching
- Geometric (big) data
- Coresets, facility location, optimization, machine learning
- Use of summaries in distributed computation
- MapReduce, Continuous Distributed models

Forthcoming Attractions

■ Data Streams Mini Course @Simons

- Prof Andrew McGregor
- Starts early October

- Succinct Data Representations and Applications @ Simons
- September 16-19

DATA

