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Streaming, Sketching and Sufficient Statistics 

 Data is growing faster than our ability to store or index it 

 There are 3 Billion Telephone Calls in US each day 
(100BN minutes), 30B emails daily, 4B SMS, IMs.  

 Scientific data: NASA's observation satellites 
generate billions of readings each per day. 

 IP Network Traffic: can be billions packets per hour per 
router.  Each ISP has many (10s of thousands) routers! 

 Whole genome readings for individual humans now 
available: each is many gigabytes in size 

Data is Massive 
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Small Summaries and Sufficient Statistics 

 A summary (approximately) allows answering such questions 

 To earn the name, should be (very) small 

– Can keep in fast storage 

 Should be able to build, update and query efficiently 

 Key methods for summaries: 

– Create an empty summary 

– Update with one new tuple: streaming processing 

– Merge summaries together: distributed processing 

– Query: may tolerate some approximation 

 A generalized notion of “sufficient statistics”  

Streaming, Sketching and Sufficient Statistics 
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The CS Perspective 

 Cynical: “The price of everything and the value of nothing” 

– Optimize the cost of quantities related to a computation 

 The space required to store the sufficient information 

 The time to process each new item, or answer a query 

 The accuracy of the answer () 

 The amount of “true” randomness 

– In terms of size of input n, and chosen parameters 

 Pessimistic: “A pessimist is never disappointed” 

– Rarely make strong assumptions about the input distribution 

– “the data is the data”: assume fixed input, adversarial ordering 

– Seek to compute a function of the input (not the distribution) 

Streaming, Sketching and Sufficient Statistics 
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The CS Perspective II 

 “Probably Approximately Correct” 

– Preference for tail bounds on quantities 

– Within error  with probability 1- 

– Use concentration of measure (Markov, Chebyshev, Chernoff…) 

 “High price of entr(op)y”: Randomness is a limited resource 

– We often need “random” bits as a function of i 

– Must either store the randomness  

– Or use weaker hash functions with small random keys 

– Occasionally, assume “fully independent hash functions” 

 Not too concerned about constant factors 

– Most bounds given in O() notation 
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Streaming, Sketching and Sufficient Statistics 

Data Models 

 We model data as a collection of simple tuples 

 Problems hard due to scale and dimension of input 

 Arrivals only model: 

– Example: (x, 3), (y, 2), (x, 2) encodes 
the arrival of 3 copies of item x,  
2 copies of y, then 2 copies of x. 

– Could represent eg. packets on a network; power usage 

 Arrivals and departures: 

– Example: (x, 3), (y,2), (x, -2) encodes 
 final state of (x, 1), (y, 2). 

–  Can represent fluctuating quantities, or measure differences 
between two distributions 

x 
y 

x 
y 
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Streaming, Sketching and Sufficient Statistics 

Part I: Sketches and Frequency Moments 

 Frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Part II: Advanced Topics 

 Sampling and Lp Sampling 

– L0 sampling and graph sketching 

– L2 sampling and frequency moment estimation 

 Matrix computations 

– Sketches for matrix multiplication 

– Sparse representation via frequent directions 

 Lower bounds for streaming and sketching 

– Basic hard problems (Index, Disjointness) 

– Hardness via reductions 

 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Frequency Distributions 

 Given set of items, let fi be the number of occurrences of item i 

 Many natural questions on fi values: 

– Find those i’s with large fi values (heavy hitters) 

– Find the number of non-zero fi values (count distinct) 

– Compute Fk = i (fi)
k – the k’th Frequency Moment 

– Compute  H = i (fi/F1) log (F1/fi) – the (empirical) entropy 

 “Space Complexity of the Frequency Moments” 
  Alon, Matias, Szegedy in STOC 1996 

– Awarded Gödel prize in 2005 

– Set the pattern for many streaming algorithms to follow 
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Concentration Bounds 

 Will provide randomized algorithms for these problems 

 Each algorithm gives a (randomized) estimate of the answer 

 Give confidence bounds on the final estimate X 

– Use probabilistic concentration bounds on random variables 

 A concentration bound is typically of the form 
   Pr[ |X – x| > y ] <  

– At most probability  of being more than y away from x 

Streaming, Sketching and Sufficient Statistics 
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Markov Inequality 

 Take any probability distribution X s.t. Pr[X < 0] = 0 

 Consider the event X  k for some constant k > 0 

 For any draw of X, kI(X  k)  X 

– Either 0  X < k, so I(X  k) = 0 

– Or X  k, lhs = k 

 Take expectations of both sides: k Pr[ X  k]  E[X] 

 Markov inequality: Pr[ X  k ]  E[X]/k 

– Prob of random variable exceeding k times its expectation < 1/k 

– Relatively weak in this form, but still useful 

Streaming, Sketching and Sufficient Statistics 
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Sketch Structures 

 Sketch is a class of summary that is a linear transform of input 

– Sketch(x) = Sx for some matrix S 

– Hence, Sketch(x + y) =  Sketch(x) +  Sketch(y) 

– Trivial to update and merge 

 Often describe S in terms of hash functions 

– If hash functions are simple, sketch is fast 

 Aim for limited independence hash functions h: [n]  [m] 

– If PrhH[ h(i1)=j1  h(i2)=j2  … h(ik)=jk ] = m-k,  
then H is k-wise independent family (“h is k-wise independent”) 

– k-wise independent hash functions take time, space O(k) 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

A First Sketch: Fingerprints 

 Test if two (distributed) binary vectors are equal  
  d= (x,y) = 0 iff x=y, 1 otherwise 

 To test in small space: pick a suitable hash function h 

 Test h(x)=h(y) : small chance of false positive, no chance of 
false negative 

 Compute h(x), h(y) incrementally as new bits arrive  

– How to choose the function h()? 

 1 0 1 1 1 0 1 0 1 … 

 1 0 1 1 0 0 1 0 1 … 
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Polynomial Fingerprints 

 Pick h(x) = i=1
n xi r

i mod p for prime p, random r  {1…p-1} 

– Flexible: h(x) is linear function of x—easy to update and merge 

 For accuracy, note that computation mod p is over the field Zp 

– Consider the polynomial in , i=1
n (xi – yi) 

i  = 0 

– Polynomial of degree n over Zp has at most n roots 

 Probability that r happens to solve this polynomial is n/p 

 So Pr[ h(x) = h(y) | x  y ]  n/p 

– Pick p = poly(n), fingerprints are log p = O(log n) bits 

 Fingerprints applied to small subsets of data to test equality 

– Will see several examples that use fingerprints as subroutine 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Sketches and Frequency Moments 

 Frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Streaming, Sketching and Sufficient Statistics 

Count-Min Sketch 

 Simple sketch idea relies primarily on Markov inequality 

 Model input data as a vector x of dimension U  

 Creates a small summary as an array of w  d in size 

 Use d hash function to map vector entries to [1..w] 

 Works on arrivals only and arrivals & departures streams 

W 

d 
Array: 

CM[i,j] 
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Streaming, Sketching and Sufficient Statistics 

Count-Min Sketch Structure 

 Each entry in vector x is mapped to one bucket per row. 

 Merge two sketches by entry-wise summation 

 Estimate x[j] by taking mink CM[k,hk(j)] 
– Guarantees error less than F1 in size O(1/ log 1/) 

– Probability of more error is less than 1- 

+c 

+c 

+c 

+c 

h1(j) 

hd(j) 

j,+c 

d
=

lo
g
 1

/
 

w = 2/ 

[C, Muthukrishnan ’04] 
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Streaming, Sketching and Sufficient Statistics 

Approximation of Point Queries 

Approximate point query x’[j] = mink CM[k,hk(j)] 

 Analysis: In k'th row, CM[k,hk(j)] = x[j] + Xk,j 

– Xk,j = Si x[i] I(hk(i) = hk(j)) 

– E[Xk,j] = Si j x[i]*Pr[hk(i)=hk(j)]  
   Pr[hk(i)=hk(j)] * Si x[i] 
  =  F1/2 – requires only pairwise independence of h 

– Pr[Xk,j  F1] = Pr[ Xk,j  2E[Xk,j] ]  1/2 by Markov inequality  

 So, Pr[x’[j]  x[j] + F1] = Pr[ k. Xk,j > F1]  1/2log 1/
 =  

 Final result: with certainty x[j]  x’[j] and  
with probability at least 1-,  x’[j] < x[j] + F1 
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Streaming, Sketching and Sufficient Statistics 

Applications of Count-Min to Heavy Hitters 

 Count-Min sketch lets us estimate fi for any i (up to F1) 

 Heavy Hitters asks to find i such that fi is large (>  F1) 

 Slow way: test every i after creating sketch 

 Alternate way:  

– Keep binary tree over input domain: each node is a subset 

– Keep sketches of all nodes at same level 

– Descend tree to find large frequencies, discard ‘light’ branches 

– Same structure estimates arbitrary range sums 

 A first step towards compressed sensing style results... 
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Application to Large Scale Machine Learning 

 In machine learning, often have very large feature space 

– Many objects, each with huge, sparse feature vectors 

– Slow and costly to work in the full feature space 

 “Hash kernels”: work with a sketch of the features 

– Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09] 

 Similar analysis explains why: 

– Essentially, not too much noise on the important features 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Sketches and Frequency Moments 

 Frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Chebyshev Inequality 

 Markov inequality is often quite weak 

 But Markov inequality holds for any random variable 

 Can apply to a random variable that is a function of X 

 Set Y = (X – E[X])2 

 By Markov, Pr[ Y > kE[Y] ] < 1/k 

– E[Y] = E[(X-E[X])2]= Var[X] 

 Hence, Pr[ |X – E[X]| > √(k Var[X]) ] < 1/k 

 Chebyshev inequality: Pr[ |X – E[X]| > k ] < Var[X]/k2 

– If Var[X]  2 E[X]2, then Pr[|X – E[X]| >  E[X] ] = O(1) 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

F2 estimation 

 AMS sketch (for Alon-Matias-Szegedy) proposed in 1996 

– Allows estimation of F2 (second frequency moment) 

– Used at the heart of many streaming and non-streaming 
applications: achieves dimensionality reduction 

 Here, describe AMS sketch by generalizing CM sketch.  

 Uses extra hash functions g1...glog 1/ {1...U} {+1,-1} 

– (Low independence) Rademacher variables 

 Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j) 

linear 

projection 

AMS sketch 
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Streaming, Sketching and Sufficient Statistics 

F2 analysis 

 Estimate F2 = mediank i CM[k,i]2 

 Each row’s result is i g(i)2x[i]2  + h(i)=h(j) 2 g(i) g(j) x[i] x[j] 

 But g(i)2 = -12 = +12 = 1, and i x[i]2 = F2 

 g(i)g(j) has 1/2 chance of  +1 or –1 : expectation is 0 … 

+c*g1(j) 

+c*g2(j) 

+c*g3(j) 

+c*g4(j) 

h1(j) 

hd(j) 

j,+c 

d
=

8
lo

g
 1

/
 

w = 4/2 
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Streaming, Sketching and Sufficient Statistics 

F2 Variance 

 Expectation of row estimate Rk = i CM[k,i]2 is exactly F2 

 Variance of row k, Var[Rk], is an expectation: 

– Var[Rk] = E[ (buckets b (CM[k,b])2 – F2)2 ] 

– Good exercise in algebra: expand this sum and simplify 

– Many terms are zero in expectation because of terms like 
g(a)g(b)g(c)g(d) (degree at most 4) 

– Requires that hash function g is four-wise independent: it 
behaves uniformly over subsets of size four or smaller 

 Such hash functions are easy to construct 
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Streaming, Sketching and Sufficient Statistics 

F2 Variance 

 Terms with odd powers of g(a) are zero in expectation 
– g(a)g(b)g2(c), g(a)g(b)g(c)g(d), g(a)g3(b) 

 Leaves  
Var[Rk]  i g

4(i) x[i]4  
  + 2 j i g

2(i) g2(j) x[i]2 x[j]2   
  + 4 h(i)=h(j) g

2(i) g2(j) x[i]2 x[j]2  
  - (x[i]4 + j i 2x[i]2 x[j]2) 
   F2

2/w 

 Row variance can finally be bounded by F2
2/w 

– Chebyshev for w=4/2 gives probability ¼ of failure: 
       Pr[ |Rk – F2| > 2 F2 ]  ¼   

– How to amplify this to small  probability of failure? 

– Rescaling w has cost linear in 1/ 
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Streaming, Sketching and Sufficient Statistics 

Tail Inequalities for Sums 

 We achieve stronger bounds on tail probabilities for the sum of 
independent Bernoulli trials via the Chernoff Bound:   

– Let X1, ..., Xm be independent Bernoulli trials s.t. Pr[Xi=1] = p 

(Pr[Xi=0] = 1-p).  

– Let X = i=1
m Xi  ,and μ = mp be the expectation of X.  

– Then, for >0, Chernoff bound states: 

  Pr[ |X - μ|  μ]  2 exp(- ½ μ2)  

– Proved by applying Markov inequality to Y = exp(X1  X2  …  Xm) 
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Streaming, Sketching and Sufficient Statistics 

Applying Chernoff Bound 

 Each row gives an estimate that is within  relative error with 
probability p’ > ¾ 

 Take d repetitions and find the median.  Why the median? 

 

 

– Because bad estimates are either too small or too large 

– Good estimates form a contiguous group “in the middle” 

– At least d/2 estimates must be bad for median to be bad 

 Apply Chernoff bound to d independent estimates, p=1/4 

– Pr[ More than d/2 bad estimates ] < 2exp(-d/8) 

– So we set d = (ln 1/) to give  probability of failure 

 Same outline used many times in summary construction 
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Applications and Extensions 

 F2 guarantee: estimate ǁxǁ2 from sketch with error  ǁxǁ2 

– Since ǁx + yǁ2
2 = ǁxǁ2

2 + ǁyǁ2
2 + 2x  y  

Can estimate (x  y) with error ǁxǁ2ǁyǁ2 

– If y = e
j
, obtain (x  ej) = xj with error  ǁxǁ2 :  

L2 guarantee (“Count Sketch”) vs L1 guarantee (Count-Min) 
 

 Can view the sketch as a low-independence realization of the 
Johnson-Lindendestraus lemma 

– Best current JL methods have the same structure 

– JL is stronger: embeds directly into Euclidean space 

– JL is also weaker: requires O(1/)-wise hashing, O(log 1/) 
independence [Kane, Nelson 12] 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Sketches and Frequency Moments 

 Frequency Moments and Sketches 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Streaming, Sketching and Sufficient Statistics 

F0 Estimation 

 F0 is the number of distinct items in the stream  

– a fundamental quantity with many applications 

 Early algorithms by Flajolet and Martin [1983] gave nice 
hashing-based solution 

– analysis assumed fully independent hash functions 

 Will describe a generalized version of the FM algorithm due to 
Bar-Yossef et. al with only pairwise indendence 

– Known as the “k-Minimum values (KMV)” algorithm 
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Streaming, Sketching and Sufficient Statistics 

F0 Algorithm 

 Let m be the domain of stream elements 

– Each item in data is from [1…m] 

 Pick a random (pairwise) hash function h: [m]  [m3] 

– With probability at least 1-1/m, no collisions under h 

 

 
 For each stream item i, compute h(i), and track the t distinct 

items achieving the smallest values of h(i) 

– Note: if same i is seen many times, h(i) is same 

– Let vt = t’th smallest (distinct) value of h(i) seen 

 If F0 < t, give exact answer, else estimate F’0 = tm3/vt 

– vt/m3  fraction of hash domain occupied by t smallest 

m3 0m3 vt 
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Streaming, Sketching and Sufficient Statistics 

Analysis of F0 algorithm 

 Suppose F’0 = tm3/vt > (1+) F0   [estimate is too high] 

 

 

 

 

 So for input = set S  2[m], we have  

– |{ s  S | h(s) < tm3/(1+)F0 }| > t 

– Because  < 1, we have tm3/(1+)F0  (1-/2)tm3/F0 

– Pr[ h(s) < (1-/2)tm3/F0]  1/m3 * (1-/2)tm3/F0 = (1-/2)t/F0 

 

– (this analysis outline hides some rounding issues) 

 

m3 tm3/(1+)F0 
0m3 vt 
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Streaming, Sketching and Sufficient Statistics 

Chebyshev Analysis 

 Let Y be number of items hashing to under tm3/(1+)F0  

– E[Y] = F0 * Pr[ h(s) < tm3/(1+)F0] = (1-/2)t 

– For each item i, variance of the event = p(1-p) < p 

– Var[Y] = sS Var[ h(s) < tm3/(1+)F0] < (1-/2)t  

 We sum variances because of pairwise independence 

 

 Now apply Chebyshev inequality:  

– Pr[ Y > t ]   Pr[|Y – E[Y]| > t/2]  
    4Var[Y]/2t2  
   < 4t/(2t2)  

– Set t=20/2 to make this Prob  1/5 
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Streaming, Sketching and Sufficient Statistics 

Completing the analysis 

 We have shown 
 Pr[ F’0 > (1+) F0 ] < 1/5 

 Can show Pr[ F’0 < (1-) F0 ] < 1/5 similarly 

– too few items hash below a certain value 

 So Pr[ (1-) F0  F’0  (1+)F0] > 3/5  [Good estimate] 

 

 Amplify this probability: repeat O(log 1/) times in parallel 
with different choices of hash function h 

– Take the median of the estimates, analysis as before 
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Streaming, Sketching and Sufficient Statistics 

F0 Issues 

 Space cost:  

– Store t hash values, so O(1/2 log m) bits 

– Can improve to O(1/2 + log m) with additional tricks 

 

 

 

 Time cost:  

– Find if hash value h(i) < vt 

– Update vt and list of t smallest if h(i) not already present 

– Total time O(log 1/ + log m) worst case 
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Count-Distinct 

 Engineering the best constants: Hyperloglog algorithm 

– Hash each item to one of 1/2 buckets (like Count-Min) 

– In each bucket, track the function max log(h(x))  

 Can view as a coarsened version of KMV 

 Space efficient: need log log m  6 bits per bucket 

 Can estimate intersections between sketches 

– Make use of identity |A  B| = |A| + |B| - |A  B| 

– Error scales with  √(|A||B|), so poor for small intersections 

– Higher order intersections via inclusion-exclusion principle 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Bloom Filters 

 Bloom filters compactly encode set membership 

– k hash functions map items to bit vector k times 

– Set all k entries to 1 to indicate item is present 

– Can lookup items, store set of size n in O(n) bits 

 

 

 

 

 

 Duplicate insertions do not change Bloom filters 

 Can merge by OR-ing vectors (of same size) 

item 

1 1 1 
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Bloom Filter analysis 

 How to set k (number of hash functions), m (size of filter)? 

 False positive: when all k locations for an item are set 

– If  fraction of cells are empty, false positive probability is (1-)k 

 Consider probability of any cell being empty: 

– For n items, Pr[ cell j is empty ] = (1 - 1/m)kn  ≈  ≈ exp(-kn/m) 

– False positive prob = (1 - )k = exp(k ln(1 - )) 
        = exp(-m/n ln() ln(1-)) 

 For fixed n, m, by symmetry minimized at  = ½ 

– Half cells are occupied, half are empty 

– Give k = (m/n)ln 2, false positive rate is  ½k 

– Choose m = cn to get constant FP rate, e.g. c=10 gives < 1% FP 

 

 
Streaming, Sketching and Sufficient Statistics 
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Bloom Filters Applications 

 Bloom Filters widely used in “big data” applications 

– Many problems require storing a large set of items 

 Can generalize to allow deletions 

– Swap bits for counters: increment on insert, decrement on delete 

– If representing sets, small counters suffice: 4 bits per counter 

– If representing multisets, obtain sketches (next lecture) 

 Bloom Filters are an active research area 

– Several papers on topic in every networking conference… 

Streaming, Sketching and Sufficient Statistics 
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1 1 1 
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Streaming, Sketching and Sufficient Statistics 

Frequency Moments 

 Intro to frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Streaming, Sketching and Sufficient Statistics 

Higher Frequency Moments 

 Fk for k>2.  Use a sampling trick [Alon et al 96]: 

– Uniformly pick an item from the stream length 1…n 

– Set r = how many times that item appears subsequently  

– Set estimate F’k = n(rk – (r-1)k) 

 

 E[F’k]=1/n*n*[ f1
k - (f1-1)k + (f1-1)k - (f1-2)k + … + 1k-0k]+… 

 = f1
k + f2

k + … = Fk 

 Var[F’k]1/n*n2*[(f1
k-(f1-1)k)2 + …] 

– Use various bounds to bound the variance by k m1-1/k Fk
2 

– Repeat k m1-1/k times in parallel to reduce variance 

 Total space needed is O(k m1-1/k) machine words 

– Not a sketch: does not distribute easily.  See part 2! 
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Streaming, Sketching and Sufficient Statistics 

Combined Frequency Moments 

 Let G[i,j] = 1 if (i,j) appears in input.  
E.g. graph edge from i to j.  Total of m distinct edges 

 Let di = Sj=1
n G[i,j] (aka degree of node i) 

 Find aggregates of di’s: 

– Estimate heavy di’s (people who talk to many) 

– Estimate frequency moments: 
number of distinct di values, sum of squares 

– Range sums of di’s (subnet traffic) 

 Approach: nest one sketch inside another, e.g. HLL inside CM 

– Requires new analysis to track overall error 
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Range Efficiency 

 Sometimes input is specified as a collection of ranges [a,b] 

– [a,b] means insert all items (a, a+1, a+2 … b) 

– Trivial solution: just insert each item in the range 

 Range efficient F0 [Pavan, Tirthapura 05] 

– Start with an alg for F0 based on pairwise hash functions 

– Key problem: track which items hash into a certain range 

– Dives into hash fns to divide and conquer for ranges 

 Range efficient F2 [Calderbank et al. 05, Rusu,Dobra 06] 

– Start with sketches for F2 which sum hash values 

– Design new hash functions so that range sums are fast 

 Rectangle Efficient F0 [Tirthapura, Woodruff 12] 
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Forthcoming Attractions 

 Data Streams Mini Course @Simons 

– Prof Andrew McGregor 

– Starts early October 

 

 

 

 Succinct Data Representations and Applications @ Simons 

– September 16-19  
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Recap 

 Sketching Techniques summarize large data sets 

 Summarize vectors: 

– Test equality (fingerprints) 

– Recover approximate entries (count-min, count sketch) 

– Approximate Euclidean norm (F2) and dot product 

– Approximate number of non-zero entries (F0) 

– Approximate set membership (Bloom filter) 
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Part II: Advanced Topics 

 Sampling and Lp Sampling 

– L0 sampling and graph sketching 

– L2 sampling and frequency moment estimation 

 Matrix computations 

– Sketches for matrix multiplication 

– Sparse representation via frequent directions 

 Lower bounds for streaming and sketching 

– Basic hard problems (Index, Disjointness) 

– Hardness via reductions 

 

Streaming, Sketching and Sufficient Statistics 
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Streaming, Sketching and Sufficient Statistics 

Sampling From a Large Input 

 Fundamental prob: sample m items uniformly from data 

– Useful: approximate costly computation on small sample 

 Challenge: don’t know how large total input is 

– So when/how often to sample? 

 Several solutions, apply to different situations: 

– Reservoir sampling (dates from 1980s?) 

– Min-wise sampling (dates from 1990s?) 
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Min-wise Sampling 

 For each item, pick a random fraction between 0 and 1 

 Store item(s) with the smallest random tag [Nath et al.’04] 

 

0.391 0.908 0.291 0.555 0.619 0.273 

 Each item has same chance of least tag, so uniform 

 Can run on multiple inputs separately, then merge 

 Applications in geometry: basic -approximations are samples 

 Estimate number of points falling in a range (bounded VC dim) 
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Sampling from Sketches 

 Given inputs with positive and negative weights 

 Want to sample based on the overall frequency distribution 

– Sample from support set of n possible items 

– Sample proportional to (absolute) weights 

– Sample proportional to some function of weights 

 How to do this sampling effectively? 

 Recent approach: Lp sampling 

Streaming, Sketching and Sufficient Statistics 
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Lp Sampling 

 Lp sampling: use sketches to sample i w/prob (1±) fi
p/ǁfǁp

p 

 “Efficient” solutions developed of size O(-2 log2 n) 

– [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11] 

 L0 sampling enables novel “graph sketching” techniques 

– Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12] 

 L2 sampling allows optimal estimation of frequency moments 
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L0 Sampling 

 L0 sampling: sample with prob (1±) fi
0/F0

 

– i.e., sample (near) uniformly from items with non-zero frequency 

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05] 

– Sub-sample all items (present or not) with probability p 

– Generate a sub-sampled vector of frequencies fp 

– Feed fp to a k-sparse recovery data structure 

 Allows reconstruction of fp if F0 < k  

– If fp is k-sparse, sample from reconstructed vector 

– Repeat in parallel for exponentially shrinking values of p 
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Sampling Process 

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U 

– Let N = F0 = |{ i : fi  0}| 

– Want there to be a level where k-sparse recovery will succeed 

– At level p, expected number of items selected S is Np 

– Pick level p so that k/3 < Np  2k/3 

 Chernoff bound: with probability exponential in k, 1  S  k 

– Pick k = O(log 1/) to get 1- probability 

 Streaming, Sketching and Sufficient Statistics 

p=1 

p=1/U 

k-sparse recovery  
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k-Sparse Recovery 

 Given vector x with at most k non-zeros, recover x via sketching 

– A core problem in compressed sensing/compressive sampling 

 First approach: Use Count-Min sketch of x 

– Probe all U items, find those with non-zero estimated frequency 

– Slow recovery: takes O(U) time 

 Faster approach: also keep sum of item identifiers in each cell 

– Sum/count will reveal item id 

– Avoid false positives: keep fingerprint of items in each cell 

 Can keep a sketch of size O(k log U) to recover up to k items 

Streaming, Sketching and Sufficient Statistics 

Sum, i : h(i)=j i 

Count, i : h(i)=j xi 

Fingerprint, i : h(i)=j xi r
i 
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Uniformity 

 Also need to argue sample is uniform 

– Failure to recover could bias the process 

 Pr[ i would be picked if k=n] = 1/F0 by symmetry 

 Pr[ i is picked ] = Pr[ i would be picked if k=n  S k] 
         (1-)/F0 

 So (1-)/N  Pr[i is picked]  1/N 

 Sufficiently uniform (pick  = ) 
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Application: Graph Sketching 

 Given L0 sampler, use to sketch (undirected) graph properties 

 Connectivity: want to test if there is a path between all pairs 

 Basic alg: repeatedly contract edges between components 

 Use L0 sampling to provide edges on vector of adjacencies 

 Problem: as components grow, sampling most likely to 
produce internal links 
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Graph Sketching 

 Idea: use clever encoding of edges [Ahn, Guha, McGregor 12] 

 Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i 

 When node i and node j get merged, sum their L0 sketches 

– Contribution of edge (i,j) exactly cancels out 

 

 

 

 Only non-internal edges remain in the L0 sketches 

 Use independent sketches for each iteration of the algorithm 

– Only need O(log n) rounds with high probability 

 Result: O(poly-log n) space per node for connectivity 
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Other Graph Results via sketching 

 K-connectivity via connectivity 

– Use connectivity result to find and remove a spanning forest 

– Repeat k times to generate k spanning forests F1, F2, … Fk 

– Theorem: G is k-connected if i=1
k Fi is k-connected 

 Bipartiteness via connectivity:  

– Compute c = number of connected components in G 

– Generate G’ over V  V’ so (u,v)  E  (u, v’)  E’, (u’, v)  E’ 

– If G is bipartite, G’ has 2c components, else it has <2c components 

 Minimum spanning tree:  

– Round edge weights to powers of (1+) 

– Define ni = number of components on edges lighter than (1+)i 

– Fact: weight of MST on rounded weights is i (1+)ini
 

Streaming, Sketching and Sufficient Statistics 
59 



Application: Fk via L2 Sampling 

 Recall, Fk = i fi
k  

 Suppose L2 sampling samples fi with probability fi
2/F2 

– And also estimates sampled fi with relative error  

 Estimator: X = F2 fi
k-2  (with estimates of F2, fi) 

– Expectation: E[X] = F2 i fi
k-2  fi

2 / F2 = Fk 

– Variance: Var[X]  E[X2] = i fi
2/F2 (F2 fi

k-2)2 = F2 F2k-2 
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Rewriting the Variance 

 Want to express variance F2 F2k-2 in terms of Fk and domain size n 

 Hölder’s inequality: x, y  ǁxǁp ǁyǁq for 1  p, q with 1/p+1/q=1 

– Generalizes Cauchy-Shwarz inequality, where p=q=2.  

 So pick p=k/(k-2) and q = k/2 for k > 2.  Then 
   1n, (fi)

2  ǁ1nǁk/(k-2) ǁ(fi)
2ǁk/2 

  F2  n
(k-2)/k

 Fk
2/k    (1) 

 Also, since ǁxǁp+a  ǁxǁp for any p 1, a > 0 

– Thus ǁxǁ2k-2  ǁxǁk for k  2 

– So F2k-2 = ǁfǁ2k-2
2k-2  ǁfǁk

2k-2 = Fk
2-2/k  (2) 

 Multiply (1) * (2) : F2 F2k-2  n1-2/k Fk
2 

– So variance is bounded by n1-2/k Fk
2 
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Fk Estimation 

 For k  3, we can estimate Fk via L2 sampling: 

– Variance of our estimate is O(Fk
2 n1-2/k) 

– Take mean of n1-2/k-2 repetitions to reduce variance 

– Apply Chebyshev inequality: constant prob of good estimate 

– Chernoff bounds: O(log 1/) repetitions reduces prob to  

 How to instantiate this? 

– Design method for approximate L2 sampling via sketches 

– Show that this gives relative error approximation of fi 

– Use approximate value of F2 from sketch 

– Complicates the analysis, but bound stays similar 
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L2 Sampling Outline 

 For each i, draw ui uniformly in the range 0…1 

– From vector of frequencies f, derive g so gi = fi/√ui 

– Sketch gi vector 

 Sample: return (i, fi) if there is unique i with gi
2 > t=F2/ threshold 

– Pr[ gi
2 > t   j  i : gj

2 < t] = Pr[gi
2 > t] ji Pr[gj

2 < t] 
    = Pr[ui < fi

2/F2] ji Pr[uj > fj
2/F2] 

    = (fi
2/F2 ) ji (1 - fj

2/F2) 
    ≈ fi

2/F2 

 Probability of returning anything is not so big: i  fi
2/F2 =  

– Repeat O(1/ log 1/) times to improve chance of sampling 
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L2 sampling continued 

 Given (estimated) gi s.t. gi
2  F2/, estimate fi = ui gi  

 Sketch size O(-1 log n) means estimate of fi
2 has error (fi

2 + ui
2) 

– With high prob, no ui < 1/poly(n), and so F2(g) = O(F2(f) log n) 

– Since estimated fi
2/ui

2  F2/, ui
2  fi

2/F2 

 Estimating fi
2 with error fi

2 sufficient for estimating Fk  

 

 Many details omitted 

–  See Precision Sampling paper [Andoni Krauthgamer Onak 11] 
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Advanced Topics 

 Sampling and Lp Sampling 

– L0 sampling and graph sketching 

– L2 sampling and frequency moment estimation 

 Matrix computations 

– Sketches for matrix multiplication 

– Sparse representation via frequent directions 

 Lower bounds for streaming and sketching 

– Basic hard problems (Index, Disjointness) 

– Hardness via reductions 
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Matrix Sketching 

 Given matrices A, B, want to approximate matrix product AB 

 Compute normed error of approximation C: ǁAB – Cǁ 

 Give results for the Frobenius (entrywise) norm ǁǁF 

– ǁCǁF = (i,j Ci,j
2)½   

– Results rely on sketches, so this norm is most natural 
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Direct Application of Sketches 

 Build sketch of each row of A, each column of B 

 Estimate Ci,j by estimating inner product of Ai with Bj 

 Absolute error in estimate is  ǁAiǁ2 ǁBjǁ2 (whp) 

 Sum over all entries in matrix, squared error is 
 2 i,j ǁAiǁ2

2 ǁBjǁ2
2  = 2 (i ǁAiǁ2

2)(j ǁBjǁ2
2) 

   = 2 (ǁAǁF
2)(ǁBǁF

2) 

 Hence, Frobenius norm of error is ǁAǁFǁBǁF 

 Problem: need the bound to hold for all sketches simultaneously 

– Requires polynomially small failure probability 

– Increases sketch size by logarithmic factors 
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Improved Matrix Multiplication Analysis 

 Simple analysis is too pessimistic [Clarkson Woodruff 09] 

– It bounds probability of failure of each sketch independently 

 A better approach is to directly analyze variance of error 

– Immediately, each estimate of (AB) has variance 2ǁAǁF
2ǁBǁF

2 

– Just need to apply Chebyshev inequality to sum… almost 

 Problem: how to amplify probability of correctness? 

– ‘Median’ trick doesn’t work: what is median of set of matrices? 

– Find an estimate which is close to most others 

 Estimate ǁAǁF
2ǁBǁF

2 := d using sketches 

 Find an estimate that’s closer than d/2 to more than ½ the rest 

 We find an estimate with this property with probability 1- 
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Advanced Linear Algebra 

 More directly approximate matrix multiplication:  

– use more powerful hash functions in sketching 

– obtain a single accurate estimate with high probability 

 

 Linear regression given matrix A and vector b: 
 find x  Rd to (approximately) solve minx ǁAx – bǁ 

– Approach: solve the minimization in “sketch space” 

– Require a summary of size O(d2/ log 1/) 
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Frequent Items and Frequent Directions 

 A deterministic algorithm for tracking item frequencies 

– With a recent analysis of its performance 

– Unusually, it is deterministic 

 Inspiring an algorithm for tracking matrix properties 

– Due to [Liberty 13], extended by [Ghashami Phillips 13] 
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Misra-Gries Summary (1982) 

 Misra-Gries (MG) algorithm finds up to k items that occur 
more than 1/k fraction of the time in the input 

 Update: Keep k different candidates in hand.  For each item: 

– If item is monitored, increase its counter 

– Else, if < k items monitored, add new item with count 1 

– Else, decrease all counts by 1 

7 

5 

1 2 1 

4 

6 
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Streaming MG analysis 

 N = total weight of input 

 M = sum of counters in data structure 

 Error in any estimated count at most (N-M)/(k+1) 

– Estimated count a lower bound on true count 

– Each decrement spread over (k+1) items: 1 new one and k in MG 

– Equivalent to deleting (k+1) distinct items from stream 

– At most (N-M)/(k+1) decrement operations 

– Hence, can have “deleted” (N-M)/(k+1) copies of any item 

– So estimated counts have at most this much error 

7 

1 

4 

6 
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Merging two MG Summaries [ACHPWY ‘12] 

 Merge algorithm: 

– Merge the counter sets in the obvious way 

– Take the (k+1)th largest counter = Ck+1, and subtract from all 

– Delete non-positive counters 

– Sum of remaining counters is M12 

 This keeps the same guarantee as Update: 

– Merge subtracts at least (k+1)Ck+1 from counter sums 

– So (k+1)Ck+1  (M1 + M2 – M
12

) 

– By induction, error is  
((N1-M1) + (N2-M2) + (M1+M2–M12))/(k+1)=((N1+N2) –M12)/(k+1)  

(prior error) (from merge) (as claimed) 
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A Powerful Summary 

 MG summary with update and merge is very powerful 

– Builds a compact summary of the frequency distribution 

– Can also multiply the summary by any scalar 

– Hence can take (positive) linear combinations: x + y 

– Useful for building models of data 

 Ideas recently extended to matrix computations 

Streaming, Sketching and Sufficient Statistics 
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Frequent Directions 

 Input: An n  d matrix A, presented one row at a time 

 Find k  d matrix Q so for any vector x, Qx approximates Ax 

 Simple idea: use SVD to focus on most important directions 

 Given current k  d matrix Q  

– Replace last row with new row ai 

– Compute SVD of Q as USV 

– Set S’ = diag( √(1
2 - k

2), √(2
2 - k

2), … , √(k-1
2 - k

2), √(k
2 - k

2)=0) 

– Rescale: Q’ = S’VT 

 At step i, have introduced error based on i = Sk,k = k 
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Frequent Directions Analysis 

 Error (in Frobenius norm) introduced at each step at most i
2 

– Let vj be j’th column of Vj and pick any x such that ǁxǁ2 = 1 

– ǁQxǁ2
2 = j=1

k j
2 (vj  x)2 = j=1

k (’j
2 + i

2) (vj  x)2 

         = j=1
k ’j

2 (vj  x)2 + j=1
k i

2 (vj  x)2  

         ǁQ’xǁ2
2

 + i
2 

 Observe that ǁQ’ǁF
2

 - ǁQǁF
2 = i

2 + i
2 + … = k i

2 

 Adding row ai causes ǁQǁF
2

 to increase by ǁaiǁ2
2 

 Hence, ǁAǁF
2

 = i ǁaiǁ2
2 = k i i

2 

 Summing over all steps, 0  ǁAxǁ2
2 - ǁQxǁ2

2  i i
2
 = ǁAǁF/k 

– “Relative error” bounds follow by increasing k [Ghashami Phillips 13]  
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Advanced Topics 

 Sampling and Lp Sampling 

– L0 sampling and graph sketching 

– L2 sampling and frequency moment estimation 

 Matrix computations 

– Sketches for matrix multiplication 

– Sparse representation via frequent directions 

 Lower bounds for streaming and sketching 

– Basic hard problems (Index, Disjointness) 

– Hardness via reductions 
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Streaming, Sketching and Sufficient Statistics 

Streaming Lower Bounds 

 Lower bounds for summaries 

– Communication and information complexity bounds 

– Simple reductions 

– Hardness of Gap-Hamming problem 

– Reductions to Gap-Hamming 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Computation As Communication 

 Imagine Alice processing a prefix of the input 

 Then takes the whole working memory, and sends to Bob 

 Bob continues processing the remainder of the input 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Computation As Communication 

 Suppose Alice’s part of the input corresponds to string x, and 
Bob’s part corresponds to string y... 

 ...and computing the function corresponds to computing 
f(x,y)... 

 ...then if f(x,y) has communication complexity (g(n)), then the 
computation has a space lower bound of (g(n)) 

 Proof by contradiction:   
If there was an algorithm with better space usage, we could 
run it on x, then send the memory contents as a message, and 
hence solve the communication problem 
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Deterministic Equality Testing 

 Alice has string x, Bob has string y, want to test if x=y 

 Consider a deterministic (one-round, one-way) protocol that 
sends a message of length m < n 

 There are 2m possible messages, so some strings must 
generate the same message: this would cause error 

 So a deterministic message (sketch) must be (n) bits 

– In contrast, we saw a randomized sketch of size O(log n) 

 

 1 0 1 1 1 0 1 0 1 … 

 1 0 1 1 0 0 1 0 1 … 
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Hard Communication Problems 

 INDEX: Alice’s x is a binary string of length n 
Bob’s y is an index in [n] 
Goal: output x[y] 
Result: (one-way) (randomized) communication complexity of INDEX 

is (n) bits 
 

 AUGINDEX: as INDEX, but y additionally contains x[y+1]…x[n] 
 Result: (one-way) (randomized) complexity of AUGINDEX is (n) bits 
 

 DISJ: Alice’s x and Bob’s y are both length n binary strings  
Goal: Output 1 if i: x[i]=y[i]=1, else 0 
Result: (multi-round) (randomized) communication complexity of 
DISJ  (disjointness) is (n) bits 
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Hardness of INDEX 

 Show hardness of INDEX via Information Complexity argument 

– Makes extensive use of Information Theory 

 Entropy of random variable X: H(X) = - x Pr[X=x] lg Pr[X=x] 

– (Expected) information (in bits) gained by learning value of X 

– If X takes on at most N values, H(X)  lg N 

 Conditional Entropy of X given Y: H(X|Y) = y Pr[y] H[X|Y=y] 

– (Expected) information (bits) gained by learning value of X given Y 

 Mutual Information: I(X : Y) = I(Y : X) = H(X) – H(X | Y) 

– Information (in bits) shared by X and Y 

– If X, Y are independent, I(X : Y) = 0 and I(XY : Z)  I(X : Z) + I(Y : Z) 
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Information Cost 

 Use Information Theoretic properties to lower bound 
communication complexity 

 Suppose Alice and Bob have random inputs X and Y 

 Let M be the (random) message sent by Alice in protocol P 

 The cost of (one-way) protocol P is cost(P) = max |M| 

– Worst-case size of message (in bits) sent in the protocol 

 Define information cost as icost(P) = I(M : X) 

– The information conveyed about X in M 

– icost(P) = I(M : X) = H(M) – H(M | X)  H(M)  cost(P) 
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Information Cost of INDEX 

 Give Alice random input X = n uniform random bits 

 Given protocol P for INDEX, Alice sends message M(X) 

 Give Bob input i.  He should output Xi 

 icost(P)  = I(X1 X2 … Xn : M) 
   I(X1 : M) + I(X2 : M) + … + I(Xn: M)   

 Now consider the mutual information of Xi and M 

– Have reduced the problem to n instances of a simpler problem 

 Intuition: I(Xj : M) should be at least constant, so cost(P) = (n) 
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Fano’s Inequality 

 When forming estimate X’ from X given (message) M, where 
X, X’  have k possible values, let E denote X  X’.  We have: 
  H(E) + Pr[E] log(k-1)  H(X | M) 
where H(E) = -Pr[E]lg Pr[E] – (1-Pr[E]) lg(1-Pr[E]) 

 Here, k=2, so we get I(X : M) = H(X) - H(X | M)  H(X) – H(E) 

– H(X) = 1.  If Pr[E]=, we have H(E) < ½ for <0.1 

– Hence I(Xi : M) > ½  

 Thus cost(P)  icost(P) > ½ n if P succeeds w/prob 1- 

– Protocols for INDEX must send (n) bits 

– Hardness of AUGINDEX follows similarly 
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Outline for DISJOINTNESS hardness 

 Hardness for DISJ follows a similar outline 

 Reduce to n instances of the problem “AND” 

– “AND” problem: test whether Xi = Yi = 1 

 Show that the information cost of DISJ protocol is sufficient 
to solve all n instances of AND 

 Show that the information cost of each instance is (1) 

 Proves that communication cost of DISJ is (1) 

– Even allowing multiple rounds of communication 
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Simple Reduction to Disjointness 

 F: output the highest frequency in the input 

 Input: the two strings x and y from disjointness instance 

 Reduction: if x[i]=1, then put i in input; then same for y 

– A streaming reduction (compare to polynomial-time reductions) 

 Analysis: if F=2, then intersection; if F1, then disjoint. 

 Conclusion: Giving exact answer to F requires (N) bits 

– Even approximating up to 50% relative error is hard 

– Even with randomization: DISJ bound allows randomness 

x: 1 0 1 1 0 1 

y: 0 0 0 1 1 0 

1, 3, 4, 6 

4, 5 
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Streaming, Sketching and Sufficient Statistics 

Simple Reduction to Index 

 F0: output the number of items in the stream 

 Input: the strings x and index y from INDEX 

 Reduction: if x[i]=1, put i in input; then put y in input 

 Analysis: if (1-)F’0(xy)>(1+)F’0(x) then x[y]=1, else it is 0 

 Conclusion: Approximating F0 for <1/N requires (N) bits 

– Implies that space to approximate must be (1/) 

– Bound allows randomization 

x: 1 0 1 1 0 1 

y: 5 

1, 3, 4, 6 

5 
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Reduction to AUGINDEX [Clarkson Woodruff 09] 

 Matrix-Multiplication: approximate ATB with error 2ǁAǁF ǁBǁF 

– For r  c matrices.  A encodes string x, B encodes index y 

 

 

 

 

 

 

 Bob uses suffix of x in y to remove heavy entries from A 
ǁBǁF = 1 ǁAǁF = cr/log (cn) *(1 + 4 + … 22k)  4cr22k/3log (cn) 

 Choose  r =  log(cn)/8
2
 so permitted error is c 22k / 62 

– Each error in sign in estimate of (ATB) contributes 22k error 

– Can tolerate error in at most 1/6 fraction of entries 

 Matrix multiplication requires space (rc) = (c/2 log (cn)) 
Streaming, Sketching and Sufficient Statistics 

+1 -1 -2 -2  …  2k 2k … 0 0 0 0 0 
-1 -1 -2 +2  …  2k 2k … 0 0 0 0 0 
+1 +1 +2 -2  …  2k 2k … 0 0 0 0 0 
-1 -1 +2 +2  …  2k 2k … 0 0 0 0 0 
 

[ ] [ 
0 0 … 

0 0 … 

0 0 … 

0 0 … 

0 0 … 

0 0 … 

1 0 … 

0 0 … 

0 0 … 

0 0 … 

] c 

r/log(cn) 

ATB “reads off” 
j’th column of AT 
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Streaming, Sketching and Sufficient Statistics 

Streaming Lower Bounds 

 Lower bounds for data streams 

– Communication complexity bounds 

– Simple reductions 

– Hardness of Gap-Hamming problem 

– Reductions to Gap-Hamming 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Streaming, Sketching and Sufficient Statistics 

Gap Hamming 

Gap-Hamming communication problem: 

 Alice holds x  {0,1}N, Bob holds y  {0,1}N 

 Promise: Ham(x,y) is either  N/2 - √N or  N/2 + √N 

 Which is the case? 

 Model: one message from Alice to Bob 

 Sketching upper bound: need relative error  = √N/F2 = 1/√N 

– Gives space O(1/2) = O(N) 

 

Requires (N) bits of one-way randomized communication  
[Indyk, Woodruff’03, Woodruff’04, Jayram, Kumar, Sivakumar ’07] 
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Streaming, Sketching and Sufficient Statistics 

Hardness of Gap Hamming 

 Reduction starts with an instance of INDEX 

– Map string x to u by 1  +1, 0  -1  (i.e. u[i] = 2x[i] -1 ) 

– Assume both Alice and Bob have access to public random 
strings rj, where each bit of rj is iid {-1, +1} 

– Assume w.l.o.g. that length of string n is odd (important!) 

– Alice computes aj = sign(rj  u) 

– Bob computes bj = sign(rj[y]) 

 Repeat N times with different random strings, and consider 
the Hamming distance of a1... aN with b1 ... bN 

– Argue if we solve Gap-Hamming on (a, b), we solve INDEX 
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Streaming, Sketching and Sufficient Statistics 

Probability of a Hamming Error 

 Consider the pair aj= sign(rj  u),  bj = sign(rj[y]) 

 Let w = i  y u[i] rj[i] 

– w is a sum of (n-1) values distributed iid uniform {-1,+1} 

 Case 1: w  0.  So |w| 2, since (n-1) is even    

– so sign(aj) = sign(w), independent of x[y] 

– Then Pr[aj  bj] = Pr[sign(w)  sign(rj[y])] = ½   

 Case 2: w = 0.  
So aj = sign(rju) = sign(w + u[y]rj[y]) = sign(u[y]rj[y]) 

– Then Pr[aj  bj] = Pr[sign(u[y]rj[y]) = sign(rj[y])] 

– This probability is 1 is u[y]=+1, 0 if u[y]=-1 

– Completely biased by the answer to INDEX 
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Streaming, Sketching and Sufficient Statistics 

Finishing the Reduction 

 So what is Pr[w=0]? 

– w is sum of (n-1) iid uniform {-1,+1} values 

– Then: Pr[w=0] = 2-n(n choose n/2) = c/n, for some constant c 

 Do some probability manipulation: 

– Pr[aj = bj] = ½ + c/2n if x[y]=1 

– Pr[aj = bj] = ½ - c/2n if x[y]=0 

 Amplify this bias by making strings of length N=4n/c2 

– Apply Chernoff bound on N instances  

– With prob>2/3, either Ham(a,b)>N/2 + N or Ham(a,b)<N/2 - N 

 If we could solve Gap-Hamming, could solve INDEX 

– Therefore, need (N) = (n) bits for Gap-Hamming 
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Streaming, Sketching and Sufficient Statistics 

Streaming Lower Bounds 

 Lower bounds for data streams 

– Communication complexity bounds 

– Simple reductions 

– Hardness of Gap-Hamming problem 

– Reductions to Gap-Hamming 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Streaming, Sketching and Sufficient Statistics 

Lower Bound for Entropy 

Gap-Hamming instance—Alice: x  {0,1}N, Bob: y  {0,1}N 

Entropy estimation algorithm A 

 Alice runs A on enc(x) = (1,x1), (2,x2), …, (N,xN) 

 Alice sends over memory contents to Bob 

 Bob continues A on enc(y) = (1,y1), (2,y2), …, (N,yN) 

0 1 0 0 1 1 

(6,0) (5,1) (4,0) (3,0) (2,1) (1,1) 

Bob 

(6,1) (5,1) (4,0) (3,0) (2,1) (1,0) 

1 1 0 0 1 0 
Alice 
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Streaming, Sketching and Sufficient Statistics 

Lower Bound for Entropy 

 Observe: there are 

– 2Ham(x,y) tokens with frequency 1 each 

– N-Ham(x,y) tokens with frequency 2 each 

 So (after algebra), H(S) = log N + Ham(x,y)/N = log N + ½  1/√N 

 If we separate two cases, size of Alice’s memory contents = (N)   
Set  = 1/(√(N) log N) to show bound of (/log 1/)-2) 

0 1 0 0 1 1 

(6,0) (5,1) (4,0) (3,0) (2,1) (1,1) 

Bob 

(6,1) (5,1) (4,0) (3,0) (2,1) (1,0) 

1 1 0 0 1 0 
Alice 
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Streaming, Sketching and Sufficient Statistics 

Lower Bound for F0 

 Same encoding works for F0 (Distinct Elements) 

– 2Ham(x,y) tokens with frequency 1 each 

– N-Ham(x,y) tokens with frequency 2 each 

 F0(S) = N + Ham(x,y) 

 Either Ham(x,y)>N/2 + N or Ham(x,y)<N/2 - N 

– If we could approximate F0 with  < 1/N, could separate 

– But space bound = (N) = (-2) bits 

 Dependence on  for F0 is tight 

 

 Similar arguments show (-2) bounds for Fk 

– Proof assumes k (and hence 2k) are constants 
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Summary of Tools 

 Vector equality: fingerprints 

 Approximate item frequencies: 

– Count-min, Misra-Gries (L1 guarantee), Count sketch (L2 guarantee) 

 Euclidean norm, inner product: AMS sketch, JL sketches 

 Count-distinct: k-Minimum values, Hyperloglog 

 Compact set-representation: Bloom filters 

 Uniform Sampling  

 L0 sampling: hashing and sparse recovery 

 L2 sampling: via count-sketch 

 Graph sketching: L0 samples of neighborhood 

 Frequency moments: via L2 sampling 

 Matrix sketches: adapt AMS sketches, frequent directions 

Streaming, Sketching and Sufficient Statistics 
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Summary of Lower Bounds 

 Can’t deterministically test equality 

 Can’t retrieve arbitrary bits from a vector of n bits: INDEX 

– Even if some unhelpful suffix of the vector is given: AUGINDEX 

 Can’t determine whether two n bit vectors intersect: DISJ 

 Can’t distinguish small differences in Hamming distance: 
GAP-HAMMING 

 These in turn provide lower bounds on the cost of 

– Finding the maximum frequency 

– Approximating the number of distinct items 

– Approximating matrix multiplication 

Streaming, Sketching and Sufficient Statistics 
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Current Directions in Streaming and Sketching 

 Sparse representations of high dimensional objects 

– Compressed sensing, sparse fast fourier transform 

 Numerical linear algebra for (large) matrices 

– k-rank approximation, linear regression, PCA, SVD, eigenvalues 

 Computations on large graphs 

– Sparsification, clustering, matching 

 Geometric (big) data 

– Coresets, facility location, optimization, machine learning 

 Use of summaries in distributed computation 

– MapReduce, Continuous Distributed models 

Streaming, Sketching and Sufficient Statistics 
102 



Forthcoming Attractions 

 Data Streams Mini Course @Simons 

– Prof Andrew McGregor 

– Starts early October 

 

 

 

 Succinct Data Representations and Applications @ Simons 

– September 16-19  
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