Optimization

Benjamin Recht University of California, Berkeley

Stephen Wright
University of Wisconsin-Madison

optimization

might be too much to cover in 3 hours

optimization (for big data?)

- distribution over ξ is well-behaved
- \mathcal{A} is simple (low-cardinality, low-dimension, low-complexity)
minimize $\mathbb{E}_{\xi}[f(x, \xi)]+P(x)$
closely related cousin where P is a simple convex function

Support Vector Machines

cancer vs other illness fraud vs normal purchase up-going vs down-going muons

LASSO

Compressed Sensing

reduce number of measurements required for signal acquisition

Sparse Modeling

search for a sparse set of markers for classification
minimize $\quad \sum_{i=1}^{n}\left(a_{i}^{T} x-b_{i}\right)^{2}$ subject to $\|x\|_{1} \leq R$

Matrix Completion

M_{ij} known for black cells M_{ij} unknown for white cells Rows index features Columns index examples Entries specified on set E

- How do you fill in the missing data?

minimize $\quad \sum_{(u, v) \in E}\left(X_{u v}-M_{u v}\right)^{2}+\mu\|\mathbf{X}\|_{*}$

Graph Cuts

Bhusnurmath and Taylor, 2008

- Image Segmentation
- Entity Resolution
- Topic Modeling
minimize $\quad \sum_{(u, v) \in E}\left|x_{u}-x_{v}\right|$
subject to $\quad x_{u} \in[0,1] \quad$ if $u \in V$
$x_{a}=0 \quad$ if $a \in A$
$x_{b}=1$ if $b \in B$

optimization

might be too much to cover in 3 hours

- optimization is ubiquitous
- optimization is modular
- optimization is declarative

$$
x[k+1] \leftarrow x[k]+\alpha_{k} V[k]
$$

Today: gradient descent

- find problems that always lower bound the optimal value.
- puts problem in NP \cap coNP
- information from one problem informs the other
- some times easier to solve one than the other
- basis of many proof techniques in data science (and tons of other areas too!)

what we'll be skipping...

- 2nd order/newton/BFGS
- interior point methods/ellipsoid methods
- active set methods, manifold identification
- branch and bound
- integrating combinatorial thinking
- derivative-free optimization
- soup of heuristics (simulated annealing, genetic algorithms, ...)
- modeling

optimality conditions

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in \mathbb{R}^{n}
\end{array}
$$

Search for $\nabla f(x)=0$

- Turns a geometric problem into an algebraic problem: solve for the point where the gradient vanishes.
- Is necessary for optimality (sufficient for convex, smooth f)
$x[k+1] \leftarrow x[k]+\alpha_{k} V[k]$
gradient descent

Assume there exits an $x_{\star} \in \mathcal{D}$ where $\nabla f\left(x_{\star}\right)=0$

Suppose the map $\psi(x)=x-\alpha \nabla f(x)$ is contractive on \mathcal{D}

$$
\|\psi(x)-\psi(z)\| \leq \beta\|x-z\| \text { for some } 0 \leq \beta<1
$$

run gradient descent starting at $x[0] \in \mathcal{D}$

$$
\begin{aligned}
\left\|x[k+1]-x_{\star}\right\| & =\left\|x[k]-\alpha \nabla f(x[k])-x_{\star}\right\| \\
& =\left\|\psi(x[k])-\psi\left(x_{\star}\right)\right\| \\
& \leq \beta\left\|x[k]-x_{\star}\right\|
\end{aligned}
$$

$$
\psi\left(x_{\star}\right)=x_{\star}
$$

$$
\leq \beta^{k+1}\left\|x[0]-x_{\star}\right\|
$$

linear rate

- If f is $2 x$ differentiable, contractivity means f is convex on D

$$
\frac{1}{t}\|\psi(x+t \Delta x)-\psi(x)\| \leq \beta\|\Delta x\| \quad \text { for all } t>0
$$

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}} \frac{1}{t}\|\psi(x+t \Delta x)-\psi(x)\|=\lim _{t \rightarrow 0^{+}}\left\|\Delta x-\frac{\alpha}{t}(\nabla f(x+t \Delta x)-\nabla f(x))\right\| \\
&=\left\|\Delta x-\alpha \nabla^{2} f(x) \Delta x\right\| \leq \beta\|\Delta x\|
\end{aligned}
$$

condition number of Hessian

convexity

$$
\begin{aligned}
& f(t x+(1-t) z) \leq t f(x)+(1-t) f(x) \\
& f(z) \geq f(x)+\nabla f(x)^{T}(z-x)+\frac{\ell}{2}\|z-x\|^{2} \\
& \text { strong convexity }
\end{aligned}
$$

Lipschitz gradients

$$
\begin{aligned}
& \|\nabla f(x)-\nabla f(z)\| \leq L\|x-z\| \\
& f(z) \leq f(x)+\nabla f(x)^{\top}(z-x)+\frac{L}{2}\|z-x\|^{2}
\end{aligned}
$$

follows from Taylor's theorem
With step size $\alpha=\frac{2}{\ell+L}, \quad\left\|x[k]-x_{\star}\right\| \leq\left(1-\frac{2}{\kappa+1}\right)^{k}\left\|x[0]-x_{\star}\right\|$.

$$
f(x[k])-f_{\star} \leq L\left(1-\frac{2}{k+1}\right)^{2 k}\left\|x[0]-x_{\star}\right\|^{2}
$$

Note on convergence rate

With step size $\alpha=\frac{2}{\ell+L},\left\|x[k]-x_{\star}\right\| \leq\left(1-\frac{2}{\kappa+1}\right)^{k}\left\|x[0]-x_{\star}\right\|$.

- If you don't know the exact stepsize, can we achieve the rate?
- Exact line search: at each iteration, find the $\boldsymbol{\alpha}$ that minimizes $\mathrm{f}(\mathrm{x}+\alpha \mathrm{d})$.
- Backtracking line search: Reduce α by constant multiple until the function value sufficiently decreases.
- Both achieve linear rate of convergence.
- More sophisticated line searches often used in practice, but none improve over this rate in the worst case.

acceleration/multistep

gradient method akin to an ODE

$$
\begin{aligned}
& x[k+1]=x[k]-\alpha \nabla f(x[k]) \\
& \dot{x}=-\nabla f(x)
\end{aligned}
$$

to prevent oscillation, add a second order term

$$
\begin{aligned}
& \ddot{x}=-b \dot{x}-\nabla f(x) \\
& x[k+1]=x[k]-\alpha \nabla f(x[k])+\beta(x[k]-x[k-1])
\end{aligned}
$$

$$
\begin{aligned}
x[k+1] & =x[k]+\alpha p[k] \\
p[k] & =-\nabla f(x[k])+\beta p[k-1]
\end{aligned}
$$

heavy ball method (constant α, β)
when f is quadratic, this is
Chebyshev's iterative method

analysis

$$
\begin{aligned}
x[k+1] & =x[k]+\alpha p[k] \\
p[k] & =-\nabla f(x[k])+\beta p[k-1]
\end{aligned}
$$

heavy ball method (constant α, β)

Analyze by defining a composite error vector: $\quad w_{k}:=\left[\begin{array}{c}x[k]-x_{\star} \\ x[k-1]-x_{\star}\end{array}\right]$
Then $w[k+1]=B w[k]+o(\|w[k]\|)$

$$
\text { where } B:=\left[\begin{array}{cc}
-\alpha \nabla^{2} f\left(x_{\star}\right)+(1+\beta) / & -\beta I \\
l & 0
\end{array}\right]
$$

analysis (cont.)

$w[k+1]=B w[k]+o(\|w[k]\|)$
B has the same eigenvalues as $\left[\begin{array}{cc}-\alpha \Lambda+(1+\beta) l & -\beta / \\ l & 0\end{array}\right]$

$$
\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

where λ_{i} are the eigenvalues of $\nabla^{2} f\left(X_{*}\right)$
Choose α, β to explicitly minimize the max eigenvalue of B to obtain

$$
\alpha=\frac{4}{L} \frac{1}{(1+1 / \sqrt{\kappa})^{2}} \quad \beta=\left(1-\frac{2}{\sqrt{\kappa}+1}\right)^{2} .
$$

Leads to linear convergence for $\left\|x[k]-x_{\star}\right\|_{2}$ with rate approximately

$$
\left(1-\frac{2}{\sqrt{\kappa}+1}\right)
$$

aคout rnoperer.

- Best steepest descent: Linear rate approx $\left(1-\frac{2}{\kappa+1}\right)$
- Heavy-ball: Linear rate approx
$\left(1-\frac{2}{\sqrt{\kappa}+1}\right)$
- Big difference! To yield $\left\|x[k]-x_{\star}\right\|_{2}<\epsilon\left\|x[0]-x_{\star}\right\|_{2}$

$$
\begin{array}{ll}
k \geq \frac{\kappa}{2} \log (1 / \epsilon) & \text { gradient descent } \\
k \geq \frac{\sqrt{\kappa}}{2} \log (1 / \epsilon) & \text { heavy ball }
\end{array}
$$

- A factor of $\boldsymbol{\kappa}^{1 / 2}$ difference. e.g. if $\boldsymbol{\kappa}=100$, need 10 times fewer steps.

$$
\begin{aligned}
& \text { Conjugate gradients } \\
& \qquad \begin{array}{c}
x[k+1]=x[k]+\alpha_{k} p[k] \\
p[k]=-\nabla f(x[k])+\beta_{k} p[k-1]
\end{array}
\end{aligned}
$$

Choose $\boldsymbol{\alpha}_{k}$ by line search (to reduce f)
Choose β_{k} such that $p[k]$ is approximately conjugate to $p[1], \ldots, p[k-1]$ (really only makes sense for quadratics, but whatever...)

- Does not achieve a better rate than heavy ball
- Gets around having to know parameters
- Convergence proofs very sketchy (except when f is quadratic) and need elaborate line search to guarantee local convergence.

optimal method

Nesterov's optimal method $(1983,2004)$

$$
\begin{aligned}
x[k+1] & =x[k]+\alpha_{k} p[k] \\
p[k] & =-\nabla f\left(x[k]+\beta_{k}(x[k]-x[k-1])\right)+\beta_{k} p[k-1] \\
& \text { heavy ball with extragradient step }
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{k+1}^{2} & =\left(1-\lambda_{k+1}\right) \lambda_{k}^{2}+\kappa^{-1} \lambda_{k+1} & t_{k} & =\frac{1}{2}\left(1+\sqrt{1+42_{k}^{2}}\right) \\
\beta_{k} & =\frac{\lambda_{k}\left(1-\lambda_{k}\right)}{\lambda_{k}^{2}+\lambda_{k+1}} & \beta_{k} & =\frac{t_{k}-1}{t_{k+1}}
\end{aligned} \beta_{k}=\frac{k-1}{k+2}
$$

FISTA (Beck and Teboulle 2007)

- Recent fixes use line search to find parameters and still achieve optimal rate (modulo log factors)
- Analysis based on estimate sequences, using simple quadratic approximations to f

why "optimal?"

you can't beat the heavy ball convergence rate using only gradients and function evaluations.

$$
f(x)=x_{1}^{2}+\sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}+x_{n}^{2}-2 x_{1}+\mu\|x\|_{2}^{2}
$$

$$
\mu I \succeq \nabla^{2} f(x) \succeq(4+\mu) \prime
$$

$$
\kappa \approx 1+\frac{4}{\mu}
$$

- start at $\mathrm{x}[0]=\mathrm{e}_{1}$.
- after k steps, $x[j]=0$ for $j>k+1$
- norm of the optimal solution on the unseen coordinates tends to $\left(\frac{\sqrt{k}-1}{\sqrt{k}+1}\right)^{2 k}$

not strongly convex $(\ell=0)$

- gradient descent:

$$
\begin{aligned}
& f(x[k])-f_{\star} \leq \frac{2 L\left\|x[0]-x_{\star}\right\|_{2}^{2}}{k+4} \\
& f(x[k])-f_{\star} \leq \frac{4 L\left\|x[0]-x_{\star}\right\|_{2}^{2}}{(k+2)^{2}}
\end{aligned}
$$

- Big difference! To yield $f(x[k])-f_{\star}<\epsilon$
gradient descent $\quad k \geq \frac{2 L\left\|x[0]-x_{\star}\right\|_{2}^{2}}{\epsilon}-4$
optimal method

$$
k \geq \frac{2 L\left\|x[0]-x_{\star}\right\|_{2}}{\sqrt{\epsilon}}-2
$$

- A factor of $\epsilon^{1 / 2}$ difference. e.g. if $\epsilon=0.0001$, need 100 times fewer steps.

can still efficiently find a point where $\|\nabla f(x)\| \leq \epsilon$ in time $O\left(1 / \epsilon^{2}\right)$
n.b. nonconvexity really lets you model anything

$$
f(x)=\sum_{i, j=1}^{d} Q_{i j} x_{i}^{2} x_{j}^{2}
$$

$$
\nabla f(0)=0 \quad \text { for all } Q
$$

checking if 0 is a local minimum in NP-hard

stochastic gradient

minimize $\quad \mathbb{E}_{\xi}[f(x, \xi)]$

Stochastic Gradient Descent:

For each k, sample ξ_{k} and compute $x[k+1]=x[k]-\alpha_{k} \nabla_{x} f\left(x[k], \xi_{k}\right)$

- Robbins and Monro (1950)
- Adaptive Filtering (1960s-1990s)
- Back Propagation in Neural Networks (1980s)
- Online Learning, Stochastic Approximation (2000s)

Support Vector Machines

cancer vs other illness fraud vs normal purchase up-going vs down-going muons

$$
\operatorname{minimize} \quad \sum_{i=1}^{n} \max \left(1-y_{i} x^{\top} z_{i}, 0\right)+\lambda\|x\|_{2}^{2}
$$

$$
\operatorname{minimize}_{x} \sum_{i=1}^{n}\left(\max \left(1-y_{i} x^{\top} z_{i}, 0\right)+\frac{\lambda}{n}\|x\|^{2}\right)
$$

- Step 1: Pick i and compute the sign of the assignment: $\hat{y}_{i}=\operatorname{sign}\left(x^{\top} z_{i}\right)$
- Step 2: If $\hat{y}_{i} \neq y_{i}$,

$$
x \leftarrow\left(1-\frac{\alpha \lambda}{n}\right) x+\alpha y_{i} z_{i}
$$

matrix completion

Entries Specified on set E

minimize $\quad \sum_{(u, v) \in E}\left(X_{u v}-M_{u v}\right)^{2}+\mu\|\mathbf{X}\|_{*}$

Idea: approximate $\quad \mathbf{X} \approx \mathbf{L R}^{T}$

$$
\operatorname{minimize}_{(\mathbf{L}, \mathbf{R})} \sum_{(u, v) \in E}\left\{\left(\mathbf{L}_{u} \mathbf{R}_{v}^{T}-M_{u v}\right)^{2}+\mu_{u}\left\|\mathbf{L}_{u}\right\|_{F}^{2}+\mu_{v}\left\|\mathbf{R}_{v}\right\|_{F}^{2}\right\}
$$

SGD code for matrix completion

- Step 1: Pick (u, v) and compute residual:

$$
e=\left(\mathbf{L}_{u} \mathbf{R}_{v}^{T}-M_{u v}\right)
$$

- Step 2: Take a mixture of current model and corrected model:

$$
\left[\begin{array}{c}
\mathbf{L}_{u} \\
\mathbf{R}_{v}
\end{array}\right] \leftarrow\left[\begin{array}{c}
\left(1-\gamma \mu_{u}\right) \mathbf{L}_{u}-\gamma e \mathbf{R}_{v} \\
\left(1-\gamma \mu_{v}\right) \mathbf{R}_{v}-\gamma e \mathbf{L}_{u}
\end{array}\right]
$$

Leaderboard

nuclear norm
(a.k.a. SVD)

53
JustwithSVD
0.8900
6.45

SGD and BIG Data

 minimize $\mathbb{E}_{\xi}[f(x, \xi)]$For each k, sample ξ_{k} and compute $x[k+1]=x[k]-\alpha_{k} \nabla_{x} f\left(x[k], \xi_{k}\right)$

Ideal for big data analysis:
amazon.com
NETFIX aOOgle

- small, predictable memory footprint
- robustness against noise in data
- rapid learning rates
- one algorithm!

facebook.

match.com h

Why should this work?

Example: Computing the mean minimize $\sum_{k=1}^{4}(x-k)^{2}$

$$
\begin{aligned}
x_{0} & =0 \\
x_{1} & =x_{0}-\left(x_{0}-1\right)=1 \\
x_{2} & =x_{1}-\left(x_{1}-2\right) / 2=1.5 \\
x_{3} & =x_{2}-\left(x_{2}-3\right) / 3=2 \\
x_{4} & =x_{3}-\left(x_{3}-4\right) / 4=2.5 \\
& \text { In general, if we minimize } \\
\text { SGD returns: } & \sum_{k=1}^{N}\left(x-x_{N}=\frac{1}{N} \sum_{k=1}^{N} z_{k}\right.
\end{aligned}
$$

minimize $\sum_{k=0}^{9}\left(\cos \left(\frac{\pi k}{10}\right) x_{1}+\sin \left(\frac{\pi k}{10}\right) x_{2}\right)^{2}=5 x_{1}^{2}+5 x_{2}^{2}$
Stepsize $=1 / 2$

$$
x-\frac{1}{2} \nabla f_{j}(x)=\frac{1}{2}\left[\begin{array}{cc}
1-c_{j} & -s_{j} \\
-s_{j} & 1+c_{j}
\end{array}\right] x
$$

Choose directions in order

Choose a direction uniformly with replacement

convergence of sgd minimize $f(x)$

Assume f is strongly convex with parameter ℓ and has Lipschitz gradients with parameter L

Assume at each iteration we sample $G(x)$, an unbiased estimate of $\nabla f(x)$, independent of x and the past iterates

Assume $\|G(x)\| \leq M$ almost surely.

$$
x[k+1]=x[k]-\alpha_{k} G_{k}(x[k])
$$

$$
\begin{aligned}
\| x[k+1] & -x_{\star} \|_{2}^{2} \\
& =\left\|x[k]-\alpha_{k} G_{k}(x[k])-x_{\star}\right\|^{2} \\
& =\left\|x[k]-x_{\star}\right\|_{2}^{2}-2 \alpha_{k}\left(x[k]-x^{*}\right)^{T} G_{k}(x[k])+\alpha_{k}^{2}\left\|G_{k}(x[k])\right\|^{2} .
\end{aligned}
$$

Define $\quad a_{k}=\mathbb{E}\left[\left\|x[k]-x_{\star}\right\|_{2}^{2}\right]$

$$
a_{k+1} \leq a_{k}-2 \alpha_{k} \mathbb{E}\left[\left(x[k]-x^{*}\right)^{T} G_{k}(x[k])\right]+\alpha_{k}^{2} M^{2}
$$

By iterating expectation:

$$
\begin{aligned}
\mathbb{E}\left[\left(x[k]-x_{\star}\right)^{T} G_{k}(x[k])\right] & =\mathbb{E}_{G_{[k-1]}} \mathbb{E}_{G_{k}}\left[\left(x[k]-x_{\star}\right)^{T} G_{k}(x[k]) \mid G_{[k-1]}\right] \\
& =\mathbb{E}\left[\left(x[k]-x_{\star}\right)^{T} \nabla f(x[k])\right]
\end{aligned}
$$

By strong convexity:

$$
\nabla f(x[k])^{T}\left(x[k]-x_{\star}\right) \geq f(x[k])-f\left(x_{\star}\right)+\frac{\ell}{2}\left\|x_{k}-x^{*}\right\|^{2} \geq \ell\left\|x_{k}-x^{*}\right\|^{2} .
$$

$$
a_{k+1} \leq\left(1-2 \ell \alpha_{k}\right) a_{k}+\alpha_{k}^{2} M^{2}
$$

$$
a_{k+1} \leq\left(1-2 \ell \alpha_{k}\right) a_{k}+\alpha_{k}^{2} M^{2}
$$

Large steps: $\quad \theta>\frac{1}{2 \ell}, \quad \alpha_{k}=\frac{\theta}{k}$

$$
\mathbb{E}\left[\left\|x[k]-x_{\star}\right\|_{2}^{2}\right] \leq \frac{1}{k} \cdot \max \left\{\frac{\theta^{2} M^{2}}{2 \ell \theta-1},\left\|x[0]-x_{\star}\right\|^{2}\right\}
$$

Small steps: $\alpha<\frac{1}{2 \ell} \quad$, constant stepsize

$$
\mathbb{E}\left[\left\|x[k]-x_{\star}\right\|_{2}^{2}\right] \leq(1-2 \ell \alpha)^{k}\left(\left\|x[0]-x_{\star}\right\|^{2}-\frac{\alpha M^{2}}{2 \ell}\right)+\frac{\alpha M^{2}}{2 \ell}
$$

Achieves $1 / k$ rate if run in epochs of diminishing stepsize
$\operatorname{minimize}_{x \in \mathbb{R}^{d}} \quad f(x)=\sum_{j=1}^{N} f_{j}(x)$

Algorithm	Time per iteration	Error after T iterations	Error after items
Newton	$\mathrm{O}\left(\mathrm{d}^{2} \mathrm{~N}+\mathrm{d}^{3}\right)$	$C_{l}{ }^{2}$	$C_{I}{ }^{2}$
Gradient	$\mathrm{O}(\mathrm{dN})$	$C_{G}{ }^{T}$	C_{G}
SGD	$\mathrm{O}(\mathrm{d})$ (or constant)	$\frac{C_{S}}{T}$	$\frac{C_{S}}{N}$

extensions

- non-smooth, non-strongly convex $(1 / \sqrt{ } k)$
- non-convex (converges asymptotically)
- stochastic coordinate descent (special decomposition of f)
- parallelization

projected gradient

Suppose it is easy to solve $\Pi_{\Omega}(y) \longleftarrow$
unique solution
minimize $\quad\|x-y\|$
projected gradient method:

$$
x[k+1] \leftarrow \Pi_{\Omega}\left(x[k]+\alpha_{k} v[k]\right)
$$

$$
x[k+1] \leftarrow \Pi_{\Omega}\left(x[k]+\alpha_{k} v[k]\right)
$$

$$
\text { Key Lemma: }\left\|\Pi_{\Omega}(x)-\Pi_{\Omega}(z)\right\| \leq\|x-z\|
$$

Assume minimizer of $f \in \Omega$
Assume f is strongly convex

$$
\begin{aligned}
\left\|x[k+1]-x_{\star}\right\| & =\| \Pi_{\Omega}\left(x[k]-\alpha \nabla f(x([k]))-\Pi_{\Omega}\left(x_{\star}\right) \|\right. & & \\
& \leq\left\|x[k]-\alpha \nabla f(x[k])-x_{\star}\right\| & & \text { non-expansive } \\
& =\left\|\psi(x[k])-\psi\left(x_{\star}\right)\right\| & & \psi\left(x_{\star}\right)=x_{\star} \\
& \leq \beta\left\|x[k]-x_{\star}\right\| & & \text { contractivity } \\
& \vdots & & \\
& \leq \beta^{k+1}\left\|x[0]-x_{\star}\right\| & & \text { linear rate }
\end{aligned}
$$

minimize $f(x)+P(x)$

$$
f(x)+P(x) \approx f(x[k])+\nabla f(x[k])^{\top}(x-x[k])+\frac{1}{2 \alpha} \| x-x\left[k \|^{2}+P(x)\right.
$$

Define $\operatorname{prox}_{p}(x)=\arg \min _{z} \frac{1}{2}\|x-z\|^{2}+P(z)$

Solving the approximation yields

$$
x[k+1]=\operatorname{prox}_{\alpha_{k} P}\left(x[k]-\alpha_{k} \nabla f(x[k])\right)
$$

proximal mapping

$$
\begin{gathered}
\operatorname{prox}_{P}(x)=\arg \min _{z} \frac{1}{2}\|x-z\|^{2}+P(z) \\
P(x)=\left\{\begin{array}{ll}
0 & x \in \Omega \\
\infty & x \notin \Omega
\end{array} \quad P(x)=\mu\|x\|_{1}\right. \\
\operatorname{prox}_{P}(x)=\Pi_{\Omega}(x) \\
\operatorname{prox}_{P}(x)_{i}= \begin{cases}x_{i}+\mu & x_{i}<-\mu \\
0 & -\mu \leq x_{i} \leq \mu \\
x_{i}-\mu & x_{i}>\mu\end{cases}
\end{gathered}
$$

minimize $f(x)+P(x)$

$$
f(x)+P(x) \approx f(x[k])+\nabla f(x[k])^{\top}(x-x[k])+\frac{1}{2 \alpha}\|x-x[k]\|^{2}+P(x)
$$

Define $\operatorname{prox}_{P}(x)=\arg \min _{z} \frac{1}{2}\|x-z\|^{2}+P(z)$

Solving the approximation yields

$$
x[k+1]=\operatorname{prox}_{\alpha_{k} P}\left(x[k]-\alpha_{k} \nabla f(x[k])\right)
$$

Key Lemma: $\left\|\operatorname{prox}_{p}(x)-\operatorname{prox}_{p}(y)\right\| \leq\|x-y\|$

- immediately implies earlier analysis works for proximal gradient.
- projected gradient is a special case
- inherits rates of convergence from f (i.e., $P=0$)

More variants

- mirror descent: use a general distance

$$
f(x) \approx f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle+\frac{1}{2 \alpha} \mathcal{D}\left(x, x_{0}\right)
$$

- ADMM: combine multiple prox operators for complicated constraints.

$$
x[k+1] \leftarrow x[k]+\alpha_{k} V[k]
$$

gradient descent

Everything here combines, and you get the expected rates out.

