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might be too much to cover in 3 hours

constraints



optimization (for big data”?)

minimize

cost
/

e[ (X, )]

subjectto  x € convy(A)

constraints

o distribution over & is well-behaved
o A is simple (low-cardinality, low-dimension,

low-complexity)

minimize

e [1(x, €)] 4 P(X)

closely related cousin where Pis a simple

convex function



Support Vector Machines

cancer vs other illness
fraud vs normal purchase
up-going vs down-going muons

minimize Y7, max(1 — yx'z,0) + \||x||5

— \

sample average over regularizer to select
observed data and labels low-complexity models




LASSO

Compressed Sensing Sparse Modeling

! {1 _‘.Ua‘,,. ULL Mil Ly i W ks, ll..;x.:.l{.\.:. L. !

reduce number of measurements search for a sparse set of markers
required for signal acquisition for classification

minimize Y7 (alx— b;)?
subjectto ||x||1+ < R



Matrix Completion

r M;; known for black cells
M B M;; unknown for white cells

Rows index features
Columns index examples
Entries specified on set E

e How do you fill in the missing data”

R*
M =| L
KX n KX r rxn
kn entries r(k+n) parameters

minimize Z(W)E,:—(XUV — Mu)? + || Xl



Graph Cuts

R

* [mage Segmentation
* Entity Resolution
* Topic Modeling

Bhusnurmath and Taylor, 2008

minimize >, yee 1Xu — Xl

subjectto x,€[0,1] ifueV
X, =0 1facA
xs=1 1tbeB




optimization

COSt
y—

minimize  f(x
subjectto xe€ O

™

might be too much to cover in 3 hours

constraints

e optimization is ubiquitous
e optimization is modular
e optimization is declarative



Xk + 1| < x|k + axVIK

Today: |gradient descent

conjugate/ stochastic/ orojected/
accelerated sub proximal

mix and match




i tomorrow: duality

w m)}n f(X) = max 9(z2)

S 4 min max L£(Xx, Z) = max min L(X, 2)

— X Z Z X

find problems that always lower bound the
optimal value.

outs problem in NP N coNP

information from one problem informs the other

some times easier to solve one than the other

basis of many proof technigues in data science
(and tons of other areas too!)



what we'll be skipping...

2nd order/newton/BFGS
interior point methods/ellipsoid methods

active set methods, manifold identification

branch and bound \

Integrating combinatorial thinking

derivative-free optimization

soup of heuristics (simulated annealing,
genetic algorithms, ...)

modeling



optimality conditions

minimize  f(x)
subjectto xe R”

Search for Vf(x) =0

e [urns a geometric problem into an algebraic
problem: solve for the point where the gradient
vanishes.

* |s necessary for optimality (sufficient for
convex, smooth 1)




Xk + 1] + XK + axV|K Assume there exits an X, € D
| where Vi(x,) =0

gradient descent

Suppose the map ¥(X) = x — aV{(x)
IS contractive on D

l9(x) = (2)|| < Bllx— 2| for some 0< 8 <1

run gradient descent starting at x|0] € D
| X[k + 1] — X || = || X|K] — aVXK]) — x|
h(X[K]) — (x| V(X) = Xa

< BlIX[K — X|| contractivity

< BF1x]0] — x, || linear rate



e |f fis 2x differentiable, contractivity means fis
convex on D

Hiw(x+ tAx) — ()| < BlAX]|  for all t>0

lim 1[ap(x 4+ tAX) — h(x)|| = Hm |[Ax — &(VAx+ tAX) — V)|

t—Q0t t

= [[Ax — aVZfx)Ax| < Bl|AX|

N

|1=aVEx)|l < B

01 < V2 f(x) < 2]

— T

cConvex Lipschitz gradients




convexity

fitx+ (1 —Hz) < t(x) + (1 — HA(x)

(2) > f(x) + V) (- x) +5] 2= x|
strong convexity

Lipschitz gradients

. L S 1 IVi(x) = VI(2)| < Ll|x— 2|
£~ (2) < fX) + V) (2= X) + §llz— xI°
condition number of Hessian follows from Taylor's theorem
2 2 \"
With step size @ = 72r , Ik = x| < (1= 25 ) K0~ x|

2k
(XK = o < L(1=335) " [1X(0] = x|



Note on convergence rate

K
. . 0 B 2 B
With step size @ = 727 , Ik =l < (1= ) 1x0] = x|

* |f you don’t know the exact stepsize, can we achieve the

rate”

e £xact line search: at each iteration, find the « that
minimizes f(x+od).

* Backtracking line search: Reduce & by constant
multiple until the function value sufficiently decreases.

* Both achieve linear rate of convergence.

* More sophisticated line searches often used in practice,
but none improve over this rate in the worst case.









acceleration/multistep

gradient method akin to
an ODE

to prevent oscillation, add
a second order term

X[k + 1] = XK — aVAX[K)
= —Vi(x)

X = —bx— VI(x)
xlk+ 1] = x|K] — aVI(x[K]) + B(X]K] — x|k — 1])

x|k + 1] = x[Kk] + ap|K]
plkl = =VI(x[k]) + Splk — 1]

heavy ball method (constant «,f)

when fis quadratic, this is
Chebyshevs iterative method









analysis

x|k + 1] = X[k| + ap|X|
plk = —VAXK) + Bplk— 1]

heavy ball method (constant «,f)

x[K] — X, }

Analyze by defining a composite error vector:  wy := {x[k— 1] — x

Then Wik + 1] = Bwlk] + o(||wlK]]|)

where B :=

—aVef(x,) + (1 + B)I —5/}
/ 0



analysis (cont.)
Wik + 1] = Bwlk] + of||w[K]||)

B has the same eigenvalues as {_QA i /(1 +h) _05/}

A = diag(A1, Ao, ..., Ap)

where A are the eigenvalues of V4f(x,)

Choose &, to explicitly minimize the max eigenvalue of B to obtain

“:%(1+11/¢E)2 5:<1 \/E2+1>2'

Leads to linear convergence for ||X|k] — X«||2 with rate approximately

(1~ 7+)




about those rates...

2
Best steepest descent: Linear rate approx (1 K+ 1)
Heavy-ball: Linear rate approx 1 2
VK41

Big difference! To yield ||X[k] — X«||2 < €||X[0] — X, ||2

k> — log( /€) gradient descent

K>

|5

log( /€) heavy ball

A factor of k2 difference. e.g. if k=100, need 10 times
fewer steps.



conjugate gradients

X[k + 1] = x[K] + axplK]
plk] = =VHXIK]) + Biplk — 1]

Choose a« by line search (to reduce f)

Choose B« such that p[k] is approximately conjugate to
p[1], ..., p[k-1] (really only makes sense for quadratics,

but whatever...)

* Does not achieve a better rate than heavy ball
* (Gets around having to know parameters

* Convergence proofs very sketchy (except when fis
quadratic) and need elaborate line search to guarantee

local convergence.



optimal method

~ —

Nesterov’s optimal method (1983,2004) Qg
X[k + 1] = x[K] + axplK]

PlK| = —VIXK] + Br(x[K] — x|k = 1])) + Brplk — 1]
heavy ball with extragradient step

1+\/1+41%)

Mot = (1= M)A+ 5 D =3
g = 21— AW 5 = 5 k=
A2 4 Akp K T k42

FISTA (Beck and Teboulle 2007)

* Recent fixes use line search to find parameters and still
achieve optimal rate (modulo log factors)

* Analysis based on estimate sequences, using simple
quadratic approximations to f



why “optimal?”

you can't beat the heavy ball convergence rate using
only gradients and function evaluations.

X2+Z — Xip1)” + X5 — 2x1 + W] X||5

4
ul=Vefix) = (4 + u)l mz1+p

e start at x[0] = eq.
e after k steps, x|[j] = O for |>k+1

e norm of the optimal solution on the unseen
coordinates tends to (¥£)*




not strongly convex (¢=0)

_ 2L)X0] — x|

gradient descent: f(X[K]) — 1, < A
AL||X[0] — X, |3
optimal method: (XIK]) — f < H(k[i 572 15

Big difference! To yield f(x[k]) — fi < €
_ 2L]X(0] ~ %[

gradient descent K
€

_ 20 — x|l
R

optimal method K

A factor of €12 difference. e.g. if €=0.0001, need 100
times fewer steps.



V{ \ | nonconvexity

can still efficiently find a point where
M IVAX)| < e intime O(1/€)

I\
‘not convex”

n.b. nonconvexity really lets you model anything

f(X) =

)

Q//X/ZX/Z VA0) =0 forall Q

d
1

checking if O is a local minimum in NP-hard



stochastic gradient

minimize  E¢[f(x, )]

Stochastic Gradient Descent:

For each k, sample €« and compute x|k + 1] = x|k] — axVx(X|K], k)

 Robbins and Monro (1950)

* Adaptive Filtering (1960s-1990s)

* Back Propagation in Neural Networks (1980s)

* Online Learning, Stochastic Approximation (2000s)




Support Vector Machines

cancer vs other illness
fraud vs normal purchase
Up-going vs down-going muons

. ¥

minimizexz (max(1 — yix'z,0) + %HXHZ)
—

« Step 1: Pick i and compute the sign of the assignment: | y; = sign(XTZ,-)

. A
+ Step2:If £y, | X (1= 2)Xx+ayz



matrix completion

R

|
—

M

KXn KXTr rxXn

Entries Specified on set E

|[dea: approximate X ~ LR"

minimizemy > { (LR) — Mu)? + [ Lol + 1RV}
(u,v)eE



SGD code for matrix completion

R

|
—

M

K X n K Xr rxXn

minimize gy » {(LUR§ — M) + bylILullE + uVHRvH%}
(u,v)eE

« Step 1: Pick (u,v) and compute residual:
e = (LuRZ/- — MUV)

e Step 2: Take a mixture of current model and corrected model:

{ Ly } — { (1 —ypy)Ly —veRy
Ry (1 —~yu, )Ry —veLy



Mixture of hundreds
of models,
iIncluding nuclear
NnOorm

N -

nuclear norm
(a.k.a. SVD)

N




SGD and BIG Data

minimize  E¢[f(x, )]

For each k, sample €& and compute X[k + 1] = x[k| — axVxf(x[K], &)

Ideal for big data analysis: » small, predictable memory footprint
* robustness against noise in data
* rapid learning rates
* one algorithm!

Why should this work?



Example: Computing the mean
minimize Y (x— K)°

k=1
Xo =0 Stepsize = 1/2k
X1=Xp—(Xp—1) =1

Xo =X1 — (X1 —2)/2=1.5

X3 =Xo — (Xo — 3)/3 =2

X4 =Xz — (X3 —4)/4 =25

. e 2
In general, if we minimize E (X — )
k=1

]
SGD returns: XN = — Z Zk



9
minimize Z (COS ”—g) Xq1 + sin (”—g) X2) — SX% + 5X§

k=0
| 1 B 1 1 — C/' —Sj
Stepsize = 1/2 X §V’§(X) — 5 { —s;  1+¢ } X
Choose a
direction
.Chqose | uniformly with
directions In

replacement
order




convergence of sgd

minimize  f(x)

Assume fis strongly convex with parameter £ and has
Lipschitz gradients with parameter L

Assume at each iteration we sample G(x), an unbiased
estimate of Vi(x), independent of x and the past iterates

Assume ||G(x)|| £ M almost surely.

Xk + 1] = X|k| — axGr(Xx]K])




XK+ 1] = X3
— [|x{K] — akGe(x[K]) — .|
— [1x{K] — x, 13 — 2ak(xIK] — x*)T Gu(XIK]) + a2]| Gk(X(K) 1>

Define  ax = E [||x[K] — X||5]

A1 < ax — 20 E[(X[K — X)) Gi(X[K])] + a2 M.

By Iiterating expectation:
E[(X[K] — x.)' Gk(x[K])] = Egy,_, Eg,[(X[K — x.) " Gu(x{K)| Gre—1]
= E[(x[K — x.) "VA(x{K])]

By strong convexity: /
VAXK) (XK = ) = AXK) = fx) + 5 lxe = X717 = lxe— X1

ak_|_1 < (1 — 2604/()3/(_'_ OZKMZ




Q1 < (1= 20a)ak + oM

Large steps: 6> - i
Z — Q) = —
J9¢ SIeP “ o0 0 KTk
( \
1 s
_ 21 « _ . B 2
B = 8] < g max{ g 40— %
1 .
Small steps: a< 57 , constant stepsize

E[|x{K = x.I2] < (1 — 2¢a)" (\X[O] = X|I?

20 20

Achieves 1/k rate if run in epochs of
diminishing stepsize

onZ) oM



MINIMIZE, cRrd

f(x) =) H(x)

=1
. Time per Error after T | Error after
Algorithm . . . . :
Iteration Iterations items
2 3 2! 2
Newton O(d2N+d?3) C, C'y
Gradient O(dN) Cs' Co
O(d) Cs Cs
SGD I )
(or constant) T N




extensions

non-smooth, non-strongly convex (1//k)
non-convex (converges asymptotically)

stochastic coordinate descent (special
decomposition of f)

parallelization



projected gradient
SMOooth
)

minimize  f(x
subjectto xe€ O

Suppose it is easy to solve

minimize || x— Yy
11 .
Q(.y)( - subjectto xe Q)
unigue solution

convex

projected gradient method:
Xk—+ 1| « Il (X|K] + axV]K])



Xk+ 1] < I (X[ K] + axVIK])

Key Lemma: [[Ila(X) — o (2)]| < [[x— 2]

Assume minimizer of f €Q

Assume fis strongly convex

Xk + 1] = x| = [[Ha(X[K] — aVAX([K])) — o (X)|]
< ||XIK] — aVI(X[K]) — X|| non-expansive
= [[¥(XK]) — P (X V(X)) = Xe
< Blix[A] = x| contractivity

< BN|X[0] — x| linear rate



minimize  f(x) + P(x)

f(x) + P(X) = f(xK]) + VAXK]) " (x = x[K]) + 55 [Ix = xK][|* + P(x)

Define  proxp(x) = arg min Sx—z||* + P(2)

Solving the . B
approximation yields Xk+1] = meakP(X[k] axVI(XK|))




A(x)

Xi+Uu Xi<—U
proxp(Xx) = I (X) proxp(Xx); =< 0 —u< X<y

oroximal mapping

proxp(X) = arg min 5 || x — z||? + P(2)
Z

(O x e Q)
P(x) = pl|x]|

<\oo X & Q)




minimize  f(x) + P(x)

f(x) + P(X) = f(xK]) + VAXK]) " (x = x[K]) + 55 [Ix = xK][|* + P(x)

Define  proxp(x) = arg min Sx—z||* + P(2)

Solving the . B
approximation yields Xk+1] = meakP(X[k] axVI(Xlk]|))

Key Lemma: || proxp(x) — proxp(y)|| < [[x — ¥

* immediately implies earlier analysis works for proximal
gradient.

* projected gradient is a special case
* inherits rates of convergence from f (i.e., P=0)



More variants

* mirror descent: use a general dista_]nce
f(x) ~ f(xg) + (VI(Xx0), X — Xo) - ZQD(X, X0)

« ADMM: combine multiple prox operators for
complicated constraints.



conjugate/
accelerated

Xk + 1| < x|k + axVIK

gradient descent

stochastic/
sub

orojected/
proximal

mix and match

Everything here combines, and you get the

expected rates out.




