
Optimization
Benjamin Recht

University of California, Berkeley

Stephen Wright
University of Wisconsin-Madison

optimization

NJOJNJ[F G(Y)
TVCKFDU UP Y ∈ û

cost

constraints

might be too much to cover in 3 hours

optimization (for big data?)

• distribution over ξ is well-behaved
• is simple (low-cardinality, low-dimension,

low-complexity)

cost

constraints

NJOJNJ[F Eξ[G(Y, ξ)]
TVCKFDU UP Y ∈ conv(A)

A

NJOJNJ[F Eξ[G(Y, ξ)] + 1(Y)

closely related cousin where P is a simple
convex function

Support Vector Machines

+

+

+
+

+

+

+

+

+

-
-

-

- -

-

-

--

-

-

- cancer vs other illness
fraud vs normal purchase

up-going vs down-going muons

NJOJNJ[F
∑O

J=�max(�− ZJY5[J, �) + λ‖Y‖��

sample average over
observed data and labels

regularizer to select
low-complexity models

LASSO

NJOJNJ[F
∑O

J=�(B5J Y− CJ)�

TVCKFDU UP ‖Y‖� ≤ 3

reduce number of measurements
required for signal acquisition

pixels large
wavelet
coefficients

wideband
signal
samples

large
Gabor
coefficients

time

fr
e
q
u
e
n
c
y

Compressed Sensing

search for a sparse set of markers
for classification

Sparse Modeling

Matrix Completion
Mij known for black cells

Mij unknown for white cells
Rows index features

Columns index examples
Entries specified on set E

M =

M L
R*

k x r r x nk x n
kn entries r(k+n) parameters

=

minimize
�

(V,W)�&(9VW �.VW)� + ç�X��

• How do you fill in the missing data?

Graph Cuts

• Image Segmentation
• Entity Resolution
• Topic Modeling

Bhusnurmath and Taylor, 2008

NJOJNJ[F
∑

(V,W)∈& |YV − YW|
TVCKFDU UP YV ∈ [�, �] JG V ∈ 7

YB = � JG B ∈ "
YC = � JG C ∈ #

optimization

• optimization is ubiquitous
• optimization is modular
• optimization is declarative

NJOJNJ[F G(Y)
TVCKFDU UP Y ∈ û

cost

constraints

might be too much to cover in 3 hours

Y[L+ �]← Y[L] + αLW[L]

gradient descent

conjugate/
accelerated

stochastic/
sub

projected/
proximal

mix and match

Today:

tomorrow: duality

• find problems that always lower bound the
optimal value.

• puts problem in NP ∩ coNP
• information from one problem informs the other
• some times easier to solve one than the other
• basis of many proof techniques in data science

(and tons of other areas too!)

min
Y

G(Y) = max
[

H([)

min
Y

max
[

L(Y, [) = max
[

min
Y

L(Y, [)

what we’ll be skipping...
• 2nd order/newton/BFGS

• interior point methods/ellipsoid methods

• active set methods, manifold identification

• branch and bound

• integrating combinatorial thinking

• derivative-free optimization

• soup of heuristics (simulated annealing,
genetic algorithms, ...)

• modeling

optimality conditions

• Turns a geometric problem into an algebraic
problem: solve for the point where the gradient
vanishes.

• Is necessary for optimality (sufficient for
convex, smooth f)

NJOJNJ[F G(Y)
TVCKFDU UP Y � RO

�G(Y) = �Search for

���
� �L+��Y[�] � Y��

Y[L+ �]← Y[L] + αLW[L]

gradient descent

Y[�] � Drun gradient descent starting at

�(Y�) = Y�

contractivity

linear rate

�G(Y�) = �
Y� � DAssume there exits an

where

Suppose the map ψ(Y) = Y− α∇G(Y)
is contractive on D

��(Y) � �([)� � ��Y � [� � � � < �for some

�Y[L + �] � Y��= �Y[L] � ��G(Y[L]) � Y��
= ��(Y[L]) � �(Y�)�
� ��Y[L] � Y��

�* � ���G(Y)� � �

lim
U��+

�
U ��(Y + U�Y) � �(Y)� = lim

U��+
��Y � �

U (�G(Y + U�Y) � �G(Y))�

= ��Y � ���G(Y)�Y�

���
� * � ��G(Y) � �+�

� *

� ���Y�

convex Lipschitz gradients

• If f is 2x differentiable, contractivity means f is
convex on D

�
U ��(Y + U�Y) � �(Y)� � ���Y� for all t>0

strong convexity
+ !

�‖[− Y‖�

convexity
G(UY + (� � U)[) � UG(Y) + (� � U)G(Y)

G([) � G(Y) + �G(Y)5([� Y)

Lipschitz gradients
��G(Y) � �G([)� � -�Y � [�

G([) � G(Y) + �G(Y)5([� Y) + -
��[� Y��

follows from Taylor’s theorem

.,With step size α = �
!+- �Y[L] � Y�� �

�
� � �

� + �

�L

�Y[�] � Y��

G(Y[L]) � G� � -
�
� � �

�+�

��L
�Y[�] � Y���

condition number of Hessian

� =
-
�

� �

Note on convergence rate

• If you don’t know the exact stepsize, can we achieve the
rate?
• Exact line search: at each iteration, find the α that

minimizes f(x+αd).

• Backtracking line search: Reduce α by constant
multiple until the function value sufficiently decreases.

• Both achieve linear rate of convergence.

• More sophisticated line searches often used in practice,
but none improve over this rate in the worst case.

With step size α = �
!+- , .�Y[L] � Y�� �

�
� � �

� + �

�L

�Y[�] � Y��

acceleration/multistep

Y[L + �] = Y[L] � ��G(Y[L]) + �(Y[L] � Y[L � �])

heavy ball method (constant α,β)

when f is quadratic, this is
Chebyshev’s iterative method

Y[L + �] = Y[L] + �Q[L]
Q[L] = ��G(Y[L]) + �Q[L � �]

Y[L + �] = Y[L] � ��G(Y[L])
Ẏ = ��G(Y)

Ÿ = �CẎ � �G(Y)

gradient method akin to
an ODE

to prevent oscillation, add
a second order term

analysis

XL :=

�
Y[L] � Y�

Y[L� �] � Y�

�

X[L+ �] = #X[L] + P(�X[L]�)

:=

�
����G(Y�) + (� + �)* ��*

* �

�

Analyze by defining a composite error vector:

Then

where

heavy ball method (constant α,β)

Y[L + �] = Y[L] + �Q[L]
Q[L] = ��G(Y[L]) + �Q[L � �]

Leads to linear convergence for with rate approximately

analysis (cont.)
�
��� + (� + �)* ��*

* �

�

� = diag(��, ��, . . . , �O)

� =
�
-

�
(� + �/

�
�)�

� =

�
� � ��

� + �

��

.

�
� � ��

� + �

�
�Y[L] � Y���

B has the same eigenvalues as

��G(Y�)where λi are the eigenvalues of

Choose α,β to explicitly minimize the max eigenvalue of B to obtain

X[L+ �] = #X[L] + P(�X[L]�)

about those rates...
• Best steepest descent: Linear rate approx
• Heavy-ball: Linear rate approx

• Big difference! To yield

• A factor of κ1/2 difference. e.g. if κ=100, need 10 times
fewer steps.

�
� � ��

� + �

�

�
� � �

� + �

�

�Y[L] � Y��� < ��Y[�] � Y���

L � �

�
log(�/�)

L �
�

�

�
log(�/�)

gradient descent

heavy ball

conjugate gradients

• Does not achieve a better rate than heavy ball
• Gets around having to know parameters
• Convergence proofs very sketchy (except when f is

quadratic) and need elaborate line search to guarantee
local convergence.

Y[L + �] = Y[L] + �LQ[L]
Q[L] = ��G(Y[L]) + �LQ[L � �]

Choose αk by line search (to reduce f)

Choose βk such that p[k] is approximately conjugate to
p[1], ..., p[k-1] (really only makes sense for quadratics,
but whatever...)

optimal method
Nesterov’s optimal method (1983,2004)

FISTA (Beck and Teboulle 2007)

Y[L + �] = Y[L] + �LQ[L]
Q[L] = ��G(Y[L] + �L(Y[L] � Y[L � �])) + �LQ[L � �]

heavy ball with extragradient step

��
L+� = (� � �L+�)�

�
L + ����L+�

�L =
�L(� � �L)

��
L + �L+�

UL = �
�

�
� +

�
� + �U�L

�

�L =
UL � �
UL+�

�L =
L � �
L + �

• Recent fixes use line search to find parameters and still
achieve optimal rate (modulo log factors)

• Analysis based on estimate sequences, using simple
quadratic approximations to f

�L =
�
-

why “optimal?”

• start at x[0] = e1.
• after k steps, x[j] = 0 for j>k+1

• norm of the optimal solution on the unseen
coordinates tends to

G(Y) = Y�� +
O���

J=�

(YJ � YJ+�)
� + Y�O � �Y� + ç�Y���

you can’t beat the heavy ball convergence rate using
only gradients and function evaluations.

(
�

����
�+�)�L

ç* � ��G(Y) � (� + ç)* � � � +
�
ç

not strongly convex (l=0)
• gradient descent:

• optimal method:

• Big difference! To yield

• A factor of ϵ1/2 difference. e.g. if ϵ=0.0001, need 100
times fewer steps.

gradient descent

optimal method

G(Y[L]) � G� � �-�Y[�] � Y����
L + �

G(Y[L]) � G� � �-�Y[�] � Y����
(L + �)�

G(Y[L]) � G� < �

L � �-�Y[�] � Y����
�

� �

L � �-�Y[�] � Y����
�

� �

nonconvexity

“not convex”

can still efficiently find a point where
��G(Y)� � � in time 0(�/��)

checking if 0 is a local minimum in NP-hard

�G(�) = � for all QG(Y) =
E�

J,K=�

2JKY�J Y�K

n.b. nonconvexity really lets you model anything`

stochastic gradient

• Robbins and Monro (1950)
• Adaptive Filtering (1960s-1990s)
• Back Propagation in Neural Networks (1980s)
• Online Learning, Stochastic Approximation (2000s)

NJOJNJ[F E�[G(Y, �)]

For each k, sample ξk and compute

Stochastic Gradient Descent:

Y[L + �] = Y[L] � �L�YG(Y[L], �L)

Support Vector Machines

+

+

+
+

+

+

+

+

+

-
-

-

- -

-

-

--

-

-

- cancer vs other illness
fraud vs normal purchase

up-going vs down-going muons

NJOJNJ[F
∑O

J=�max(�− ZJY5[J, �) + λ‖Y‖��

NJOJNJ[FY

O�

J=�

�
max(� � ZJY5[J, �) + �

O �Y��
�

• Step 1: Pick i and compute the sign of the assignment:

• Step 2: If

 ẐJ = sign(Y5[J)

ẐJ �= ZJ Y � (� � ��
O)Y + �ZJ[J,

matrix completion

r x n

=M L
R*

k x rk x n

Entries Specified on set E

X ⇡ LRTIdea: approximate

NJOJNJ[F
�

(V,W)�&(9VW �.VW)� + ç�X��

NJOJNJ[F(L,R)

�

(V,W)�&

�
(LVR

5
W �.VW)

� + çV�LV��' + çW�RW��'
�

SGD code for matrix completion

• Step 1: Pick (u,v) and compute residual:

• Step 2: Take a mixture of current model and corrected model:

r x n

=M L
R*

k x rk x n

F = (LVR
5
W �.VW)

�
LV
RW

�
�

�
(� � �çV)LV � �FRW
(� � �çW)RW � �FLV

�

NJOJNJ[F(L,R)

�

(V,W)�&

�
(LVR

5
W �.VW)

� + çV�LV��' + çW�RW��'
�

… … … …

nuclear norm
(a.k.a. SVD)

Mixture of hundreds
of models,

including nuclear
norm

SGD and BIG Data

• small, predictable memory footprint
• robustness against noise in data
• rapid learning rates
• one algorithm!

Ideal for big data analysis:

For each k, sample ξk and compute

NJOJNJ[F E�[G(Y, �)]

Y[L + �] = Y[L] � �L�YG(Y[L], �L)

Why should this work?

Example: Computing the mean

Stepsize = 1/2k

In general, if we minimize

SGD returns:

NJOJNJ[F
��

L=�

(Y � L)�

Y� = �
Y� = Y� � (Y� � �) = �
Y� = Y� � (Y� � �)/� = �.�
Y� = Y� � (Y� � �)/� = �
Y� = Y� � (Y� � �)/� = �.�

/�

L=�

(Y� [L)�

Y/ =
�
/

/�

L=�

[L

1

1
0

7
0

6

1
2

3

4

5

6

7
8

Choose a
direction

uniformly with
replacement

Choose
directions in

order

Stepsize = 1/2

NJOJNJ[F
��

L=�

�
cos

� èL
��

�
Y� + sin

� èL
��

�
Y�

��
= �Y�� + �Y��

Y � �
�

�GK(Y) =
�
�

�
� � DK �TK
�TK � + DK

�
Y

convergence of sgd

Assume f is strongly convex with parameter l and has
Lipschitz gradients with parameter L

Assume ||G(x)|| ≤ M almost surely.

Assume at each iteration we sample G(x), an unbiased
estimate of ∇f(x), independent of x and the past iterates

NJOJNJ[F G(Y)

Y[L+ �] = Y[L] � �L(L(Y[L])

BL+� � BL � ��LE[(Y[L] � Y�)5(L(Y[L])] + ��
L.

�.

E[(Y[L] � Y�)
5(L(Y[L])] = E([L��]E(L [(Y[L] � Y�)

5(L(Y[L])|([L��]]

= E[(Y[L] � Y�)
5�G(Y[L])]

�G(Y[L])5(Y[L] � Y�) � G(Y[L]) � G(Y�) +
�

�
�YL � Y��� � ��YL � Y���.

�Y[L+ �] � Y����
= �Y[L] � �L(L(Y[L]) � Y���

= �Y[L] � Y���� � ��L(Y[L] � Y�)5(L(Y[L]) + ��
L�(L(Y[L])��.

BL = E
�
�Y[L] � Y����

�
Define

By iterating expectation:

By strong convexity:

BL+� � (� � ���L)BL + ��
L.

�

E[�Y[L] � Y����] � �
L

· max

�
��.�

��� � �
, �Y[�] � Y���

�

BL+� � (� � ���L)BL + ��
L.

�

�L =
�

L� >
�
��

Large steps: ,

� <
�
��

constant stepsizeSmall steps: ,

E[�Y[L] � Y����] � (� � ���)L
�

�Y[�] � Y��� � �.�

��

�
+

�.�

��

Achieves 1/k rate if run in epochs of
diminishing stepsize

Algorithm Time per
iteration

Error after T
iterations

Error after N
items

Newton O(d2N+d3)

Gradient O(dN)

SGD O(d)
(or constant)

CS

N

CG

CI
2

NJOJNJ[FY�RE G(Y) =
/�

K=�

GK(Y)

$*
�5

$(5

$4
5

extensions
• non-smooth, non-strongly convex (1/√k)

• non-convex (converges asymptotically)

• stochastic coordinate descent (special
decomposition of f)

• parallelization

projected gradient
NJOJNJ[F G(Y)
TVCKFDU UP Y ∈ û

smooth

convex

NJOJNJ[F ‖Y− Z‖
TVCKFDU UP Y ∈ ûΠû(Z)

unique solution

Suppose it is easy to solve

 Y[L+ �]← Πû (Y[L] + αLW[L])
projected gradient method:

Assume minimizer of f ∊Ω

���
� �L+��Y[�] � Y��

�Y[L + �] � Y��

= ��(Y[L]) � �(Y�)�
� ��Y[L] � Y��

= ��û(Y[L] � ��G(Y([L])) � �û(Y�)�
� �Y[L] � ��G(Y[L]) � Y��

Assume f is strongly convex

‖Πû(Y)−Πû([)‖ ≤ ‖Y− [‖Key Lemma:

Y[L+ �]← Πû (Y[L] + αLW[L])

�(Y�) = Y�

contractivity

linear rate

non-expansive

NJOJNJ[F G(Y) + 1(Y)

Y[L+ �] = proxαL1(Y[L]− αL∇G(Y[L]))Solving the
approximation yields

G(Y) + 1(Y) ≈ G(Y[L]) +∇G(Y[L])5(Y− Y[L]) + �
�α‖Y− Y[L]‖� + 1(Y)

prox1(Y) = arg min
[

�
��Y � [�� + 1([)Define

proximal mapping

1(Y) =

�
� Y � û
� Y �� û

prox1(Y) = �û(Y) prox1(Y)J =

�
��

��

YJ + ç YJ < �ç
� �ç � YJ � ç
YJ � ç YJ > ç

1(Y) = ç�Y��

prox1(Y) = arg min
[

�
��Y � [�� + 1([)

NJOJNJ[F G(Y) + 1(Y)

�prox1(Y) � prox1(Z)� � �Y � Z�Key Lemma:

Y[L+ �] = proxαL1(Y[L]− αL∇G(Y[L]))Solving the
approximation yields

G(Y) + 1(Y) ≈ G(Y[L]) +∇G(Y[L])5(Y− Y[L]) + �
�α‖Y− Y[L]‖� + 1(Y)

prox1(Y) = arg min
[

�
��Y � [�� + 1([)Define

• immediately implies earlier analysis works for proximal
gradient.

• projected gradient is a special case
• inherits rates of convergence from f (i.e., P=0)

More variants
• mirror descent: use a general distance

• ADMM: combine multiple prox operators for
complicated constraints.

G(Y) � G(Y�) + ��G(Y�), Y � Y�� +
�
��

D(Y, Y�)

Y[L+ �]← Y[L] + αLW[L]

gradient descent

conjugate/
accelerated

stochastic/
sub

projected/
proximal

mix and match

Everything here combines, and you get the
expected rates out.

