
Randomized Numerical Linear Algebra
(RandNLA): Past, Present, and Future,

cont.

To access our web pages:

Drineas

Michael Mahoney

 Focus: sketching matrices (i) by sampling rows/columns and (ii) via “random projections.”

 Machinery: (i) Approximating matrix multiplication and (ii) Decoupling “randomization”
from “matrix perturbation.”

 Overview of the tutorial:

 (i) Motivation: computational efficiency, interpretability

 (ii) Approximating matrix multiplication
 (iii) From matrix multiplication to CX/CUR factorizations and the SVD

 (iv) Improvements and recent progress

 (v) Algorithmic approaches to least-squares problems

 (vi) Statistical perspectives on least-squares algorithms

 (vii) Theory and practice of: extending these ideas to kernels and SPSD matrices
 (viii) Theory and practice of: implementing these ideas in large-scale settings

 Roadmap of the tutorial

Why randomized matrix algorithms?
•  Faster algorithms: worst-case theory and/or numerical code

•  Simpler algorithms: easier to analyze and reason about

•  More-interpretable output: useful if analyst time is expensive

•  Implicit regularization properties: and more robust output

•  Exploit modern computer architectures: by reorganizing steps of alg

•  Massive data: matrices that they can be stored only in slow
secondary memory devices or even not at all

Already a big success … but why do they work?

Already a big success ...

Avron, Maymounkov, and Toledo 2010:
•  “Randomization is arguably the most exciting and innovative
idea to have hit linear algebra in a long time”

• Blendenpik "beats Lapack's direct dense least-squares
solver by a large margin on essentially any dense tall matrix”

•  Empirical results "show the potential of random sampling
algorithms and suggest that random projection algorithms
should be incorporated into future versions of Lapack."

Already a big success … but why do they work?

Already a big success ...
•  Better worse-case theory: for L2 regression, L1 regression, low-
rank matrix approximation, column subset selection, Nystrom
approximation, etc.

•  Implementations “beat” Lapack: for L2 regression on nearly any non-
tiny tall dense matrix

•  Low-rank implementations “better”: in terms of running time and/or
robustness for dense/sparse scientific computing matrices

•  Parallel and distributed implementations: exploit modern computer
architectures to do computations on up to a tera-byte of data

•  Genetics, astronomy, etc.: applications to choose good SNPs,
wavelengths, etc. for genotype inference, galaxy identification, etc.

Already a big success … but why do they work?

A typical result: (1+ε)-CX/CUR

Theorem: Let TSVD,k time* be the time to compute an exact or approximate
rank-k approximation to the SVD (e.g., with a random projection).
Then, given an m-by-n matrix A, there exists** an algorithm that runs
in O(TSVD,k) time that picks
 at most roughly 3200*** (k/ε2****) log (k/ε) columns of A

such that with probability at least 0.9*****

 || A – PCA||F ≤ (1+ε) || A – Ak ||F

*Isn’t that too expensive?

**What is it?

***Isn’t 3200 to big? Why do you need 3200?

****Isn’t 1/ε2 too bad for ε≅ 10-15 ?

*****Isn’t 0.1 too large a failure probability?

Why do these algorithms work?

They decouple randomness from vector space structure.

Today, explain this in the context of.
•  Least squares regression -> CX/CUR approximation

•  CSSP -> Random Projections parameterized more flexibly

•  Nystrom approximation of SPSD matrices

Permits finer control in applying the randomization.
•  Much better worst-case theory

•  Easier to map to ML and statistical ideas

•  Easier to parameterize problems in ways that are more natural to
numerical analysts, scientific computers, and software developers

The devil is in the details ...
Decouple the randomization from the linear algebra:
•  originally within the analysis, then made explicit

•  permits much finer control in application of randomization

Importance of statistical leverage scores:
•  historically used in regression diagnostics to identify outliers

•  best random sampling algorithms use them as importance sampling
distribution
•  best random projection algorithms go to a random basis where they
are roughly uniform

Couple with domain expertise—to get best results!

Statistical leverage, coherence, etc.

Definition: Given a “tall” n x d matrix A, i.e., with n > d, let U
be any n x d orthogonal basis for span(A), & let the d-vector U(i)
be the ith row of U. Then:

•  the statistical leverage scores are λi = ||U(i)||2
2 , for i ε {1,…,n}

•  the coherence is γ = maxi ε {1,…,n} λi

•  the (i,j)-cross-leverage scores are U(i)
T U(j) = <U(i) ,U(j)>

Note: There are extension of this to:

•  “fat” matrices A, with n, d are large and low-rank parameter k

•  L1 and other p-norms

Mahoney and Drineas (2009, PNAS); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012, ICML)

History of Randomized Matrix Algs

How to “bridge the gap”?
•  decouple randomization from linear algebra

•  importance of statistical leverage scores!

Theoretical origins
•  theoretical computer
science, convex analysis, etc.

•  Johnson-Lindenstrauss

•  Additive-error algs

•  Good worst-case analysis

•  No statistical analysis

Practical applications
•  NLA, ML, statistics, data
analysis, genetics, etc

•  Fast JL transform

•  Relative-error algs

•  Numerically-stable algs

•  Good statistical properties

Applications in: Astronomy

CMB Surveys (pixels)
  1990 COBE 1000
  2000 Boomerang 10,000
  2002 CBI 50,000
  2003 WMAP 1 Million
  2008 Planck 10 Million

Galaxy Redshift Surveys (obj)
•  1986 CfA 3500
•  1996 LCRS 23000
•  2003 2dF 250000
•  2008 SDSS 1000000
•  2012 BOSS 2000000
•  2012 LAMOST 2500000

Angular Galaxy Surveys (obj)
•  1970 Lick 1M
•  1990 APM 2M
•  2005 SDSS 200M
•  2011 PS1 1000M
•  2020 LSST 30000M

Time Domain
•  QUEST
•  SDSS Extension survey
•  Dark Energy Camera
•  Pan-STARRS
•  LSST…

“The Age of Surveys” – generate petabytes/year …

Szalay (2012, MMDS)

Galaxy properties from galaxy spectra

Continuum Emissions Spectral Lines

Can we select
“informative”
frequencies
(columns) or
images (rows)
“objectively”?

4K x 1M SVD
Problem:
ideal for
randomized
matrix
algorithms

Szalay (2012, MMDS)

Galaxy diversity from PCA

[Average Spectrum]

[Stellar Continuum]

[Finer Continuum Features + Age]

[Age]
Balmer series hydrogen lines

[Metallicity]
Mg b, Na D, Ca II Triplet

1st

2nd

3rd

4th

5th

PC

 Focus: sketching matrices by (i) sampling rows/columns and (ii) via “random projections.”

 Machinery: (i) Approximating matrix multiplication and (ii) Decoupling “randomization”
from “matrix perturbation.”

 Overview of the tutorial:

 (i) Motivation (computational efficiency, interpretability)

 (ii) Approximating matrix multiplication
 (iii) From matrix multiplication to CX/CUR factorizations and the SVD

 (iv) Improvements and recent progress

 (v) Algorithmic approaches to least-squares problems

 (vi) Statistical perspectives on least-squares algorithms

 (vii) Theory and practice of: extending these ideas to kernels and SPSD matrices
 (viii) Theory and practice of: implementing these ideas in large-scale settings

 Roadmap of the tutorial

Least Squares (LS) Approximation

We are interested in over-constrained Lp regression problems, n >> d.
 Typically, there is no x such that Ax = b.

 Want to find the “best” x such that Ax ≈ b.

Ubiquitous in applications & central to theory:
 Statistical interpretation: best linear unbiased estimator.

 Geometric interpretation: orthogonally project b onto span(A).

Exact solution to LS Approximation
Cholesky Decomposition:

 If A is full rank and well-conditioned,
 decompose ATA = RTR, where R is upper triangular, and

 solve the normal equations: RTRx=ATb.
QR Decomposition:

 Slower but numerically stable, esp. if A is rank-deficient.
 Write A=QR, and solve Rx = QTb.

Singular Value Decomposition:
 Most expensive, but best if A is very ill-conditioned.

 Write A=UΣVT, in which case: xOPT = A+b = VΣ-1
kUTb.

Complexity is O(nd2) for all of these, but
constant factors differ.

Projection of b on
the subspace spanned
by the columns of A

Pseudoinverse
of A

Modeling with Least Squares

Assumptions underlying its use:
•  Relationship between “outcomes” and “predictors is (roughly) linear.

•  The error term ε has mean zero.

•  The error term ε has constant variance.
•  The errors are uncorrelated.

•  The errors are normally distributed (or we have adequate sample size to
rely on large sample theory).

Should always check to make sure these assumptions have not
been (too) violated!

Statistical Issues and Regression Diagnostics
Model: b = Ax+ε b = response; A(i) = carriers;

 ε = error process s.t.: mean zero, const. varnce, (i.e., E(e)=0

 and Var(e)=σ2I), uncorrelated, normally distributed

xopt = (ATA)-1ATb (what we computed before)

b’ = Hb H = A(ATA)-1AT = “hat” matrix
 Hij - measures the leverage or influence exerted on b’i by bj,

 regardless of the value of bj (since H depends only on A)

e’ = b-b’ = (I-H)b vector of residuals - note: E(e’)=0, Var(e’)=σ2(I-H)

Trace(H)=d Diagnostic Rule of Thumb: Investigate if Hii > 2d/n

H=UUT U is from SVD (A=UΣVT), or any orthogonal matrix for span(A)
Hii = |U(i)|2

2 leverage scores = row “lengths” of spanning orthogonal matrix

A “classic” randomized algorithm (1of3)

Over-constrained least squares (n x d matrix A,n >>d)

•  Solve:

•  Solution:

Randomized Algorithm:
•  For all i ε {1,...,n}, compute

•  Randomly sample O(d log(d)/ ε) rows/elements fro A/b, using
{pi} as importance sampling probabilities.

•  Solve the induced subproblem:

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

A “classic” randomized algorithm (2of3)

Theorem: Let . Then:

• 
• 

This naïve algorithm runs in O(nd2) time

•  But it can be improved !!!

This algorithm is bottleneck for Low Rank Matrix Approximation
and many other matrix problems.

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

A “classic” randomized algorithm (3of3)

Sufficient condition for relative-error approximation.

For the “preprocessing” matrix X:

•  Important: this condition decouples the randomness from the
linear algebra.

•  Random sampling algorithms with leverage score probabilities
and random projections satisfy it!

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

Theoretically “fast” algorithms
Drineas, Mahoney, Muthukrishnan, and Sarlos (2007); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011)

Main theorem: For both of these randomized algorithms, we get:

•  (1±ε)-approximation
•  in roughly time!!

Algorithm 1: Fast Random Projection Algorithm for LS Problem
•  Preprocess input (in o(nd2)time) with Fast-JL transform, uniformizes
leverage scores, and sample uniformly in the randomly-rotated space

•  Solve the induced subproblem

Algorithm 2: Fast Random Sampling Algorithm for LS Problem
•  Compute 1±ε approximation to statistical leverage scores (in o(nd2)
time), and use them as importance sampling probabilities
•  Solve the induced subproblem

Practically “fast” implementations (1of2)
Use “randomized sketch” to construct preconditioner
for traditional iterative methods:
•  RT08: preconditioned iterative method improves 1/ε
dependence to log(1/ε), important for high precision

•  AMT10: much more detailed evaluation, different Hadamard-
type preconditioners, etc.

•  CRT11: use Gaussian projections to compute orthogonal
projections with normal equations

•  MSM11: use Gaussian projections and LSQR or Chebyshev semi-
iterative method to minimize communication, e.g., for parallel
computation in Amazon EC2 clusters!

Practically “fast” implementations (2of2)

Avron, Maymounkov, and Toledo 2010:
•  Blendenpik "beats Lapack's direct dense least-squares
solver by a large margin on essentially any dense tall matrix”

•  Empirical results "show the potential of random sampling
algorithms and suggest that random projection algorithms
should be incorporated into future versions of Lapack."

Ranking Astronomical Line Indices

(Worthey et al. 94;
Trager et al. 98)

Subspace
Analysis of
Spectra Cutouts:

- Othogonality
- Divergence
- Commonality

(Yip et al. 2013 subm.)

Identifying new line indices objectively

(Yip et al. 2013 subm.)

Szalay (2012, MMDS); Yip et al (2013)

New Spectral Regions (M2;k=5;
overselecting 10X; combine if <30A)
Szalay (2012, MMDS); Yip et al (2013)

Old Lick indices are “ad hoc”

New indices are “objective”

•  Recover atomic lines

•  Recover molecular bands

•  Recover Lick indices

•  Informative regions are
orthogonal to each other, in
contrast to Lick regions

(Yip et al. 2013 subm.)

 Focus: sketching matrices by (i) sampling rows/columns and (ii) via “random projections.”

 Machinery: (i) Approximating matrix multiplication and (ii) Decoupling “randomization”
from “matrix perturbation.”

 Overview of the tutorial:

 (i) Motivation (computational efficiency, interpretability)

 (ii) Approximating matrix multiplication
 (iii) From matrix multiplication to CX/CUR factorizations and the SVD

 (iv) Improvements and recent progress

 (v) Algorithmic approaches to least-squares problems

 (vi) Statistical perspectives on least-squares algorithms

 (vii) Theory and practice of: extending these ideas to kernels and SPSD matrices
 (viii) Theory and practice of: implementing these ideas in large-scale settings

 Roadmap of the tutorial

A statistical perspective on “leveraging”

Constructing the subsample

Bias and variance of subsampling
estimators (1 of 3)
“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

Bias and variance of subsampling
estimators (2 of 3)
“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

Bias and variance of subsampling
estimators (3 of 3)
“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

Consider empirical performance of several versions:
•  UNIF: variance scales as n/r

•  BLEV: variance scales as p/r but have 1/hii terms in
denominator of sandwich expression

•  SLEV: variance scales as p/r but 1/hii terms in denominator are
moderated since no probabilities are too small

•  UNWL: 1/hii terms are not in denominator, but estimates
unbiased around βwls/β0

Estimates are unbiased (around βols/β0), but variance
depends on sampling probabilities.

BLEV and UNIF on data with different
leverage scores

Empirical variances and squared biases of the BLEV and UNIF estimators in
three data sets for n=1000 and p=50. Left to right, Gaussian, multivariate-t
with 3 d.o.f. (T3), and multivariate-t with 1 d.o.f. (T1).

“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

BLEV and UNIF when rank is lost, 1

Comparison of BLEV and UNIF
when rank is lost in the sampling
process (n=1000 and p=10).

Left/middle/right panels: T3/T2/
T1 data.

Upper panels: Proportion of
singular X^TWX, out of 500
trials, for BLEV and UNIF .
Middle panels: Boxplots of ranks
of 500 BLEV subsamples.
Lower panels: Boxplots of ranks
of 500 UNIF subsamples.
Note the nonstandard scaling of
the X axis.

BLEV and UNIF when rank is lost, 2

Comparison of BLEV and UNIF
when rank is lost in the sampling
process (n=1000 and p=10).

Left/middle/right panels: T3/T2/
T1 data.

Upper panels: The logarithm of
variances of the estimates.

Middle panels: The logarithm of
variances, zoomed-in on the X-
axis.
Lower panels: The logarithm of
squared bias of the estimates.

Combining BELV and UNIF into SLEV, 1

Empirical variances and squared biases (unconditional) of the BLEV, SLEV,
and UNWL estimators in three data sets (GA, T3, and T1) for n=1000 and
p=50. Left/middle/right panels: GA/T3/T1 data.

“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

Combining BLEV and UNIF into SLEV, 2

Empirical variances and squared biases (unconditional) of the SLEV estimator
in data generated from T1 with n=1000 and variable p. Left/middle/right
panel: subsample size r=3p/r=5p/r=10p.

“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

Results conditioned on the data

Empirical variances and squared biases (conditional) of the BLEV and UNIF
estimators in 3 data sets (GA, T3, and T1) for n=1000 & p=50. Upper/lower
panels: Variances/Squared bias. Left/middle/lower panels: GA/T3/T1 data.

“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

 Focus: sketching matrices by (i) sampling rows/columns and (ii) via “random projections.”

 Machinery: (i) Approximating matrix multiplication and (ii) Decoupling “randomization”
from “matrix perturbation.”

 Overview of the tutorial:

 (i) Motivation (computational efficiency, interpretability)

 (ii) Approximating matrix multiplication
 (iii) From matrix multiplication to CX/CUR factorizations and the SVD

 (iv) Improvements and recent progress

 (v) Algorithmic approaches to least-squares problems

 (vi) Statistical perspectives on least-squares algorithms

 (vii) Theory and practice of: extending these ideas to kernels and SPSD matrices
 (viii) Theory and practice of: implementing these ideas in large-scale settings

 Roadmap of the tutorial

41

Motivation (1 of 2)

Methods to extract linear structure from the data:

•  Support Vector Machines (SVMs).

•  Gaussian Processes (GPs).

•  Singular Value Decomposition (SVD) and the related PCA.

Kernel-based learning methods to extract non-linear structure:

•  Choose features to define a (dot product) space F.

•  Map the data, X, to F by φ: X→F.

•  Do classification, regression, and clustering in F with linear methods.

42

Motivation (2 of 2)

•  Use dot products for information about mutual positions.

•  Define the kernel or Gram matrix: Gij=kij=(φ(X(i)), φ(X(j))).

•  Algorithms that are expressed in terms of dot products can be given the
Gram matrix G instead of the data covariance matrix XTX.

If the Gram matrix G -- Gij=kij=(φ(X(i)), φ(X(j))) -- is dense but (nearly) low-
rank, then calculations of interest still need O(n2) space and O(n3) time:

•  matrix inversion in GP prediction,

•  quadratic programming problems in SVMs,

•  computation of eigendecomposition of G.

Idea: use random sampling/projections to speed up these computations!

43

This “revisiting” is particularly timely ...

Prior existing theory was extremely weak:
•  Especially compared with very strong 1±ε results for low-rank
approximation, least-squares approximation, etc. of general matrices

•  In spite of the empirical success of Nystrom-based and related
randomized low-rank methods

Conflicting claims about uniform versus leverage-based sampling:
•  Some claim “ML matrices have low coherence” based on one ML paper

•  Contrasts with proven importance of leverage scores is genetics,
astronomy, and internet applications

High-quality numerical implementations of random projection and random
sampling algorithms now exist:

•  For L2 regression, L1 regression, low-rank matrix approximation, etc. in
RAM, parallel environments, distributed environments, etc.

“Revisiting the Nystrom Method ...,” Gittens and Mahoney (2013)

44

Some basics
Leverage scores:

•  Diagonal elements of projection matrix onto the best rank-k space

•  Key structural property needed to get 1±ε approximation of general matrices

Spectral, Frobenius, and Trace norms:
•  Matrix norms that equal {∞,2,1}-norm on the vector of singular values

Basic SPSD Sketching Model:

45

Strategy for improved theory

Decouple the randomness from the vector space structure
•  This used previously with least-squares and low-rank CSSP approximation

This permits much finer control in the application of randomization
•  Much better worst-case theory

•  Easier to map to ML and statistical ideas

•  Has led to high-quality numerical implementations of LS and low-rank algorithms

•  Much easier to parameterize problems in ways that are more natural to numerical
analysts, scientific computers, and software developers

This implicitly looks at the “square root” of the SPSD matrix

46

Main structural result
Gittens and Mahoney (2013)

47

Algorithmic applications (1 of 2)

Similar bounds for uniform sampling, except that need to sample proportional to
the coherence (the largest leverage score).

Gittens and Mahoney (2013)

48

Algorithmic applications (2 of 2)

Similar bounds for Gaussian-based random projections.

Gittens and Mahoney (2013)

49

Data considered (1 of 2)

50

Data considered (2 of 2)

51

Weakness of previous theory (1 of 2)
Drineas and Mahoney (COLT 2005, JMLR 2005):

•  If sample Ω(k ε-4 log(1/δ)) columns according to diagonal elements of A, then

Kumar, Mohri, and Talwalker (ICML 2009, JMLR 2012):
•  If sample Ω(τ k log(k/δ)) columns uniformly, where τ ≈ coherence and A has
exactly rank k, then can reconstruct A, i.e.,

Gittens (arXiv, 2011):
•  If sample Ω(µ k log(k/δ)) columns uniformly, where µ = coherence, then

So weak that these results aren’t even a qualitative guide to practice

52

Weakness of previous theory (2 of 2)

53

Approximating the leverage scores
(for very rectangular matrices)

•  This algorithm returns relative-error (1±ε) approximations to all the
leverage scores of an arbitrary tall matrix in o(nd2) time, i.e., in time

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012)

54

An aside: Timing for fast approximating
leverage scores of rectangular matrices

Running time is comparable to underlying random projection
•  (Can solve the subproblem directly; or, as with Blendenpik, use it to precondition
to solve LS problems of size ≥ thousands-by-hundreds faster than LAPACK.)

 Protein k=10; SNPs(k=5)

Gittens and Mahoney (2013)

Running time results (for a vanilla
implementation in R)
“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

CPU time for calculating exact leverage scores and approximate leverage
scores using the Bfast (Binary Projections) and Gfast (Gaussian Projections),
i.e., “slow” versions of the “fast” algorithm of DMMW12.

Left panel is for varying sample size n for fixed predictor size p=500.

Right panel is for varying predictor size p for fixed sample size n=20000.

56

Summary of running time issues
Running time of exact leverage scores:

•  worse than uniform sampling, SRFT-based, & Gaussian-based projections
Running time of approximate leverage scores:

•  can be much faster than exact computation
•  with q=0 iterations, time comparable to SRFT or Gaussian projection time
•  with q>0 iterations, time depends on details of stopping condition

The leverage scores:
•  with q=0 iterations, the actual leverage scores are poorly approximated
•  with q>0 iterations, the actual leverage scores are better approximated
•  reconstruction quality is often no worse, and is often better, when using
approximate leverage scores

On “tall” matrices:
•  running time is comparable to underlying random projection
•  can use the coordinate-biased sketch thereby obtained as preconditioner for
overconstrained L2 regression, as with Blendenpik or LSRN

 Focus: sketching matrices by (i) sampling rows/columns and (ii) via “random projections.”

 Machinery: (i) Approximating matrix multiplication and (ii) Decoupling “randomization”
from “matrix perturbation.”

 Overview of the tutorial:

 (i) Motivation (computational efficiency, interpretability)

 (ii) Approximating matrix multiplication
 (iii) From matrix multiplication to CX/CUR factorizations and the SVD

 (iv) Improvements and recent progress

 (v) Algorithmic approaches to least-squares problems

 (vi) Statistical perspectives on least-squares algorithms

 (vii) Theory and practice of: extending these ideas to kernels and SPSD matrices
 (viii) Theory and practice of: implementing these ideas in large-scale settings

 Roadmap of the tutorial

Parallel environments and how they scale
Shared memory
•  cores: [10, 103]*

•  memory: [100GB, 100TB]

Message passing
•  cores: [200, 105]**

•  memory: [1TB, 1000TB]

•  CUDA cores: [5 x 104, 3 x 106]***

•  GPU memory: [500GB, 20TB]

MapReduce
•  cores: [40, 105]****

•  memory: [240GB, 100TB]

•  storage: [100TB, 100PB]*****

Distributed computing
•  cores: [-, 3 x 105]******

“Traditional” matrix algorithms
For L2 regression:
•  direct methods: QR, SVD, and normal equation (O(mn2 + n2) time)

•  Pros: high precision & implemented in LAPACK
•  Cons: hard to take advantage of sparsity & hard to implement in
parallel environments

•  iterative methods: CGLS, LSQR, etc.
•  Pros: low cost per iteration, easy to implement in some parallel
environments, & capable of computing approximate solutions
•  Cons: hard to predict the number of iterations needed

For L1 regression:
•  linear programming
•  interior-point methods (or simplex, ellipsoid? methods)
•  re-weighted least squares
•  first-order methods

Two important notions:
leverage and condition
Statistical leverage. (Think: eigenvectors & low-precision solutions.)

•  The statistical leverage scores of A (assume m>>n) are the diagonal
elements of the projection matrix onto the column span of A.
•  They equal the L2-norm-squared of any orthogonal basis spanning A.
•  They measure:

•  how well-correlated the singular vectors are with the canonical basis
•  which constraints have largest “influence" on the LS fit
•  a notion of “coherence” or “outlierness”

•  Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues & high-precision solutions.)

•  The L2-norm condition number of A is (A) = σmax(A)/σmin(A).
•  κ(A) bounds the number of iterations

•  for ill-conditioned problems (e.g., κ(A) ≅ 106 >> 1), convergence speed is slow.
•  Computing κ(A) is generally as hard as solving the LS problem.

These are for the L2-norm. Generalizations exist for the L1-norm.

Meta-algorithm for L2 regression

1: Using the L2 statistical leverage scores of A, construct an importance
sampling distribution {pi}i=1,...,m
2: Randomly sample a small number of constraints according to {pi}i,...,m to
construct a subproblem.
3: Solve the L2-regression problem on the subproblem.

Naïve implementation: 1 + ε approximation in O(mn2/ε) time. (Ugh.)

“Fast” O(mn log(n)/ε) in RAM if
•  Hadamard-based projection and sample uniformly
•  Quickly compute approximate leverage scores

“High precision” O(mn log(n)log(1/ε)) in RAM if:
•  use the random projection/sampling basis to construct a preconditioner

Question: can we extend these ideas to parallel-distributed environments?

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

Meta-algorithm for L1 (& Lp) regression

1: Using the L1 statistical leverage scores of A, construct an importance
sampling distribution {pi}i=1,...,m
2: Randomly sample a small number of constraints according to {pi}i,...,m to
construct a subproblem.
3: Solve the L1-regression problem on the subproblem.

Naïve implementation: 1 + ε approximation in O(mn5/ε) time. (Ugh.)

“Fast” in RAM if

•  we perform a fast “L1 projection” to uniformize them approximately
•  we approximate the L1 leverage scores quickly

“High precision” in RAM if:
•  we use the random projection/sampling basis to construct an L1 preconditioner

Question: can we extend these ideas to parallel-distributed environments?

(Clakson 2005, DDHKM 2008, Sohler and Woodruff 2011, CDMMMW 2012, Meng and Mahoney 2012.)

LARGE versus large versus large:
extending to parallel/distributed environments

Can we extend these ideas to parallel & distributed
environments?
•  Yes!!!

•  Roughly, use the same meta-algorithm, but minimize
communication rather than minimize flops

In the remainder, focus on L2 regression.
•  Technical issues, especially for iterations, are very different
for L2 regression versus L1/quantile regression

•  Talk with me later if you care about L1 regression

LSRN: a fast parallel implementation

A parallel iterative solver based on normal random
projections
•  computes unique min-length solution to minx ||Ax-b||2

•  very over-constrained or very under-constrained A

•  full-rank or rank-deficient A

•  A can be dense, sparse, or a linear operator

•  easy to implement using threads or with MPI, and scales well
in parallel environments

Meng, Saunders, and Mahoney (2011, arXiv)

LSRN: a fast parallel implementation
Algorithm:

•  Generate a γn x m matrix with i.i.d. Gaussian entries G

•  Let N be R-1 or V Σ-1 from QR or SVD of GA

•  Use LSQR or Chebyshev Semi-Iterative (CSI) method to
solve the preconditioned problem miny ||ANy-b||2

Things to note:

•  Normal random projection: embarassingly parallel

•  Bound κ(A): strong control on number of iterations

•  CSI particularly good for parallel environments: doesn’t have
vector inner products that need synchronization b/w nodes

Meng, Saunders, and Mahoney (2011, arXiv)

LSRN: Solving real-world problems
Meng, Saunders, and Mahoney (2011, arXiv)

LSQR
Paige and Saunders (1982)

Chebyshev semi-iterative (CSI)
Golub and Varga (1961)

LSRN: on Amazon EC2 cluster
Meng, Saunders, and Mahoney (2011, arXiv)

Additional topics not covered ...

Theory/practice of L1/quantile regression:
•  Cauchy transform, ellipsoidal rounding, etc. to get low-precision soln

•  couple with randomized interior point cutting plane method to get
moderate-precision solutions on a terabyte of data in Hadoop

Theory/practice of “input-sparsity” regression algorithms:
•  input-sparsity time matrix multiplication result -> input-sparsity time
L2 regression, low-rank approximation, leverage score algorithms
•  nearly-input-sparsity time Lp regression algorithms via input-sparsity
time low-distortion embeddings

Conclusions to Part II
Least-squares regression:
•  faster sampling/projection in theory and implementation

•  importance of decoupling randomness from vector space structure

Statistical perspective:
•  better practical results without sacrificing worst-case quality

Revisiting the Nystrom method:
•  the devil is in the details, if we want to make these algorithms useful
in real large-scale systems

Implementing in parallel/distributed environments:
•  the same meta-algorithms work, but highlights the limits of
theoretically-useful models, and suggests future directions

All of these suggest future directions ...

Conclusions on “RandNLA”

Many many modern massive data sets are well-modeled
by matrices:
•  but existing algorithms were not designed for them

Randomization is a powerful tool for:
•  the design of algorithms with better worst-case guarantees

•  the design of algorithms with better statistical properties

•  the design of algorithms for large-scale architectures

Great model/proof-of-principle for “bridging the gap”:
•  between TCS and NLA and ML

•  useful theory and theoretically-fruitful practice arises

