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 Focus: sketching matrices (i) by sampling rows/columns and (ii) via “random projections.” 

 Machinery: (i) Approximating matrix multiplication and (ii) Decoupling “randomization” 
from “matrix perturbation.” 

 Overview of the tutorial: 

 (i)  Motivation: computational efficiency, interpretability  

 (ii)  Approximating matrix multiplication 
 (iii) From matrix multiplication to CX/CUR factorizations and the SVD 

 (iv)  Improvements and recent progress 

 (v)  Algorithmic approaches to least-squares problems 

 (vi)  Statistical perspectives on least-squares algorithms 

 (vii) Theory and practice of: extending these ideas to kernels and SPSD matrices 
 (viii) Theory and practice of: implementing these ideas in large-scale settings 

  Roadmap of the tutorial  



Why randomized matrix algorithms? 
•  Faster algorithms: worst-case theory and/or numerical code 

•  Simpler algorithms: easier to analyze and reason about  

•  More-interpretable output: useful if analyst time is expensive 

•  Implicit regularization properties: and more robust output 

•  Exploit modern computer architectures: by reorganizing steps of alg 

•  Massive data: matrices that they can be stored only in slow 
secondary memory devices or even not at all  

Already a big success … but why do they work? 



Already a big success ... 

Avron, Maymounkov, and Toledo 2010: 
•  “Randomization is arguably the most exciting and innovative 
idea to have hit linear algebra in a long time”   

• Blendenpik "beats Lapack's direct dense least-squares 
solver by a large margin on essentially any dense tall matrix”  

•  Empirical results "show the potential of random sampling 
algorithms and suggest that random projection algorithms 
should be incorporated into future versions of Lapack." 

Already a big success … but why do they work? 



Already a big success ... 
•  Better worse-case theory: for L2 regression, L1 regression, low-
rank matrix approximation, column subset selection, Nystrom 
approximation, etc. 

•  Implementations “beat” Lapack: for L2 regression on nearly any non-
tiny tall dense matrix 

•  Low-rank implementations “better”: in terms of running time and/or 
robustness for dense/sparse scientific computing matrices 

•  Parallel and distributed implementations: exploit modern computer 
architectures to do computations on up to a tera-byte of data 

•  Genetics, astronomy, etc.: applications to choose good SNPs, 
wavelengths, etc. for genotype inference, galaxy identification, etc.  

Already a big success … but why do they work? 



A typical result: (1+ε)-CX/CUR 

Theorem: Let TSVD,k time* be the time to compute an exact or approximate 
rank-k approximation to the SVD (e.g., with a random projection).  
Then, given an m-by-n matrix A, there exists** an algorithm that runs 
in O(TSVD,k) time that picks 
   at most roughly 3200*** (k/ε2****) log (k/ε)  columns of A 

such that with probability at least 0.9***** 

   || A – PCA||F ≤ (1+ε) || A – Ak ||F  

*Isn’t that too expensive? 

**What is it? 

***Isn’t 3200 to big? Why do you need 3200? 

****Isn’t 1/ε2 too bad for ε≅ 10-15 ? 

*****Isn’t 0.1 too large a failure probability? 



Why do these algorithms work?  

They decouple randomness from vector space structure.  

Today, explain this in the context of. 
•  Least squares regression -> CX/CUR approximation 

•  CSSP -> Random Projections parameterized more flexibly 

•  Nystrom approximation of SPSD matrices 

Permits finer control in applying the randomization. 
•  Much better worst-case theory 

•  Easier to map to ML and statistical ideas 

•  Easier to parameterize problems in ways that are more natural to 
numerical analysts, scientific computers, and software developers 



The devil is in the details ... 
Decouple the randomization from the linear algebra: 
•  originally within the analysis, then made explicit 

•  permits much finer control in application of randomization 

Importance of statistical leverage scores: 
•  historically used in regression diagnostics to identify outliers 

•  best random sampling algorithms use them as importance sampling 
distribution 
•  best random projection algorithms go to a random basis where they 
are roughly uniform 

Couple with domain expertise—to get best results! 



Statistical leverage, coherence, etc. 

Definition: Given a “tall” n x d matrix A, i.e., with n > d, let U 
be any n x d orthogonal basis for span(A), & let the d-vector U(i) 
be the ith row of U.  Then: 

•  the statistical leverage scores are λi = ||U(i)||2
2 , for i ε {1,…,n} 

•  the coherence is γ = maxi ε {1,…,n} λi  

•  the (i,j)-cross-leverage scores are U(i)
T U(j) = <U(i) ,U(j)> 

Note: There are extension of this to: 

•  “fat” matrices A, with n, d are large and low-rank parameter k  

•  L1 and other p-norms 

Mahoney and Drineas (2009, PNAS); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012, ICML)   



History of Randomized Matrix Algs 

How to “bridge the gap”? 
•  decouple randomization from linear algebra 

•  importance of statistical leverage scores! 

Theoretical origins 
•  theoretical computer 
science, convex analysis, etc. 

•  Johnson-Lindenstrauss 

•  Additive-error algs 

•  Good worst-case analysis 

•  No statistical analysis 

Practical applications 
•  NLA, ML, statistics, data 
analysis, genetics, etc 

•  Fast JL transform 

•  Relative-error algs 

•  Numerically-stable algs 

•  Good statistical properties 



Applications in: Astronomy 

CMB Surveys (pixels) 
  1990   COBE          1000 
  2000   Boomerang      10,000 
  2002   CBI       50,000 
  2003   WMAP       1 Million 
  2008   Planck   10 Million 

Galaxy Redshift Surveys (obj) 
•  1986  CfA                     3500 
•  1996  LCRS                23000 
•  2003  2dF              250000 
•  2008  SDSS            1000000 
•  2012  BOSS            2000000 
•  2012 LAMOST        2500000 

Angular Galaxy Surveys (obj) 
•  1970  Lick       1M 
•  1990  APM       2M 
•  2005  SDSS   200M 
•  2011  PS1               1000M 
•  2020  LSST             30000M 

Time Domain 
•  QUEST 
•  SDSS Extension survey 
•  Dark Energy Camera 
•  Pan-STARRS 
•  LSST… 

“The Age of Surveys” – generate petabytes/year … 

Szalay (2012, MMDS)   



Galaxy properties from galaxy spectra 

Continuum Emissions Spectral Lines 

Can we select 
“informative” 
frequencies 
(columns) or 
images (rows) 
“objectively”? 

4K x 1M SVD 
Problem: 
ideal for 
randomized 
matrix 
algorithms 

Szalay (2012, MMDS)   



Galaxy diversity from PCA 

[Average Spectrum] 

[Stellar Continuum] 

[Finer Continuum Features + Age]  

[Age] 
Balmer series hydrogen lines 

[Metallicity]  
Mg b, Na D, Ca II Triplet 

1st 

2nd 

3rd 

4th 

5th 

PC 
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Least Squares (LS) Approximation 

We are interested in over-constrained Lp regression problems, n >> d.    
 Typically, there is no x such that Ax = b. 

 Want to find the “best” x such that Ax ≈ b. 

Ubiquitous in applications & central to theory:  
 Statistical interpretation: best linear unbiased estimator. 

 Geometric interpretation: orthogonally project b onto span(A). 



Exact solution to LS Approximation 
Cholesky Decomposition:  

 If A is full rank and well-conditioned,  
 decompose ATA = RTR, where R is upper triangular, and  

 solve the normal equations: RTRx=ATb. 
QR Decomposition:  

 Slower but numerically stable, esp. if A is rank-deficient. 
 Write A=QR, and solve Rx = QTb. 

Singular Value Decomposition: 
 Most expensive, but best if A is very ill-conditioned. 

 Write A=UΣVT, in which case: xOPT = A+b = VΣ-1
kUTb. 

Complexity is O(nd2) for all of these, but 
constant factors differ.  

Projection of b on 
the subspace spanned 
by the columns of A 

Pseudoinverse 
of A 



Modeling with Least Squares 

Assumptions underlying its use: 
•  Relationship between “outcomes” and “predictors is (roughly) linear. 

•  The error term ε has mean zero. 

•  The error term ε has constant variance. 
•  The errors are uncorrelated. 

•  The errors are normally distributed (or we have adequate sample size to 
rely on large sample theory). 

Should always check to make sure these assumptions have not 
been (too) violated! 



Statistical Issues and Regression Diagnostics 
Model: b = Ax+ε  b = response; A(i) = carriers;  

  ε = error process s.t.: mean zero, const. varnce, (i.e., E(e)=0  

  and Var(e)=σ2I), uncorrelated, normally distributed 

xopt = (ATA)-1ATb  (what we computed before) 

b’ = Hb   H = A(ATA)-1AT = “hat” matrix 
  Hij - measures the leverage or influence exerted on b’i by bj, 

  regardless of the value of bj (since H depends only on A) 

e’ = b-b’ = (I-H)b  vector of residuals - note: E(e’)=0, Var(e’)=σ2(I-H)  

Trace(H)=d  Diagnostic Rule of Thumb: Investigate if Hii > 2d/n 

H=UUT   U is from SVD (A=UΣVT), or any orthogonal matrix for span(A) 
Hii = |U(i)|2

2  leverage scores = row “lengths” of spanning orthogonal matrix 



A “classic” randomized algorithm (1of3) 

Over-constrained least squares (n x d matrix A,n >>d) 

•  Solve:   

•  Solution: 

Randomized Algorithm: 
•  For all i ε {1,...,n}, compute 

•  Randomly sample O(d log(d)/ ε) rows/elements fro A/b, using 
{pi} as importance sampling probabilities. 

•  Solve the induced subproblem: 

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)   



A “classic” randomized algorithm (2of3) 

Theorem: Let                                 .  Then: 

•  
•   

This naïve algorithm runs in O(nd2) time 

•  But it can be improved !!! 

This algorithm is bottleneck for Low Rank Matrix Approximation 
and many other matrix problems. 

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)   



A “classic” randomized algorithm (3of3) 

Sufficient condition for relative-error approximation. 

For the “preprocessing” matrix X: 

•  Important: this condition decouples the randomness from the 
linear algebra. 

•  Random sampling algorithms with leverage score probabilities 
and random projections satisfy it!  

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)   



Theoretically “fast” algorithms 
Drineas, Mahoney, Muthukrishnan, and Sarlos (2007); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011)   

Main theorem: For both of these randomized algorithms, we get: 

•  (1±ε)-approximation  
•  in roughly                                                                                   time!! 

Algorithm 1: Fast Random Projection Algorithm for LS Problem 
•  Preprocess input (in o(nd2)time) with Fast-JL transform, uniformizes 
leverage scores, and sample uniformly in the randomly-rotated space 

•  Solve the induced subproblem 

Algorithm 2: Fast Random Sampling Algorithm for LS Problem 
•  Compute 1±ε approximation to statistical leverage scores (in o(nd2)
time), and use them as importance sampling probabilities 
•  Solve the induced subproblem 



Practically “fast” implementations (1of2) 
Use “randomized sketch” to construct preconditioner 
for traditional iterative methods: 
•  RT08: preconditioned iterative method improves 1/ε 
dependence to log(1/ε), important for high precision 

•  AMT10: much more detailed evaluation, different Hadamard-
type preconditioners, etc. 

•  CRT11: use Gaussian projections to compute orthogonal 
projections with normal equations 

•  MSM11: use Gaussian projections and LSQR or Chebyshev semi-
iterative method to minimize communication, e.g., for parallel 
computation in Amazon EC2 clusters! 



Practically “fast” implementations (2of2) 

Avron, Maymounkov, and Toledo 2010: 
•  Blendenpik "beats Lapack's direct dense least-squares 
solver by a large margin on essentially any dense tall matrix”  

•  Empirical results "show the potential of random sampling 
algorithms and suggest that random projection algorithms 
should be incorporated into future versions of Lapack." 



Ranking Astronomical Line Indices 

(Worthey et al. 94; 
Trager et al. 98) 

Subspace 
Analysis of 
Spectra Cutouts: 

- Othogonality 
- Divergence 
- Commonality 

(Yip et al. 2013 subm.) 



Identifying new line indices objectively 

(Yip et al. 2013 subm.) 

Szalay (2012, MMDS); Yip et al (2013)   



New Spectral Regions (M2;k=5; 
overselecting 10X; combine if <30A) 
Szalay (2012, MMDS); Yip et al (2013)   

Old Lick indices are “ad hoc” 

New indices are “objective” 

•  Recover atomic lines 

•  Recover molecular bands  

•  Recover Lick indices  

•  Informative regions are 
orthogonal to each other, in 
contrast to Lick regions 

(Yip et al. 2013 subm.) 
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A statistical perspective on “leveraging” 



Constructing the subsample 



Bias and variance of subsampling 
estimators (1 of 3) 
“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013   



Bias and variance of subsampling 
estimators (2 of 3) 
“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013   



Bias and variance of subsampling 
estimators (3 of 3) 
“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013   

Consider empirical performance of several versions: 
•  UNIF: variance scales as n/r 

•  BLEV: variance scales as p/r but have 1/hii terms in 
denominator of sandwich expression 

•  SLEV: variance scales as p/r but 1/hii terms in denominator are 
moderated since no probabilities are too small 

•  UNWL: 1/hii terms are not in denominator, but estimates 
unbiased around βwls/β0

Estimates are unbiased (around βols/β0), but variance 
depends on sampling probabilities. 



BLEV and UNIF on data with different 
leverage scores 

Empirical variances and squared biases of the BLEV and UNIF estimators in 
three data sets for n=1000 and p=50.  Left to right, Gaussian, multivariate-t 
with 3 d.o.f. (T3), and multivariate-t with 1 d.o.f. (T1).   

“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013   



BLEV and UNIF when rank is lost, 1 

Comparison of BLEV and UNIF 
when rank is lost in the sampling 
process (n=1000 and p=10). 

Left/middle/right panels: T3/T2/
T1 data. 

Upper panels: Proportion of 
singular X^TWX, out of 500 
trials, for BLEV and UNIF . 
Middle panels: Boxplots of ranks 
of 500 BLEV subsamples. 
Lower panels: Boxplots of ranks 
of 500 UNIF subsamples. 
Note the nonstandard scaling of 
the X axis. 



BLEV and UNIF when rank is lost, 2 

Comparison of BLEV and UNIF 
when rank is lost in the sampling 
process (n=1000 and p=10). 

Left/middle/right panels: T3/T2/
T1 data. 

Upper panels: The logarithm of 
variances of the estimates. 

Middle panels: The logarithm of 
variances, zoomed-in on the X-
axis. 
Lower panels: The logarithm of 
squared bias of the estimates. 



Combining BELV and UNIF into SLEV, 1 

Empirical variances and squared biases (unconditional) of the BLEV, SLEV, 
and UNWL estimators in three data sets (GA, T3, and T1) for n=1000 and 
p=50.  Left/middle/right panels: GA/T3/T1 data. 

“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013   



Combining BLEV and UNIF into SLEV, 2 

Empirical variances and squared biases (unconditional) of the SLEV estimator 
in data generated from T1 with n=1000 and variable p.  Left/middle/right 
panel:  subsample size r=3p/r=5p/r=10p. 

“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013   



Results conditioned on the data 

Empirical variances and squared biases (conditional) of the BLEV and UNIF 
estimators in 3 data sets (GA, T3, and T1) for n=1000 & p=50.  Upper/lower 
panels: Variances/Squared bias.  Left/middle/lower panels: GA/T3/T1 data. 

“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013   
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Motivation (1 of 2) 

Methods to extract linear structure from the data: 

•  Support Vector Machines (SVMs). 

•  Gaussian Processes (GPs). 

•  Singular Value Decomposition (SVD) and the related PCA. 

Kernel-based learning methods to extract non-linear structure: 

•  Choose features to define a (dot product) space F. 

•  Map the data, X, to F by φ: X→F. 

•  Do classification, regression, and clustering in F with linear methods. 
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Motivation (2 of 2) 

•  Use dot products for information about mutual positions. 

•  Define the kernel or Gram matrix: Gij=kij=(φ(X(i)), φ(X(j))). 

•  Algorithms that are expressed in terms of dot products can be given the 
Gram matrix G instead of the data covariance matrix XTX. 

If the Gram matrix G -- Gij=kij=(φ(X(i)), φ(X(j))) -- is dense but (nearly) low-
rank, then calculations of interest still need O(n2) space and O(n3) time: 

•  matrix inversion in GP prediction,  

•  quadratic programming problems in SVMs,  

•  computation of eigendecomposition of G. 

Idea: use random sampling/projections to speed up these computations! 
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This “revisiting” is particularly timely ... 

Prior existing theory was extremely weak: 
•  Especially compared with very strong 1±ε results for low-rank 
approximation, least-squares approximation, etc. of general matrices 

•  In spite of the empirical success of Nystrom-based and related 
randomized low-rank methods  

Conflicting claims about uniform versus leverage-based sampling: 
•  Some claim “ML matrices have low coherence” based on one ML paper 

•  Contrasts with proven importance of leverage scores is genetics, 
astronomy, and internet applications 

High-quality numerical implementations of random projection and random 
sampling algorithms now exist: 

•  For L2 regression, L1 regression, low-rank matrix approximation, etc. in 
RAM, parallel environments, distributed environments, etc.  

“Revisiting the Nystrom Method ...,” Gittens and Mahoney (2013)  
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Some basics 
Leverage scores: 

•  Diagonal elements of projection matrix onto the best rank-k space 

•  Key structural property needed to get 1±ε approximation of general matrices 

Spectral, Frobenius, and Trace norms: 
•  Matrix norms that equal {∞,2,1}-norm on the vector of singular values 

Basic SPSD Sketching Model: 
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Strategy for improved theory 

Decouple the randomness from the vector space structure 
•  This used previously with least-squares and low-rank CSSP approximation 

This permits much finer control in the application of randomization 
•  Much better worst-case theory 

•  Easier to map to ML and statistical ideas 

•  Has led to high-quality numerical implementations of LS and low-rank algorithms 

•  Much easier to parameterize problems in ways that are more natural to numerical 
analysts, scientific computers, and software developers 

This implicitly looks at the “square root” of the SPSD matrix 
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Main structural result 
Gittens and Mahoney (2013)  
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Algorithmic applications (1 of 2) 

Similar bounds for uniform sampling, except that need to sample proportional to 
the coherence (the largest leverage score). 

Gittens and Mahoney (2013)  
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Algorithmic applications (2 of 2) 

Similar bounds for Gaussian-based random projections.  

Gittens and Mahoney (2013)  
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Data considered (1 of 2) 



50 

Data considered (2 of 2) 
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Weakness of previous theory (1 of 2) 
Drineas and Mahoney (COLT 2005, JMLR 2005): 

•  If sample Ω(k ε-4 log(1/δ)) columns according to diagonal elements of A, then 

Kumar, Mohri, and Talwalker (ICML 2009, JMLR 2012): 
•  If sample Ω(τ k log(k/δ)) columns uniformly, where τ ≈ coherence and A has 
exactly rank k, then can reconstruct A, i.e.,  

Gittens (arXiv, 2011): 
•  If sample Ω(µ k log(k/δ)) columns uniformly, where µ = coherence, then  

So weak that these results aren’t even a qualitative guide to practice 
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Weakness of previous theory (2 of 2) 
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Approximating the leverage scores  
(for very rectangular matrices) 

•  This algorithm returns relative-error (1±ε) approximations to all the 
leverage scores of an arbitrary tall matrix in o(nd2) time, i.e., in time 

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012)  
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An aside: Timing for fast approximating 
leverage scores of rectangular matrices 

Running time is comparable to underlying random projection 
•  (Can solve the subproblem directly; or, as with Blendenpik, use it to precondition 
to solve LS problems of size ≥ thousands-by-hundreds faster than LAPACK.) 

                       Protein k=10;                                      SNPs(k=5) 

Gittens and Mahoney (2013)  



Running time results (for a vanilla 
implementation in R) 
“A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013   

CPU time for calculating exact leverage scores and approximate leverage 
scores using the Bfast (Binary Projections) and Gfast (Gaussian Projections), 
i.e., “slow” versions of the “fast” algorithm of DMMW12. 

Left panel is for varying sample size n for fixed predictor size p=500. 

Right panel is for varying predictor size p for fixed sample size n=20000. 
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Summary of running time issues 
Running time of exact leverage scores:  

•  worse than uniform sampling, SRFT-based, & Gaussian-based projections 
Running time of approximate leverage scores:  

•  can be much faster than exact computation 
•  with q=0 iterations, time comparable to SRFT or Gaussian projection time 
•  with q>0 iterations, time depends on details of stopping condition 

The leverage scores:  
•  with q=0 iterations, the actual leverage scores are poorly approximated 
•  with q>0 iterations, the actual leverage scores are better approximated 
•  reconstruction quality is often no worse, and is often better, when using 
approximate leverage scores 

On “tall” matrices: 
•  running time is comparable to underlying random projection 
•  can use the coordinate-biased sketch thereby obtained as preconditioner for 
overconstrained L2 regression, as with Blendenpik or LSRN  
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Parallel environments and how they scale 
Shared memory 
•  cores: [10, 103]* 

•  memory: [100GB, 100TB] 

Message passing 
•  cores: [200, 105]**  

•  memory: [1TB, 1000TB] 

•  CUDA cores: [5 x 104, 3 x 106]***  

•  GPU memory: [500GB, 20TB] 

MapReduce 
•  cores: [40, 105]****  

•  memory: [240GB, 100TB]  

•  storage: [100TB, 100PB]***** 

Distributed computing 
•  cores: [-, 3 x 105]****** 



“Traditional” matrix algorithms 
For L2 regression: 
•  direct methods: QR, SVD, and normal equation (O(mn2 + n2) time) 

•  Pros: high precision & implemented in LAPACK 
•  Cons: hard to take advantage of sparsity & hard to implement in 
parallel environments 

•  iterative methods: CGLS, LSQR, etc. 
•  Pros: low cost per iteration, easy to implement in some parallel 
environments, & capable of computing approximate solutions 
•  Cons: hard to predict the number of iterations needed 

For L1 regression: 
•  linear programming 
•  interior-point methods (or simplex, ellipsoid? methods) 
•  re-weighted least squares 
•  first-order methods 



Two important notions: 
leverage and condition 
Statistical leverage. (Think: eigenvectors & low-precision solutions.) 

•  The statistical leverage scores of A (assume m>>n) are the diagonal 
elements of the projection matrix onto the column span of A. 
•  They equal the L2-norm-squared of any orthogonal basis spanning A. 
•  They measure: 

•  how well-correlated the singular vectors are with the canonical basis 
•  which constraints have largest “influence" on the LS fit 
•  a notion of “coherence” or “outlierness” 

•  Computing them exactly is as hard as solving the LS problem. 

Condition number. (Think: eigenvalues & high-precision solutions.) 

•  The L2-norm condition number of A is (A) = σmax(A)/σmin(A). 
•  κ(A) bounds the number of iterations  

•  for ill-conditioned problems (e.g., κ(A) ≅ 106 >> 1), convergence speed is slow. 
•  Computing κ(A) is generally as hard as solving the LS problem. 

These are for the L2-norm. Generalizations exist for the L1-norm. 



Meta-algorithm for L2 regression 

1: Using the L2 statistical leverage scores of A, construct an importance 
sampling distribution {pi}i=1,...,m 
2: Randomly sample a small number of constraints according to {pi}i,...,m to 
construct a subproblem. 
3: Solve the L2-regression problem on the subproblem. 

Naïve implementation:  1 + ε approximation in O(mn2/ε) time. (Ugh.) 

“Fast” O(mn log(n)/ε) in RAM if 
•  Hadamard-based projection and sample uniformly 
•  Quickly compute approximate leverage scores 

“High precision” O(mn log(n)log(1/ε))  in RAM if: 
•  use the random projection/sampling basis to construct a preconditioner 

Question: can we extend these ideas to parallel-distributed environments? 

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.) 



Meta-algorithm for L1 (& Lp) regression 

1: Using the L1 statistical leverage scores of A, construct an importance 
sampling distribution {pi}i=1,...,m 
2: Randomly sample a small number of constraints according to {pi}i,...,m to 
construct a subproblem. 
3: Solve the L1-regression problem on the subproblem. 

Naïve implementation:  1 + ε approximation in O(mn5/ε) time. (Ugh.) 

“Fast” in RAM if 

•  we perform a fast “L1 projection” to uniformize them approximately 
•  we approximate the L1 leverage scores quickly  

“High precision” in RAM if: 
•  we use the random projection/sampling basis to construct an L1 preconditioner 

Question: can we extend these ideas to parallel-distributed environments? 

(Clakson 2005, DDHKM 2008, Sohler and Woodruff 2011, CDMMMW 2012, Meng and Mahoney 2012.) 



LARGE versus large versus large: 
extending to parallel/distributed environments 

Can we extend these ideas to parallel & distributed 
environments?  
•  Yes!!! 

•  Roughly, use the same meta-algorithm, but minimize 
communication rather than minimize flops 

In the remainder, focus on L2 regression. 
•  Technical issues, especially for iterations, are very different 
for L2 regression versus L1/quantile regression 

•  Talk with me later if you care about L1 regression 



LSRN: a fast parallel implementation 

A parallel iterative solver based on normal random 
projections 
•  computes unique min-length solution to minx ||Ax-b||2  

•  very over-constrained or very under-constrained A 

•  full-rank or rank-deficient A 

•  A can be dense, sparse, or a linear operator 

•  easy to implement using threads or with MPI, and scales well 
in parallel environments 

Meng, Saunders, and Mahoney (2011, arXiv) 



LSRN: a fast parallel implementation 
Algorithm: 

•  Generate a γn x m matrix with i.i.d. Gaussian entries G 

•  Let N be R-1 or V Σ-1 from QR or SVD of GA 

•  Use LSQR or Chebyshev Semi-Iterative (CSI) method to 
solve the preconditioned problem miny ||ANy-b||2  

Things to note: 

•  Normal random projection: embarassingly parallel 

•  Bound κ(A): strong control on number of iterations 

•  CSI particularly good for parallel environments: doesn’t have 
vector inner products that need synchronization b/w nodes 

Meng, Saunders, and Mahoney (2011, arXiv) 



LSRN: Solving real-world problems 
Meng, Saunders, and Mahoney (2011, arXiv) 



LSQR 
Paige and Saunders (1982) 



Chebyshev semi-iterative (CSI) 
Golub and Varga (1961) 



LSRN: on Amazon EC2 cluster 
Meng, Saunders, and Mahoney (2011, arXiv) 



Additional topics not covered ... 

Theory/practice of L1/quantile regression: 
•  Cauchy transform, ellipsoidal rounding, etc. to get low-precision soln 

•  couple with randomized interior point cutting plane method to get 
moderate-precision solutions on a terabyte of data in Hadoop 

Theory/practice of “input-sparsity” regression algorithms: 
•  input-sparsity time matrix multiplication result -> input-sparsity time 
L2 regression, low-rank approximation, leverage score algorithms 
•  nearly-input-sparsity time Lp regression algorithms via input-sparsity 
time low-distortion embeddings 



Conclusions to Part II 
Least-squares regression: 
•  faster sampling/projection in theory and implementation 

•  importance of decoupling randomness from vector space structure 

Statistical perspective: 
•  better practical results without sacrificing worst-case quality 

Revisiting the Nystrom method: 
•  the devil is in the details, if we want to make these algorithms useful 
in real large-scale systems 

Implementing in parallel/distributed environments: 
•  the same meta-algorithms work, but highlights the limits of 
theoretically-useful models, and suggests future directions 

All of these suggest future directions ... 



Conclusions on “RandNLA” 

Many many modern massive data sets are well-modeled 
by matrices: 
•  but existing algorithms were not designed for them 

Randomization is a powerful tool for: 
•  the design of algorithms with better worst-case guarantees 

•  the design of algorithms with better statistical properties 

•  the design of algorithms for large-scale architectures 

Great model/proof-of-principle for “bridging the gap”: 
•  between TCS and NLA and ML 

•  useful theory and theoretically-fruitful practice arises 


