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Why RandNLA? 

Randomization and sampling allow us to design provably accurate algorithms for 
problems that are: 
 
Ø  Massive  
 
(matrices so large that can not be stored at all, or can only be stored in slow memory devices) 
 
Ø  Computationally expensive or NP-hard  
 
(combinatorial optimization problems such as the Column Subset Selection Problem) 
 



     Randomized algorithms 
•  By (carefully) sampling rows/columns of a matrix, we can construct new, smaller 
matrices that are close to the original matrix (w.r.t. matrix norms) with high probability.  

 

 
 

•  By preprocessing the matrix using random projections, we can sample rows/columns 
much less carefully (uniformly at random) and still get nice bounds with high probability.  

RandNLA: sampling rows/columns 
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•  By preprocessing the matrix using random projections, we can sample rows/columns 
much less carefully (uniformly at random) and still get nice bounds with high probability.  

Matrix perturbation theory 

•  The resulting smaller matrices behave similarly (in terms of singular values and singular 
vectors) to the original matrices thanks to the norm bounds. 

Structural results that “decouple” the “randomized” part from the “matrix 
perturbation” part are important in the analyses of such algorithms. 

RandNLA: sampling rows/columns 



Interplay 

Theoretical Computer Science  
Randomized and approximation 

algorithms 

Numerical Linear Algebra 
 Matrix computations and linear 
algebra (ie., perturbation theory) 

Applications in BIG DATA 
 (Data Mining, Information Retrieval, 
Machine Learning, Bioinformatics, etc.) 



 Focus: sketching matrices (i) by sampling rows/columns and (ii) via “random projections.” 

  

 Machinery: (i) Approximating matrix multiplication, and (ii) decoupling “randomization” 
from “matrix perturbation.” 

  
 Overview of the tutorial: 

 (i)  Motivation: computational efficiency, interpretability  

 (ii)  Approximating matrix multiplication 

 (iii)  From matrix multiplication to CX/CUR factorizations and approximate SVD 

 (iv)  Improvements and recent progress 
 (v)  Algorithmic approaches to least-squares problems 

 (vi)  Statistical perspectives on least-squares algorithms 

 (vii) Theory and practice of: extending these ideas to kernels and SPSD matrices 

 (viii) Theory and practice of: implementing these ideas in large-scale settings 

  Roadmap of the tutorial  



 

Element-wise sampling 
•  Introduced by Achlioptas and McSherry in STOC  2001. 

•  Current state-of-the-art: additive error bounds for arbitrary matrices and exact 
reconstruction under (very) restrictive assumptions  

 (important breakthroughs by Candes, Recht, Tao, Wainright, and others) 

•  To do: Efficient, optimal, relative-error accuracy algorithms for arbitrary matrices. 

Solving systems of linear equations 

•  Almost optimal relative-error approximation algorithms for Laplacian and Symmetric 
Diagonally Dominant (SDD) matrices (Spielman, Teng,  Miller, Koutis, and others). 

•  To do: progress beyond Laplacians. 

Areas of RandNLA that will not be 
covered in this tutorial 
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There are surprising (?) connections between all three areas (row/column 
sampling, element-wise sampling, and solving systems of linear equations). 
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 Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals. 

 They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T). 

SNPs 
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… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA … 
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 Matrices including thousands of individuals and hundreds of thousands if SNPs are available. 

  Human genetics 



HGDP data 

•  1,033 samples 

•  7 geographic regions 
•  52 populations 

Cavalli-Sforza (2005) Nat Genet Rev 
Rosenberg et al. (2002) Science 
Li et al. (2008) Science 

The Human Genome Diversity Panel (HGDP) 
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We will apply SVD/PCA 
on the (joint) HGDP and 
HapMap Phase 3 data. 

 
Matrix dimensions: 

2,240 subjects (rows) 

447,143 SNPs (columns) 
 

Dense matrix:  
over one billion entries 
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Africa 

Middle East 

South Central 
Asia 

Europe 

Oceania 

East Asia 

America 

Gujarati 
Indians 

Mexicans 

•  Top two Principal Components (PCs or eigenSNPs)  
(Lin and Altman (2005) Am J Hum Genet) 

•  The figure renders visual support to the “out-of-Africa” hypothesis. 

•  Mexican population seems out of place: we move to the top three PCs. 

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet 



Africa 
Middle East 

S C Asia & 
Gujarati Europe 

Oceania 

East Asia 

America 

Not altogether satisfactory: the principal components are linear combinations 
of all SNPs, and – of course – can not be assayed! 

Can we find actual SNPs that capture the information in the singular vectors? 

Formally: spanning the same subspace. 

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet 



Issues 

•  Computing large SVDs: computational time 
•  In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the 
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 12 minutes. 

•  Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM 
(runs out-of-memory in MatLab). 

•  We compute the eigendecomposition of AAT. 

•  In a similar experiment, we had to compute the SVD of a 14,267-by-14,267 matrix to 
analyze mitochondrial DNA from 14,267 samples from approx. 120 populations in 
order to infer the relatedness of the Ancient Minoans to Modern European, Northern 
African, and Middle Eastern populations. 
(Hughey, Paschou, Drineas, et. al. (2013) Nature Communications) 

•  Obviously, running time is a concern. 

•  Machine-precision accuracy is NOT necessary! 
•  Data are noisy. 

•  Approximate singular vectors work well in our settings. 



Issues (cont’d)  

•  Selecting good columns that “capture the structure” of the top PCs 

•  Combinatorial optimization problem; hard even for small matrices.  

•  Often called the Column Subset Selection Problem (CSSP). 
•  Not clear that such columns even exist. 

 

 

The two issues: 

(i)  Fast approximation to the top k  singular vectors of a matrix, and  
(ii)  Selecting columns that capture the structure of the top k  singular vectors 

are connected and can be tackled using the same framework. 



SVD decomposes a matrix as… 

Top k left singular vectors 

The SVD has strong 
optimality properties. 

Ø  It is easy to see that X = Uk
TA. 

Ø  SVD has strong optimality properties. 

Ø  The columns of Uk are linear combinations of up to all columns of A. 



The CX decomposition 
Mahoney & Drineas (2009) PNAS 

c columns of A, with c  being 
as close to k  as possible 

Carefully 
chosen X 

Goal: make (some norm) of A-CX small. 

Why? 

If A is an subject-SNP matrix, then selecting representative columns is 
equivalent to selecting representative SNPs to capture the same structure 
as the top eigenSNPs. 

We want c as small as possible! 



CX decomposition 

Easy to prove that optimal X = C+A. 
(with respect to unitarily invariant norms; C+ is the Moore-Penrose pseudoinverse of C). 

Thus, the challenging part is to find good columns (SNPs) of A to include in C. 

 
From a mathematical perspective, this is a combinatorial optimization problem, 
closely related to the so-called Column Subset Selection Problem (CSSP); the 
CSSP has been heavily studied in Numerical Linear Algebra. 

c columns of A, with c  being 
as close to k  as possible 



Our objective for the CX decomposition 

 We would like to get theorems of the following form: 
 

 Given an m-by-n matrix A, there exists an efficient  algorithm that picks 
a small  number of columns of A such that with reasonable  probability: 
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Best rank-k 
approximation to A: 

Ak
 = UkUk

TA 
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low-degree polynomial 
in m, n, and k 

Close to k/ε constant, high, almost 
surely, etc. 
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Problem Statement 
Given an m-by-n  matrix A and an n-by-p  matrix B, approximate the product A·B, 

OR, equivalently, 

Approximate the sum of n rank-one matrices. 

Each term in the 
summation is a 

rank-one matrix 

i-th column of A 

i-th row of B 

A(i) B(i) 

Approximating Matrix Multiplication 



A sampling approach 

Algorithm 
1.  Fix a set of probabilities pi, i =1…n, summing up to 1.  

2.  For t = 1…c,  

 set jt = i, where P(jt = i ) = pi . 

 (Pick c  terms of the sum, with replacement, with respect to the pi.) 

3.  Approximate the product AB by summing the c  terms, after scaling.  

i-th column of A 

i-th row of B 

A(i) B(i) 



Sampling (cont’d) 

Keeping the terms 
j1, j2, … jc. 

i-th column of A 

i-th row of B 

A(i) B(i) 

A(jt) B(jt) 



The algorithm (matrix notation) 

Algorithm 
1.  Pick c columns of A to form an m-by-c matrix C and the corresponding 

c rows of B to form a c-by-p matrix R. 
2.  Approximate A · B by C · R. 

Notes 

3.  We pick the columns and rows with non-uniform probabilities. 

4.  We scale the columns (rows) prior to including them in C (R). 



The algorithm (matrix notation, cont’d) 

•  Create C and R by performing c i.i.d. trials, with replacement. 
•  For t = 1…c, pick a column A(jt) and a row B(jt) with probability 

 

•  Include A(jt)/(cpjt
)1/2 as a column of C, and B(jt)/(spjt

)1/2 as a row of R. 



We can also use the sampling matrix notation: 

Let S be an n-by-c matrix whose t-th column (for t = 1…c) has a single 
non-zero entry, namely 
 

 

The algorithm (matrix notation, cont’d) 

Clearly: 

Note:  S is sparse (has exactly c non-zero elements, one per column). 



Simple Lemmas 

•  It is easy to implement this particular sampling in two passes.  
•  The expectation of CR (element-wise) is AB (unbiased estimator), 
regardless of the sampling probabilities. 
•  Our particular choice of sampling probabilities minimizes the variance 
of the estimator (w.r.t. the Frobenius norm of the error AB-CR). 



A bound for the Frobenius norm 

For the above algorithm, 

•  This is easy to prove (elementary manipulations of expectation). 
•  Measure concentration follows from a martingale argument. 

•  The above bound also implies an upper bound for the spectral norm of the 
error AB-CR. 



Special case: B = AT 

If B = AT, then the sampling probabilities are 

Also, R = CT, and the error bounds are: 



Special case: B = AT (cont’d) 
(Drineas et al. Num Math 2011, Theorem 4) 

A better spectral norm bound via matrix Chernoff/Bernstein inequalities: 

 

Assumptions: 
•  Spectral norm of A is one (not important, just normalization) 

•  Frobenius norm of A is at least 0.2 (not important, simplifies bounds). 

•  Important: Set  

 
 

 

A stronger result for the 
spectral norm is proven by M. 
Rudelson and R. Vershynin 
(JACM ’07).  
Assume (for normalization) 
that ||A||2 = 1. If 

Then: for any 0 < ε < 1, with probability at least 1 - δ, 



Special case: B = AT (cont’d) 

Notes: 

•  The constants hidden in the big-Omega notation are small. 

•  The proof is simple: an immediate application of an inequality derived by Oliveira 
(2010) for sums of random Hermitian matrices. 

•  Similar results were first proven by Rudelson  & Vershynin (2007) JACM, but the 
proofs were much more complicated. 

•  We need a sufficiently large value of c, otherwise the theorem does not work. 



Special case: B = AT (cont’d) 

Open problems: 

•  Non-trivial upper bounds for other unitarily invariant norms.  

E.g., Schatten p-norms for other values of p. Especially for p = 1 (trace norm). 
•  Upper bounds for non-unitarily invariant norms that might be useful in practice. 

Notes: 

•  The constants hidden in the big-Omega notation are small. 

•  The proof is simple: an immediate application of an inequality derived by Oliveira 
(2010) for sums of random Hermitian matrices. 

•  Similar results were first proven by Rudelson  & Vershynin (2007) JACM, but the 
proofs were much more complicated. 

•  We need a sufficiently large value of c, otherwise the theorem does not work. 



Using a dense S (instead of a sampling matrix…) 

We approximated the product AB as follows:  

Recall that S is an n-by-c sparse matrix (one non-zero entry per column).  

Let’s replace S by a dense matrix, the random sign matrix: 



Using a dense S (instead of a sampling matrix…) 

We approximated the product AB as follows:  

Recall that S is an n-by-c sparse matrix (one non-zero entry per column).  

Let’s replace S by a dense matrix, the random sign matrix: 

If 

then, with high probability (see Theorem 3.1 in Magen & Zouzias SODA 2012) 

st(A): stable rank of A 



Using a dense S (instead of a sampling matrix…) 
(and focusing on B = AT, normalized) 

Approximate the product AAT (assuming that the spectral norm of A is one):  

Let S by a dense matrix, the random sign matrix: 

If 

then, with high probability: 



Using a dense S (instead of a sampling matrix…) 
(and focusing on B = AT, normalized) 

Approximate the product AAT (assuming that the spectral norm of A is one):  

Let S by a dense matrix, the random sign matrix: 

If 

then, with high probability: 

Similar structure with the 
sparse S case; some 

differences in the ln factor 



Using a dense S (cont’d) 

Comments: 

•  This matrix multiplication approximation is oblivious to the input matrices A and B. 
•  Reminiscent of random projections and the Johnson-Lindenstrauss (JL) transform. 

•  Bounds for the Frobenius norm are easier to prove and are very similar to the case 
where S is just a sampling matrix. 

•  We need a sufficiently large value for c, otherwise the (spectral norm) theorem does 
not hold. 

•  It holds for arbitrary A and B (not just B = AT); the sampling-based approach should 
also be generalizable to arbitrary A and B. 



Using a dense S (cont’d) 

Other choices for dense matrices S? 

Why bother with a sign matrix?  
(Computing the product AS and STB is somewhat slow, taking O(mnc) and O(pnc) time.) 

 

Similar bounds are known for better, i.e., computationally more efficient, choices of 
“random projection” matrices S, most notably: 

•  When S is the so-called subsampled Hadamard Transform Matrix. 
(much faster; avoids full matrix-matrix multiplication; see Sarlos FOCS 2006 and Drineas et al. 
(2011) Num Math) 

•  When S is the ultra-sparse projection matrix of Clarkson & Woodruff STOC 2013. 
(the matrix multiplication result appears in Mahoney & Meng STOC 2013). 



Recap: approximating matrix multiplication 

We approximated the product AB as follows:  

Let S be a sampling matrix (actual columns from A and rows from B are selected): 

We need to carefully sample columns of A (rows of B) with probabilities that depend 
on their norms in order to get “good” bounds of the following form: 

Holds with probability at least 1-δ by setting   



Recap: approximating matrix multiplication 

Alternatively, we approximated the product AB as follows:  

Now S is a random projection matrix (linear combinations of columns of A and rows 
of B are formed). 

Oblivious to the actual input matrices A and B ! 

Holds with high probability by setting 
(for the random sign matrix)   
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 Overview of the tutorial: 

 (i)  Motivation: computational efficiency, interpretability  

 (ii)  Approximating matrix multiplication 

 (iii)  From matrix multiplication to CX/CUR factorizations and approximate SVD 

 (iv)  Improvements and recent progress 
 (v)  Algorithmic approaches to least-squares problems 

 (vi)  Statistical perspectives on least-squares algorithms 

 (vii) Theory and practice of: extending these ideas to kernels and SPSD matrices 

 (viii) Theory and practice of: implementing these ideas in large-scale settings 

  Roadmap of the tutorial  



Back to the CX decomposition 

 Recall: we would like to get theorems of the following form: 
 

 Given an m-by-n matrix A, there exists an efficient  algorithm that picks 
a small  number of columns of A such that with reasonable  probability: 

 

 

 

 Let’s start with a simpler, weaker result, connecting the spectral  norm 
of A-CX to matrix multiplication. 
  

 (A similar result can be derived for the Frobenius norm, but takes more effort to prove; see 
Drineas, Kannan, & Mahoney (2006) SICOMP) 

low-degree polynomial 
in m, n, and k 

Close to k/ε constant, high, almost 
surely, etc. 
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Approximating singular vectors (cont’d ) 
Title: 
C:\Petros\Image Processing\baboondet.eps 
Creator: 
MATLAB, The Mathworks, Inc. 
Preview: 
This EPS picture was not saved 
with a preview included in it. 
Comment: 
This EPS picture will print to a 
PostScript printer, but not to 
other types of printers. 

A 

The fact that AAT – CCT is small will imply that A-CX is small as well. 

CX 



Proof (spectral norm) 

Using the triangle inequality and properties of norms, 

projector matrices 

We used the fact that (I-CC+)CCT is equal to zero. 



Proof (spectral norm), cont’d 

We can use our matrix multiplication result: 
(We will upper bound the spectral norm by the Frobenius norm to avoid concerns about c, namely whether 
c exceeds the threshold necessitated by the theory.) 

Assume that our sampling is done in c  i.i.d. trials and the sampling probabilities are: 



Is this a good bound? 

Problem 1: If c = n we do not get zero error. 

That’s because of sampling with replacement.  
(We know how to analyze uniform sampling without replacement, but we have no bounds on 
non-uniform sampling without replacement.) 

Problem 2: If A had rank exactly k, we would like a column selection procedure 
that drives the error down to zero when c = k. 
This can be done deterministically simply by selecting k  linearly independent columns. 

Problem 3: If A had numerical rank k, we would like a bound that depends on 
the norm of A-Ak and not on the norm of A. 
Such deterministic bounds exist when c = k  and depend on (k (n – k ))1/2 ||A-Ak||2 



Relative-error Frobenius norm bounds 

Given an m-by-n matrix A, there exists an O(mn2) algorithm that picks 
 

O((k /ε 2) ln (k /ε  2)) columns of A 

 

such that with probability at least 0.9 



The algorithm 

Sampling algorithm 
•  Compute probabilities pj summing to 1 

•  Let c = O((k /ε 2) ln (k /ε 2) ). 

•  In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with 
probability pj. 

•  Let C be the matrix consisting of the chosen columns. 

Input:  m-by-n matrix A,  
  0 < ε < .5, the desired accuracy 

Output:  C, the matrix consisting of the selected columns 



The algorithm 

Note: there is no rescaling of the columns of C in this algorithm; however, since our error 
matrix is A-CX = A-CC+A, rescaling the columns of C (as we did in our matrix multiplication 
algorithms), does not change A-CX = A-CC+A. 

Input:  m-by-n matrix A,  
  0 < ε < .5, the desired accuracy 

Output:  C, the matrix consisting of the selected columns 

Sampling algorithm 
•  Compute probabilities pj summing to 1 

•  Let c = O((k /ε 2) ln (k /ε 2) ). 

•  In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with 
probability pj. 

•  Let C be the matrix consisting of the chosen columns. 



Subspace sampling (Frobenius norm) 

Remark:  The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not. 

Vk: orthogonal matrix containing the top 
k  right singular vectors of A. 
Σ k: diagonal matrix containing the top k 
singular values of A. 
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T are orthonormal vectors, but its columns (Vk

T)(i) are not. 

Subspace sampling in O(mn2) time  

Vk: orthogonal matrix containing the top 
k  right singular vectors of A. 
Σ k: diagonal matrix containing the top k 
singular values of A. 

Normalization s.t. the 
pj  sum up to 1 



Subspace sampling (Frobenius norm) 

Remark:  The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not. 

Subspace sampling in O(mn2) time  

Vk: orthogonal matrix containing the top 
k  right singular vectors of A. 
Σ k: diagonal matrix containing the top k 
singular values of A. 

Normalization s.t. the 
pj  sum up to 1 

Leverage scores 
(many references in the 
statistics community) 



Towards a relative error bound… 

Structural result (deterministic): 

This holds for any n-by-c  matrix S  such that C = AS  as long as the k-by-c matrix 
Vk

TS has full rank (equal to k ). 



Towards a relative error bound… 

Structural result (deterministic): 

This holds for any n-by-c  matrix S  such that C = AS  as long as the k-by-c matrix 
Vk

TS has full rank (equal to k ). 
 

•  The proof of the structural result critically uses the fact that with X = C+A is the 
argmin for any unitarily invariant norm of the error A-CX. 

•  Variants of this structural result have appeared in various papers. 
( e.g., (i) Drineas, Mahoney, Muthukrishnan (2008) SIMAX, (ii) Boutsidis, Drineas, Mahoney SODA 2011, (iii) Halko, 
Martinsson, Tropp (2011) SIREV, (iv) Boutsidis, Drineas, Magdon-Ismail FOCS 2011, etc.) 



Structural result (deterministic): 

This holds for any n-by-c  matrix S  such that C = AS  as long as the k-by-c matrix 
Vk

TS has full rank (equal to k ). 
 

Let S be a sampling and rescaling matrix, where the sampling probabilities are the 
leverage scores: our matrix multiplication results (and the fact that the square of the Frobenius 
norm of Vk if equal to k) guarantee that, for our choice of c (with constant probability): 

The rank of Vk
TS 



From matrix perturbation theory, if 

it follows that all singular values (σi ) of Vk
TS satisfy: 

The rank of Vk
TS (cont’d) 

By choosing ε small enough, we can guarantee that Vk
TS has full rank (with constant probability). 



Bounding the second term 

Structural result (deterministic): 

This holds for any n-by-c  matrix S  such that C = AS  as long as the k-by-c matrix 
Vk

TS has full rank (equal to k ). 
Using strong submultiplicativity for the second term: 



Bounding the second term (cont’d) 

To conclude: 

(i) We already have a bound for all singular values of Vk
TS (go back two slides). 

(ii) It is easy to prove that, using our sampling and rescaling, 

Collecting, we get a (2+ε) constant-factor approximation.  



Bounding the second term (cont’d) 

To conclude: 

(i) We already have a bound for all singular values of Vk
TS (go back two slides). 

(ii) It is easy to prove that, using our sampling and rescaling, 

Collecting, we get a (2+ε) constant-factor approximation.  

A more careful (albeit, longer) analysis can improve the result to a (1+ε) relative-
error approximation. 



Using a dense matrix S 

Our proof would also work if instead of the sampling matrix S, we used, for 
example, the dense random sign matrix S: 

The intuition is clear: the most critical part of the proof is based on approximate 
matrix multiplication to bound the singular values of Vk

TS.  

This also works when S is a dense matrix. 



Using a dense matrix S 

Notes:  

Negative: C=AS does not consist of columns of A (interpretability is lost). 

Positive: It can be shown that the span of C=AS contains “relative-error” approximations 
to the top k left singular vectors of A, which can be computed in O(nc2) time. 

Thus, we can compute approximations to the top k left singular vectors of A in O(mnc
+nc2) time, already faster than the naïve O(min{mn2,m2n}) time of the full SVD. 



Using a dense matrix S 

Notes:  

Negative: C=AS does not consist of columns of A (interpretability is lost). 

Positive: It can be shown that the span of C=AS contains “relative-error” approximations 
to the top k left singular vectors of A, which can be computed in O(nc2) time. 

Thus, we can compute approximations to the top k left singular vectors of A in O(mnc
+nc2) time, already faster than the naïve O(min{mn2,m2n}) time of the full SVD. 

Even better: Using very fast random projections (the Fast Hadamard Transform, or the 
Clarkson-Woodruff sparse projection), we can reduce the (first term of the) running 
time further to  

O(mn polylog(n)). 
 

Implementations are simple and work very well in practice! 



 Focus: sketching matrices (i) by sampling rows/columns and (ii) via “random projections.” 

  

 Machinery: (i) Approximating matrix multiplication, and (ii) decoupling “randomization” 
from “matrix perturbation.” 

  
 Overview of the tutorial: 

 (i)  Motivation: computational efficiency, interpretability  

 (ii)  Approximating matrix multiplication 

 (iii)  From matrix multiplication to CX/CUR factorizations and approximate SVD 

 (iv)  Improvements and recent progress 
 (v)  Algorithmic approaches to least-squares problems 

 (vi)  Statistical perspectives on least-squares algorithms 

 (vii) Theory and practice of: extending these ideas to kernels and SPSD matrices 

 (viii) Theory and practice of: implementing these ideas in large-scale settings 

  Roadmap of the tutorial  



Problem   

How many columns do we need to include in the matrix C in order to get relative-error 
approximations ? 

 
Recall: with O( (k/ε2) log (k/ε 2) ) columns, we get (subject to a failure probability) 

 

 

Deshpande & Rademacher (FOCS ’10): with exactly k columns, we get 

 

 
What about the range between k  and O( k logk )? 

Selecting fewer columns 



Selecting fewer columns (cont’d) 
(Boutsidis, Drineas, & Magdon-Ismail, FOCS 2011) 

Question: 

What about the range between k  and O( k logk )?  

 

Answer: 

A relative-error bound is possible by selecting c=3k/ε columns! 
 

Technical breakthrough;  

A combination of sampling strategies with a novel approach on column selection, 
inspired by the work of Batson, Spielman, & Srivastava (STOC ’09) on graph sparsifiers.  

•    The running time is O((mnk+nk3)ε-1). 

•    Simplicity is gone… 



Towards such a result 
First, let the top-k right singular vectors of A be Vk. 

A structural result (deterministic):  

Again, this holds for any n-by-c matrix S assuming that the matrix Vk
TS has full 

rank (equal to k ) 



Towards such a result (cont’d) 
First, let the top-k right singular vectors of A be Vk. 

A structural result (deterministic):  

Again, this holds for any n-by-c matrix S assuming that the matrix Vk
TS has full 

rank (equal to k ) 
We would like to get a sampling and rescaling matrix S such that, simultaneously, 

(for some small, fixed constant c0; actually c0 = 1 in our final result). 

Setting c = O(k/ε) , we get a (2+ε) constant factor approximation (for c0 = 1).  

and 



Towards such a result (cont’d) 

We would like to get a sampling and rescaling matrix S such that, simultaneously, 

(for some small, fixed constant c0).  

and 

Lamppost: the work of Batson, Spielman, & Srivastava STOC 2009 (graph sparsification) 
 
[We had to generalize their work to use a new barrier function which controls the Frobenius and 
spectral norm of two matrices simultaneously. We then used a second phase to reduce the (2+ε) 
approximation to (1+ε).] 
 
We will omit these details, and instead state the Batson, Spielman, & Srivastava STOC 
2009 result as approximate matrix multiplication. 



The Batson-Spielman-Srivastava result 

Let Vk be an n-by-k matrix such that Vk
TVk = Ik, with k < n, and let c be a sampling 

parameter (with c > k). 

There exists a deterministic algorithm which runs in O(cnk3) time and constructs 
an n-by-c sampling and rescaling matrix S such that  



The Batson-Spielman-Srivastava result 

Let Vk be an n-by-k matrix such that Vk
TVk = Ik, with k < n, and let c be a sampling 

parameter (with c > k). 

There exists a deterministic algorithm which runs in O(cnk3) time and constructs 
an n-by-c sampling and rescaling matrix S such that  

•  It is essentially a matrix multiplication result! 
•  Expensive to compute, but very accurate and deterministic. 
•  Works for small values of the sampling parameter c. 
•  The rescaling in S is critical and non-trivial. 
•  The algorithm is basically an iterative, greedy approach that uses two barrier 

functions to guarantee that the singular values of Vk
TS stay within boundaries. 



Lower bounds and alternative approaches 
Deshpande & Vempala, RANDOM 2006 

A relative-error approximation necessitates at least k/ε columns. 

Guruswami & Sinop, SODA 2012  
Alternative approaches, based on volume sampling, guarantee 

  (r+1)/(r+1-k) relative error bounds. 

This bound is asymptotically optimal (up to lower order terms).  

The proposed deterministic algorithm runs in O(rnm3 log m) time, while the 
randomized algorithm runs in O(rnm2) time and achieves the bound in expectation. 

Guruswami & Sinop, FOCS 2011 

Applications of column-based reconstruction in Quadratic Integer Programming. 



 

 Selecting columns/rows from a matrix 
•  Additive error low-rank matrix approximation 

 Frieze, Kannan, Vempala FOCS 1998, JACM 2004 
 Drineas, Frieze, Kannan, Vempala, Vinay SODA 1999, JMLR 2004. 

•  Relative-error low-rank matrix approximation and least-squares problems 
 Via leverage scores (Drineas, Mahoney, Muthukrishnan SODA 2006, SIMAX 2008) 
 Via volume sampling (Deshpande, Rademacher, Vempala, Wang SODA 2006) 

•  Efficient algorithms with relative-error guarantees (theory) 
 Random Projections and the Fast Johnson-Lindenstrauss Transform 
 Sarlos FOCS 2006, Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath 2011 

•  Efficient algorithms with relative-error guarantees (numerical implementations) 
 Solving over- and under-constrained least-squares problems 4x faster than current state-of-the-art. 
 Amazon EC2-type implementations with M. W. Mahoney, X. Meng, K. Clarkson, D. Woodruff, et al. 
 Tygert & Rokhlin PNAS 2007, Avron, Maymounkov,Toledo SISC 2010, Meng, Saunders, Mahoney ArXiv 2011  

•  Optimal relative-error guarantees with matching lower bounds 
 Relative-error accuracy with asymptotically optimal guarantees on the number of sampled columns. 
 (Boutsidis, Drineas, Magdon-Ismail FOCS 2011, Guruswami and Sinop SODA 2012) 

Selecting rows/columns 



Element-wise sampling: Can entry-wise sampling be as accurate as column-sampling? 
 
Prior work: additive-error guarantees. 

•  To approximate a matrix A, keep a few elements of the matrix (instead of rows or columns) and 
zero out the remaining elements: 

 Compute a low-rank approximation to the sparse matrix Ã using iterative methods. 
         (Achlioptas & McSherry STOC 2001, JACM 2007; Drineas & Zouzias IPL 2011; Nguyen & Drineas ArXiv 2011) 

•  Exact reconstruction possible using uniform sampling for matrices that satisfy certain (strong) 
assumptions: A must be rank exactly k, A must have uniform leverage scores (low coherence). 

      (Candes & Recht 2008, Candes & Tao 2009, Recht 2009, Negahban & Wainwright 2010) 

•  Exact reconstruction needs Trace Minimization (the convex relaxation of Rank Minimization); 
some generalizations in the presence of well-behaved noise exist. 

Not covered in this tutorial: 
Element-wise sampling 



Goals:  

•  Identify an entry-wise probability distribution (element-wise leverage scores) that 
achieves relative-error accuracies for approximating singular values and singular vectors, 
reconstructing the matrix, identifying influential entries in a matrix, solving least-squares 
problems, etc. 

•  Compute this probability distribution efficiently. 

•  Reconstruct the matrix in O(mn polylog(m,n)) time instead of using trace minimization 
methods. 

•  Prove matching lower bounds and provide high quality numerical implementations. 
 

Element-wise sampling (cont’d) 



Solving systems of linear equations: given an m-by-n matrix A and an m - vector b, compute: 

 
 
Prior work: relative-error guarantees for m >> n  or m << n and dense matrices A. 

Running time: O( mn polylog(n ))   
(Drineas, Mahoney, Muthukrishnan, Sarlos NumMath 2011; improved by Boutsidis & Gittens ArXiv 2012) 

Main tool: random projections via the Fast Hadamard Transform 
Numerical implementations: Blendenpik (Avron, Maymounkov, Toledo SISC 2010) 
Still open: sparse input matrices, some recent progress  

    (Mahoney & Meng, Clarkson & Woodruff STOC 2013) 

Prior work: relative-error guarantees for m = n and A Laplacian or SDD (symmetric diagonally dominant). 
 

Running time: O(nnz(A) log(n)) , almost optimal bounds. 
(Spielman,Teng & collaborators, many papers over the past 8 years, Koutis, Miller, Peng FOCS 2010 & FOCS 2011)  

 

Main tool: Sparsify the input graph (Laplacian matrix) by sampling a subset of its edges with 
respect to a probability distribution called “effective resistances.” Form (recursively) a 
preconditioning chain use Chebyschev’s preconditioner.  
 

Graph Sparsification Step: Koutis et al. approximated  effective resistances via low-stretch 
spanning trees; Drineas & Mahoney Arxiv 2010 connected effective resistances to leverage scores. 

Not covered in this tutorial: 
Solving systems of linear equations 



 
Fact: in prior work graphs are fundamental: effective resistances, low-stretch spanning trees, etc.  

 
Goals:  
 
Move current state-of-the-art beyond Laplacians and SDD matrices to – say – SPD (positive 
semidefinite) matrices.  
 
Paradigm shift: deterministic accuracy guarantees with a randomized running time, as opposed to 
probabilistic accuracy with deterministic running times. 
 
If ε is the target relative error, the running time should depend on poly(log(1/ε)) instead of poly(1/ε). 

In Theoretical Computer Science, most algorithms achieve the latter guarantee. 
In Numerical Linear Algebra the former dependency is always the objective. 

Solving systems of linear equations (cont’d) 



Conclusions 

•  Randomization and sampling can be used to solve problems that are massive and/or 
computationally expensive. 

•  By (carefully) sampling rows/columns of a matrix, we can construct new sparse/
smaller matrices that behave like the original matrix. 

•  By preprocessing the matrix using random projections, we can sample rows/ 
columns (of the preprocessed matrix) uniformly at random and still get nice “behavior”. 


