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Small Dimension



What if Z1is small?

» Can solve 1+¢ approximate NNS with
O(nd) space
(0(d) /€ )Tdlogn query time
[AMNSW’9S,...]

» OK,if say @=5"!

» Usually, Zis not small...



“effectively”

What if & i}s/mall?

» Eg:
/-dimensional subspace of R7d, with A<d
Obviously, extract subspace and solve NNS there!

Not a robust definition...

» More robust definitions:
KR-dimension [KR’02]
Doubling dimension [Assouad’83, Cla’99, GKL03, KL 04]
Smooth manifold [BW’06, Cla’08]
other [CNBYM’0I, FK97,IN’07, Cla’06...]



Doubling dimension

» Definition: pointset .5 has doubling dimension A if:

for any point p€.S;, radius 7, consider ball Z(p,7) of points within
distance 7 of p

can cover A(p,7) by 274 balls F(yd1,r/2), B(yi2 ,r/2), ...
» Sanity check:

/#-dimensional subspace has /=0(4)

n points always have dimension at most J(log7 )

» Can be defined for any metric space!

@ ® 270(k) balls to cover
@ @
@
@




NNS for small doubling dimension
» Euclidean space [Indyk-Naor’07/]

JL into dimension A=0(A) “works” !
Contraction of any pair happens with very small probability

Expansion of some pair happens with constant probability
Good enough for NNS!

» Arbitrary metric

Navigating nets/cover trees [Krauthgamer-Lee’04, Har-Peled-
Mendel’05, Beygelzimer-Kakade-Langford’06,...]
Algorithm:
A data-dependent tree: recursive space partition using balls Z(p,7)
At query g, follow all paths that intersect with the ball Z(g,7)



Embeddings



General Theory: embeddings

» General motivation: given distance (metric) 47 solve a
computational problem 2 under #/

Hamming distance

Compute distance between two points

Euclidean distance (£,) Nearest Neighbor Search
Edit distance between two strings Diameter/Close-pair of set S
Earth-Mover (transportation) Distance Clustering, MST, etc

f

| Reduce problem
| <Punder hard metric>




Embeddings: landscape

» Definition: an embedding is a map /: M%) /A of a metric (M, diM) into
a host metric (#, pdH) such that for any x, (¥} M

alM (xy)<WNH (f (%), f(V)<D- diM (%)
where 2 is the distortion (approximation) of the embedding /.

» Embeddings come in all shapes and colors:
Source/host spaces M, A
Distortion 2
Can be randomized:
Time to compute f(x)

» Types of embeddings:
From norm to the same norm but of lower dimension (dimension reduction)
From one norm (¢{2) into another norm (¥J1)
From non-norms (edit distance, Earth-Mover Distance) into a norm (£1)
From given finite metric (shortest path on a planar graph) into a norm (£1)
/7 not a metric but a computational procedure « sketches

H(f(x), f(¥) = dM(x,y) with 1—[¥] probability



Earth-Mover Distance

» Definition:
Given two sets 4, Z of points in a metric space
FMD(A,B) = min cost bipartite matching between 4and #

» Which metric space!?
Can be plane, 242, £41 ...

» Applications in image vision
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Embedding EMD into #/1

» At least as hard as £J1

» Theorem [Cha02, IT03]: Can embed EMD over [A]T2
into £J1 with distortion J(logA ). Time to embed a set
of s points: J(slogA ).

» Consequences:
Nearest Neighbor Search: O(clogA ) approximation with J(s
nT1+1/c) space,and O(7nT1/c-slogA ) query time.
Computation: J(logA) approximation in J(slogA ) time
Best known: 1+ € approximation in O () time [SA’12]
The higher-dimensional variant is still fastest via embedding [AIK’08]



High level embedding

» Sets of size sin [1...A[X]1...A] box
» Embedding of set A4:

take a quad-tree

randomly shift it
Each cell gives a coordinate:
/ (A) c=#points in the cell

» Need to prove

E[I[f(A)—f (BN [~ EMD(A,;

FA)=..2210.. 0002..0011.10100..0000..
13 F(B)=.1202.. 0100..0011..0000..1100..



Main Approach

» ldea: decompose EMD over
[A]? into EMDs over smaller
grids

» Recursively reduce to A=O(I)

Q
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EMD over small grid

» Suppose A=3

» f(A) has nine coordinates, counting # points in each joint
f(A)=(2,1,1,0,0,0,1,0,0)
£(B)=(1,1,0,0,2,0,0,0,1)

» Gives O(1) distortion



Decomposition Lemma [I07]

» For randomly-shifted cut-grid G of side length k, we have:
EEMD,(A,B) < EEMD, (A, B,) |+{ EEMD (A,,B.)4. ..
+ I*EEMD , WA, Bg)
EEMD,(A,B) = 1/3 E[ EEMD),(A\ B) + EEMDy(A,,B,)+..| 1,00 er
EEMD, (A,B) = E[ K*EEMD /) (A., Bc) ] bound

» The distortion will _

lower bound
on cost

follow by applying the lempma

recursively to (As,Bg)




Part 1: lower bound

» For a randomly-shifted cut-grid G of side length k, we have:
EEMD,(A,B) < EEMD,(A,, B,) + EEMD,(A,,B,)+...
+ *EEMD, (A, Bg)
» Extract a matching it from the matchings on right-hand side

» For each aEA, with acA, it is either:
matched in EEMD(A,B) to some bEB, k
or acA\\B, and it is matched
in EEMD(Ag,Bg) to some bEB,

» Match cost in 2" case:
Move a to center (A) A/k
paid by EEMD(A,B)
Move from cell i to cell
paid by EEMD(A,B..)




Parts 2 & 3: upper bound

» For a randomly-shifted cut-grid G of side length k, we have:
EEMD,(A,B) = 1/3 E[ EEMD,(A,, B,) + EEMD,(A,,B,)*... ]
EEMD, (A,B) = E[ k*EEMD, (A, Bo) ]

» Fix a matching st minimizing EEMD ,(A,B)

Will construct matchings for each EEMD on RHS

» Uncut pairs (a,b) are matched in respective (A,B.)

» Cut pairs (a,b) are matched
in (Ag,Bg)
and remain unmatched in their

mini-grids




Part 2: Cost?

» EEMD,(A,B) = 1/3 E[ >. EEMD, (A, B)]

» Uncut pairs (a,b) are matched in respective (A,B,)
Contribute a total < EEMD ,(A,B)

» Consider a cut pair (a,b) at distance a—/=(ddx,dly)
Contribute < 2k to ), EEMD, (A, B)
Pr[(a,b) cut] = 1-(1—-adix /&) (1-dly [ k) <[|la—b[[I1 [ k
Expected contribution < Pr[(a,b) cut] -24< 2||a—5||1
In total, contribute 2-EEMD ,(A,B)




Wrap-up of EMD Embedding

» In the end, obtain that
EMD(A,B) = sum of EMDs of smaller grids in expectation
Repeat J(logA ) times to get to 1X1 grid
O(logA ) approximation it total!



Embeddings of various metrics into /1

Mewric | Upporbound D

Earth-mover distance

v

(-sized sets in 2D plane) [Cha02,1T03]

Earth-mover distance
[AIKOS]

(-sized sets in )
Edit distance over
(#indels to transform x->y)

Ulam (edit distance between edit(1234567,
permutations) [CKOé] 7123456) =2

Block edit distance

[ORO5]

[MS00, CM07]



Non-embeddability into /1

Upperbound

Earth-mover distance

(-sized sets in 2D plane) [Cha02, ITO3] [NS07]
Earth-mover distance

(-sized sets in ) [AIKO8] [KNO5]
Edit distance over

(#indels to transform x->y) [I08] [N S
Ulam (edit distance between

permutations) [CKO6] [AKO7]
Block edit distance 4/3

[MS00, CM07] [Cor03]



Non-embeddability proofs

» Via Poincaré-type inequalities. . .

» [Enflo’69]: embedding {0,1}7d into £J2 (any dimension) must
incur Q(vd ) distortion

» Proof [Khot-Naor’05]

Suppose f'is the embedding of {0,1}7d into £J2
Two distributions over pairs of points x,€{0,1}7Td:
C: x=y+ell for random y and index ¢
F: x,y are random
Two steps:

EIC [[[x=y[N1 ]SO ) d) ELF [[[x—y[[i1 ]
ELC[[[f()—/O)IN2T2 [2Q (1) d)-ELF [[[f ()~ (7)[[$2T2 ] (short

diagonals)

Implies Q. (V@ ) lower bound!



Other good host spaces?

» What is “good’: sg- ,etc
is algorithmically tractable V| v M
is rich (can embed into it) X X

sqg-{,=real space with distance: ||x-y||,?
sq-f,, hosts with very good

into LSH (lower bounds via

Edit distance over communication complexity)
[KNO5, KRO6] [AK'07]

Ulam (edit distance
between permutations) [AKO7] [AK'07]

Earth-mover distance
(-sized sets in ) [KNOS] [AIK08]



The £Joo story

» [Mat96]: Can embed any metric on 7 points into £Joo 7

» Theorem [I’98]: NNS for £JooTd with
0JJ (loglogd ) approximation
nT1+J space, 0>0
O(dlogn ) query time

» Dimension 7 is an issue though...

» Smaller dimension?
Possible for some: Hausdorff,... [FCI99]

» But, not possible even for {0,1}74 [JLOI]



Other good host spaces?

» What is “good’:
algorithmically tractable
rich (can embed into it)

» But: combination sometimes works!

sg- ,etc
v V v || X
X X X ||V




Meet our new host
[A-Indyk-Krauthgamer’'09]

» Iterated product space

sq—LI2Ty (Lo TF (LilTa))

N Y I
~ E
N —~ x=x1,...xla )ERTa

Al (xy)=)/i=1Taé# | xdi —yll|

=1, .  xdf)elilTaxilTaX..tilTa
dloo,1 (xy)=maxli=1.F a1 (xli yii)

x=d1,.xdy JELLoo I (Ll Ta )X.. XLl 1f (LilTa )
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Why sq—2I2Ty (£l Tf

[Indyk’02, A-Indyk-Krauthgamer’'09]

» Because we can...

(P11 Ter )) 2

(edlt dlstanc/e between permutations
ED(1234567,
- 7123456) = 2

r Embedding: ...embed Ulam #{to sq—¢42 1y (2o 14 (

< | ¢417a )) with constant distortion

< | » dimensions = length of the string
.. ""NNS:Any t-iterated product space has NNS on n
s |points with
E o (loglogn )T0O(z) approximation
£ §|» near-linear space and sublinear time
So g
< &

)

‘Corollary: NNS for Ulam with O(loglogn )T2 approx.

Better than via each #/p component separately!




Sketching



Computational view
» yg/mo,m/f 10,1 T4 % {0,1%0% [M]R

» Arbitrary computation (¥

Cons:
Nol/little structure (e.g., (#,) not metric)
Pros:
More expressability:

may achieve better distortion (approximation)
smaller “dimension” £ F -
FO).

» Sketch #':“functional compression scheme’|_ ~

for estimating distances

almost all lossy (1+{¥] distortion or more) and
randomized

diM (x,y)= \/2
C(Fx), F(»))



Why?
» 1) Beyond embeddings:

can more do if “embed” into computational space

» 2) A waypoint to get embeddings:

computational perspective can give actual embeddings

» 3) Connection to informational/computational notions

communication complexity

31



Beyond Embeddings:

» “Dimension reduction” in £/1 !

» Lemma [I00]: exists linear #:¢J1 M]RTk,and C
where £=0(eT-2 logn)

achieves: for any x,

4

£J1 , with probability 1—1/772 :

COHF&), F(r)= (1te) [lx—yl[41
y F(x)=(sd1 -x, 842 -x, ... sdk-x)/hk=1/F-Sx
Where sii=(sdi1 ,si2,...slid) with each si/ distributed from
Cauchy distribution (1-stable distribution)

CF (), F()=median(|FI1 (=L D), pdf(s)=1/m(s12 +1)

)

|2 (O)—F12 ()],

| Pl (X)—Flk

» While |s-x| does not have expectation, it has median!



Waypoint to get embeddings

» Embedding of Ulam metric into sq—A42Ty (£l T4 (
#11Ta ))was obtained via “geometrization” of an
algorithm/characterization:

sublinear (local) algorithms:  property testing & streaming
[EKKRV98,ACCL04, GJKKO07, GGO7, EJ08]

sum of squares (sqg-{,)
max ({..)

sum (¢,)

X

_<




Ulam: algorithmic characterization
[Ailon-Chazelle-Commandur-Lu’04, Gopalan-Jayram- -5 K=
Krauthgamer-Kumar’07, A-Indyk-Krauthgamer’09] E'g" a=9; K=4

» Lemma: Ulam(x,y) approximately equals X[5A;4]

the. nu.mber of “faulty” characters a I 123456785
satisfying:
there exists K21 (prefix-length) s.t. Y= 123467895
. . =Y
the set of K characters preceding a in x Y[5:4]

differs much from

the set of K characters preceding a iny
| X [a; K]AY |a; K]| > K
I E.g. 1lys.4 =(1,1,1,1,0,0,0,0,0)

HlX[a;K] - 1Y[a;K]H1 > K



Connection to communication complexity

» Enter the world of Alice and Bob...

Communication complexity model:

shared randomness

= Two-party protocol

= Shared randomness

m Promise (gap) version

m C = approximation ratio

2 m  CC = min.# bits to decide (for 90%
success)
X CC bits v
Sketching model:
sketch(x) s| ) = Referee decides based on sketch(x),
e sketch(y)

= SK = min. sketch size to decide
decide whether:
dlxy) ¥ £ Or d(xy)>ck

35

Fact: SK = CC

é?



Communication Complexity

4
>

>

v

v

VERY rich theory [Yao'79, KN’97,...]

Some notable examples:

241 ,£12 are sketchable with O(1 /€72 ) bits! [AMS'96,KOR’98]

hence also everything than embeds into it!

Q(1/e72 ) is tight [IW’03,W’04, BJKS’08,CR’ 2]

£Joo Td requires Q(d/cT2) bits [BJKS’02]

Coresets: sketches of sets of points for geometric problems [AHV04...]
Connection to NNS:

[KOR’98]: if sketch size is s, then NNS with 7270(s) space and one memory
lookup!

From the perspective of NNS lower bounds, communication complexity closer
to ground truth

Question: do non-embeddability result say something about non-
sketchability?

also Poincare-type inequalities... [AKO7,AJP’10]
Connections to streaming: see Graham Cormode’s lecture

36



High dimensional
geometry




P
P2

Closest

Pair

» Problem: n points in d-dimensional Hamming space, which
are random except a planted pair at distance '/2-¢

» Solution |:build NNS and query 7 times
LSH-type algo would give ~d7nT2—0(¢) [PRR89,IM98,D08]

» Theorem [Valiant’|2]: O(dnT1.8 /poly(

=

38
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P2®

W

)) time

=Y

=M

Find max entry of

MM®

using subcubic
MM algorithms



What I

didn’t talk about:

» Too many things to mention

Includes embedding of fixed finite metric into simpler/more-structured
spaces like /1

» Tiny sample among them:

LLR94]
[Bou85]

Bou85]

Ra099]

:introduced metric embeddings to TCS. E.g. showed can use
to solve sparsest cut problem with J(log7) approximation

: Arbitrary metric on 7z points into £{1 , with J(log7) distortion
: embedding planar graphs into £41 , with O(viogn ) distortion

[ARV04,ALNOS5]: sparsest cut problem with & (Viogn ) approximation
[KMS98,...]: space partition for rounding SDPs for coloring

Lots others...

» A list of open questions in embedding theory
Edited by Jiri Matousek + Assaf Naor:
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