Algorithmic High-Dimensional Geometry 2

Alex Andoni (Microsoft Research SVC)

The NNS prism

Small Dimension

What if *d* is small?

• Can solve $1 + \epsilon$ approximate NNS with

- ► O(nd) space
- $(O(d)/\epsilon)$ $fd \log n$ query time
- ▶ [AMNSW'98,...]
- ► OK, if say *d*=5 !
- Usually, *d* is not small...

"effectively" What if *d* is small?

- Eg:
 - k-dimensional subspace of $\Re \uparrow d$, with $k \ll d$
 - Obviously, extract subspace and solve NNS there!
 - Not a robust definition...
- More robust definitions:
 - KR-dimension [KR'02]
 - Doubling dimension [Assouad'83, Cla'99, GKL'03, KL'04]
 - Smooth manifold [BW'06, Cla'08]
 - other [CNBYM'01, FK97, IN'07, Cla'06...]

Doubling dimension

- **Definition:** pointset S has doubling dimension λ if:
 - ▶ for any point $p \in S$, radius *r*, consider ball B(p,r) of points within distance *r* of *p*
 - can cover B(p,r) by $2\uparrow\lambda$ balls $B(y\downarrow1,r/2), B(y\downarrow2,r/2), \dots$
- Sanity check:
 - k-dimensional subspace has $\lambda = O(k)$
 - **n** points always have dimension at most $O(\log n)$
- Can be defined for any metric space!

NNS for small doubling dimension

- Euclidean space [Indyk-Naor'07]
 - ▶ JL into dimension $k = O(\lambda)$ "works" !
 - Contraction of any pair happens with very small probability
 - Expansion of some pair happens with constant probability
 - Good enough for NNS!

Arbitrary metric

- Navigating nets/cover trees [Krauthgamer-Lee'04, Har-Peled-Mendel'05, Beygelzimer-Kakade-Langford'06,...]
- Algorithm:
 - A data-dependent tree: recursive space partition using balls B(p,r)
 - At query q, follow all paths that intersect with the ball B(q,r)

Embeddings

General Theory: embeddings

General motivation: given distance (metric) *M*, solve a computational problem *P* under *M*

Embeddings: landscape

• Definition: an embedding is a map $f:M \boxtimes H$ of a metric $(M, d \downarrow M)$ into a host metric $(H, \rho \downarrow H)$ such that for any $x, y \boxtimes M$:

 $d \downarrow M(x,y) \leq \mathbb{W} \downarrow H(f(x), f(y)) \leq D \cdot d \downarrow M(x,y)$

where D is the distortion (approximation) of the embedding f.

• Embeddings come in all shapes and colors:

- Source/host spaces *M*, *H*
- Distortion D
- Can be randomized: $\mathbb{K} H(f(x), f(y)) \approx dM(x, y)$ with $1 \mathbb{K}$ probability
- Time to compute f(x)

Types of embeddings:

- From norm to the same norm but of *lower dimension* (dimension reduction)
- From one norm $(\ell \downarrow 2)$ into another norm $(\ell \downarrow 1)$
- From non-norms (edit distance, Earth-Mover Distance) into a norm $(\ell 1)$
- From given finite metric (shortest path on a planar graph) into a norm $(\ell 1)$
- *H* not a metric but a computational procedure \leftarrow sketches

Earth-Mover Distance

Definition:

- Given two sets A, B of points in a metric space
- EMD(A,B) = min cost bipartite matching between A and B
- Which metric space?
 - Can be plane, $\ell \downarrow 2$, $\ell \downarrow 1$...
- Applications in image vision

Images courtesy of Kristen Grauman

Embedding EMD into $\ell \downarrow 1$

- At least as hard as $\ell \downarrow 1$
- Theorem [Cha02, IT03]: Can embed EMD over $[\Delta]$? into $\ell \downarrow 1$ with distortion $O(\log \Delta)$. Time to embed a set of *s* points: $O(s \log \Delta)$.

Consequences:

- Nearest Neighbor Search: $O(c \log \Delta)$ approximation with $O(s n \hbar 1 + 1/c)$ space, and $O(n \hbar 1/c \cdot s \log \Delta)$ query time.
- Computation: $O(\log \Delta)$ approximation in $O(s \log \Delta)$ time
 - Best known: $1 + \epsilon$ approximation in O(s) time [SA'12]
 - The higher-dimensional variant is still fastest via embedding [AIK'08]

High level embedding

- Sets of size s in $[1...\Delta] \times [1...\Delta]$ box
- Embedding of set A:
 - take a quad-tree
 - randomly shift it
 - Each cell gives a coordinate:
 - f(A)c = #points in the cell c

Need to prove

 $E[||f(A) - f(B)||\downarrow 1] \approx EMD(\underline{A}, \underline{A})$

f(A)=...2210... 0002...0011...0100...0000...

0

0

22

20

f(B)=...1202... 0100...0011...0000...1100...

Main Approach

- Idea: decompose EMD over
 [Δ]² into EMDs over smaller grids
- Recursively reduce to $\Delta = O(I)$

EMD over small grid

- Suppose ∆=3
- f(A) has nine coordinates, counting # points in each joint
 - f(A)=(2,1,1,0,0,0,1,0,0)
 - ► f(B)=(1,1,0,0,2,0,0,0,1)
- Gives O(I) distortion

Decomposition Lemma [I07]

- For randomly-shifted cut-grid G of side length k, we have:
- ► EEMD_A(A,B) ≤ EEMD_k(A₁, B₁) + EEMD_k(A₂,B₂)+... lower bound + $k^* EEMD_{\Lambda/k}(A_G, B_G)$ on cost ► EEMD_A(A,B) $\geq 1/3 \text{ E}[\text{ EEMD}_k(A_1, B_1) + \text{EEMD}_k(A_2, B_2) + ...]_{upper}$ ► EEMD_{Λ}(A,B) ≥ E[k*EEMD_{A/k}(A_G, B_G)]</sub>bound The distortion will follow by applying the lemma recursively to (A_{c}, B_{c}) Δ/k

Part 1: lower bound

- For a randomly-shifted cut-grid G of side length k, we have:
 - ► $\text{EEMD}_{\Delta}(A,B) \leq \text{EEMD}_{k}(A_{1},B_{1}) + \text{EEMD}_{k}(A_{2},B_{2}) + \dots$

+ k*EEMD_{Δ/k}(A_G, B_G)

- Extract a matching π from the matchings on right-hand side
- For each $a \in A$, with $a \in A_i$, it is either:
 - matched in EEMD(A_i, B_i) to some b $\in B_i$
 - or $a \in A_i \setminus B_i$, and it is matched in EEMD(A_G, B_G) to some $b \in B_i$
- Match cost in 2nd case:
 - Move **a** to center (Δ)
 - paid by EEMD(A_i,B_i)
 - Move from cell i to cell j
 - paid by EEMD(A_G,B_G)

Parts 2 & 3: upper bound

- For a randomly-shifted cut-grid G of side length k, we have:
 - ► $\text{EEMD}_{\Delta}(A,B) \ge 1/3 \text{ E}[\text{ EEMD}_{k}(A_{1},B_{1}) + \text{EEMD}_{k}(A_{2},B_{2}) + ...]$
 - ► EEMD_{Δ}(A,B) ≥ E[k*EEMD_{$\Delta/k}(A_G, B_G)]</sub>$
- Fix a matching π minimizing EEMD_{Δ}(A,B)
 - Will construct matchings for each EEMD on RHS
- Uncut pairs (a,b) are matched in respective (A_i,B_i)
- Cut pairs (a,b) are matched
 - in (A_G, B_G)
 - and remain unmatched in their mini-grids

Part 2: Cost?

- ► $EEMD_{\Delta}(A,B) \ge 1/3 E[\sum_{i} EEMD_{k}(A_{i}, B_{i})]$
- Uncut pairs (a,b) are matched in respective (A_i,B_i)
 - ► Contribute a total $\leq \text{EEMD}_{\Delta}(A,B)$
- Consider a cut pair (a,b) at distance $a-b=(d\downarrow x, d\downarrow y)$
 - ► Contribute $\leq 2k$ to $\sum_{i} \text{EEMD}_{k}(A_{i}, B_{i})$
 - $\Pr[(a,b) \text{ cut}] = 1 (1 d \downarrow x / k) (1 d \downarrow y / k) \le ||a b|| \downarrow 1 / k$
 - Expected contribution $\leq \Pr[(a,b) \operatorname{cut}] \cdot 2k \leq 2||a-b||1$
 - In total, contribute $2 \cdot \text{EEMD}_{\Delta}(A,B)$

Wrap-up of EMD Embedding

- In the end, obtain that
 - EMD(A,B) \approx sum of EMDs of smaller grids in expectation
 - Repeat $O(\log \Delta)$ times to get to 1×1 grid
 - $O(\log \Delta)$ approximation it total!

Embeddings of various metrics into $\ell \downarrow 1$

Metric	Upper bound	edit(
Earth-mover distance		
(-sized sets in 2D plane)	[Cha02, IT03]	() = 2
Earth-mover distance		
(-sized sets in)	[AIK08]	
Edit distance over		
(#indels to transform x->y)	[OR05]	
Ulam (edit distance between permutations)	[CK06]	edit(1234567, 7123456) = 2
Block edit distance	[MS00, CM07]	

Non-embeddability into $\ell \downarrow 1$

Metric	Upper bound	Lower bounds
Earth-mover distance (-sized sets in 2D plane)	[Cha02, IT03]	[NS07]
Earth-mover distance (-sized sets in)	[AIK08]	[KN05]
Edit distance over (#indels to transform x->y)	[OR05]	[KN05,KR06]
Ulam (edit distance between permutations)	[CK06]	[AK07]
Block edit distance	[MS00, CM07]	4/3 [Cor03]

Non-embeddability proofs

- Via Poincaré-type inequalities...
- [Enflo'69]: embedding $\{0,1\}$ *d* into $\ell \downarrow 2$ (any dimension) must incur $\Omega(\sqrt{d})$ distortion
- Proof [Khot-Naor'05]
 - Suppose f is the embedding of $\{0,1\}$ $\uparrow d$ into $\ell \downarrow 2$
 - Two distributions over pairs of points $x, y \in \{0, 1\} \uparrow d$:
 - C: $x=y+e\downarrow i$ for random y and index i
 - F: x, y are random
 - Two steps:
 - $E \downarrow C [||x-y||\downarrow 1] \leq O(1/d) \cdot E \downarrow F [||x-y||\downarrow 1]$
 - $E \downarrow C [||f(x) f(y)|| \downarrow 2 \uparrow 2] \ge \Omega(1/d) \cdot E \downarrow F [||f(x) f(y)|| \downarrow 2 \uparrow 2]$ (short diagonals)
 - Implies $\Omega(\sqrt{d})$ lower bound!

Other good host spaces?

???

	$sq-l_2 = real space with distance: x-y _2^2$	
Metric	Lower bound into	sq-l ₂ , hosts with very good LSH (lower bounds via
Edit distance over	[KN05, KR06]	communication complexity) [AK'07]
Ulam (edit distance between permutations)	[AK07]	[AK'07]
Earth-mover distance (-sized sets in)	[KN05]	[AIK'08]

The $\ell \downarrow \infty$ story

• [Mat96]: Can embed any metric on *n* points into $\ell \downarrow \infty \uparrow n$

• Theorem [I'98]: NNS for $\ell \downarrow \infty \uparrow d$ with

- $O \downarrow \delta$ (loglog d) approximation
- $n \uparrow 1 + \delta$ space, $\delta > 0$
- ► O(dlogn) query time
- Dimension n is an issue though...
- Smaller dimension?
 - Possible for some: Hausdorff,... [FCI99]
- But, not possible even for $\{0,1\} \uparrow d$ [JL01]

Other good host spaces?

- What is "good":
 - algorithmically tractable
 - rich (can embed into it)

But: combination sometimes works!

Why $sq - \ell \downarrow 2 \uparrow \gamma \ (\ell \downarrow \infty \uparrow \beta (\ell \downarrow 1))$ edit distance between permutations [Indyk'02, A-Indyk-Krauthgamer'09] ED(1234567, 7123456) = 2Because we can... F Embedding: ... embed Ulam if to $sq - \ell \downarrow 2 \uparrow \gamma \ (\ell \downarrow \infty \uparrow \beta)$ $\ell \downarrow 1 \uparrow \alpha$)) with constant distortion Rich

dimensions = length of the string

▶ NNS: Any t-iterated product space has NNS on n points with

 $(\log \log n) \uparrow O(t)$ approximation

Algorithmically

ctable

tra

near-linear space and sublinear time

Corollary: NNS for Ulam with $O(\log \log n)$ approx.

Better than via each $\ell \downarrow p$ component separately!

Sketching

Computational view

- Arbitrary computation $C: \mathbb{K} \times \mathbb{K} \times \mathbb{K} / +$
 - Cons:
 - No/little structure (e.g., (F, C) not metric)
 - Pros:
 - More expressability:
 - may achieve better distortion (approximation)
 - smaller "dimension" k

Sketch F: "functional compression scheme"

- for estimating distances
- ▶ almost all lossy (1+ ★ distortion or more) and randomized

 $d \downarrow M(x,y) \approx \sqrt{2}$

 $\mathcal{C}(F(x), F(y))$

F

F(x)

Why?

- I) Beyond embeddings:
 - can more do if "embed" into computational space
- > 2) A waypoint to get embeddings:
 - computational perspective can give actual embeddings
- 3) Connection to informational/computational notions
 - communication complexity

Beyond Embeddings:

- "Dimension reduction" in $\ell \downarrow 1$!
- Lemma [100]: exists linear $F: \ell \downarrow 1 \boxtimes \Re \ell k$, and C
 - where $k = O(\epsilon \hat{1} 2 \cdot \log n)$
 - achieves: for any $x, y \boxtimes \ell \downarrow 1$, with probability $1 1/n \uparrow 2$:
 - $C(F(x), F(y)) = (1 \pm \epsilon) \cdot ||x y|| \downarrow 1$
- $F(x) = (s \downarrow 1 \cdot x, s \downarrow 2 \cdot x, \dots s \downarrow k \cdot x)/k = 1/k \cdot Sx$
 - Where $s \downarrow i = (s \downarrow i 1, s \downarrow i 2, ..., s \downarrow i d)$ with each *sij* distributed from Cauchy distribution (1-stable distribution)
 - $\mathcal{C}(F(x),F(y)) = median(|F \downarrow 1 (x) F \downarrow 1 (y)|, \quad pdf(s) = 1/\pi(s \uparrow 2 + 1) \\ |F \downarrow 2 (x) F \downarrow 2 (y)|,$

$$F\downarrow k(x)-F\downarrow k$$

 $(\mathcal{Y})|)$

• While $|s \cdot x|$ does not have expectation, it has median!

Waypoint to get embeddings

- Embedding of Ulam metric into $sq \ell \downarrow 2 \uparrow \gamma$ ($\ell \downarrow \infty \uparrow \beta$ ($\ell \downarrow 1 \uparrow \alpha$)) was obtained via "geometrization" of an algorithm/characterization:
 - sublinear (local) algorithms: property testing & streaming [EKKRV98, ACCL04, GJKK07, GG07, EJ08]

Ulam: algorithmic characterization

[Ailon-Chazelle-Commandur-Lu'04, Gopalan-Jayram-Krauthgamer-Kumar'07, A-Indyk-Krauthgamer'09]

- Lemma: Ulam(x,y) approximately equals the number of "faulty" characters a satisfying:
 - ▶ there exists $K \ge I$ (prefix-length) s.t.
 - the set of K characters preceding a in x differs much from

the set of K characters preceding a in y

E.g., a=5; K=4

Connection to communication complexity

Enter the world of Alice and Bob...

decide whether:

 $d(x,y) \boxtimes R$ or d(x,y) > cR

Communication complexity model:

- Two-party protocol
- Shared randomness
- Promise (gap) version
- c = approximation ratio
- CC = min. # bits to decide (for 90% success)

Sketching model:

- Referee decides based on sketch(x), sketch(y)
- SK = min. sketch size to decide

Fact: $SK \ge CC$

Communication Complexity

- VERY rich theory [Yao'79, KN'97,...]
- Some notable examples:
 - ▶ $\ell \downarrow 1$, $\ell \downarrow 2$ are sketchable with $O(1/\epsilon \uparrow 2)$ bits! [AMS'96,KOR'98]
 - hence also everything than embeds into it!
 - $\Omega(1/\epsilon^2)$ is tight [IW'03,W'04, BJKS'08,CR'12]
 - $\ell \downarrow \infty \uparrow d$ requires $\Omega(d/c\uparrow 2)$ bits [BJKS'02]
 - Coresets: sketches of sets of points for geometric problems [AHV04...]
- Connection to NNS:
 - [KOR'98]: if sketch size is *s*, then NNS with $n \uparrow O(s)$ space and one memory lookup!
 - From the perspective of NNS lower bounds, communication complexity closer to ground truth
- Question: do non-embeddability result say something about nonsketchability?
 - also Poincaré-type inequalities... [AK07,AJP'10]
- Connections to streaming: see Graham Cormode's lecture

Closest Pair

- Problem: n points in d-dimensional Hamming space, which are random except a planted pair at distance $\frac{1}{2-\epsilon}$
- Solution I: build NNS and query n times
 - ► LSH-type algo would give $\sim dn 12 \Theta(\epsilon)$ [PRR89, IM98, D08]
- Theorem [Valiant' 12]: $O(dn \uparrow 1.8 / poly(\mathbb{M}))$ time

What I didn't talk about:

- Too many things to mention
 - > Includes embedding of fixed finite metric into simpler/more-structured spaces like $\ell \! \downarrow \! 1$
- Tiny sample among them:
 - [LLR94]: introduced metric embeddings to TCS. E.g. showed can use [Bou85] to solve sparsest cut problem with $O(\log n)$ approximation
 - [Bou85]: Arbitrary metric on *n* points into $\ell \downarrow 1$, with $O(\log n)$ distortion
 - [Rao99]: embedding planar graphs into $\ell \downarrow 1$, with $O(\sqrt{\log n})$ distortion
 - [ARV04,ALN05]: sparsest cut problem with $O(\sqrt{\log n})$ approximation
 - ▶ [KMS98,...]: space partition for rounding SDPs for coloring
 - Lots others...
- A list of open questions in embedding theory
 - Edited by Jiří Matoušek + Assaf Naor:
 - http://kam.mff.cuni.cz/~matousek/metrop.ps

High dimensional geometry via NNS prism

