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Small Dimension 



What if 𝑑 is small? 
}  Can solve 1+𝜖 approximate NNS with   approximate NNS with  

}  𝑂(𝑛𝑑) space 
}  (𝑂(𝑑)/𝜖 )↑𝑑 log 𝑛  query time 
}  [AMNSW’98,…] 

}  OK, if say 𝑑=5 ! 

}  Usually, 𝑑  is not small… 



What if 𝑑 is small? 
}  Eg: 

}  𝑘-dimensional subspace of ℜ↑𝑑 , with 𝑘≪𝑑  
}  Obviously, extract subspace and solve NNS there! 
}  Not a robust definition… 

}  More robust definitions: 
}  KR-dimension [KR’02] 
}  Doubling dimension [Assouad’83, Cla’99, GKL’03, KL’04] 
}  Smooth manifold [BW’06, Cla’08] 
}  other [CNBYM’01, FK97, IN’07, Cla’06…] 

“effectively” 



Doubling dimension 
}  Definition: pointset 𝑆 has doubling dimension 𝜆 if:  if: 

}  for any point 𝑝∈𝑆, radius 𝑟, consider ball 𝐵(𝑝,𝑟) of points within 
distance 𝑟 of 𝑝  

}  can cover 𝐵(𝑝,𝑟) by 2↑𝜆  balls 𝐵(𝑦↓1 ,𝑟/2),  𝐵(𝑦↓2 ,𝑟/2), … 
}  Sanity check: 

}  𝑘-dimensional subspace has 𝜆=𝑂(𝑘) 
}  n points always have dimension at most 𝑂( log 𝑛 ) 

}  Can be defined for any metric space! 

𝑟 

𝑝 

2↑𝑂(𝑘)  balls to cover 



NNS for small doubling dimension 
}  Euclidean space [Indyk-Naor’07] 

}  JL into dimension 𝑘=𝑂(𝜆) “works” ! 
}  Contraction of any pair happens with very small probability 
}  Expansion of some pair happens with constant probability 
}  Good enough for NNS! 

}  Arbitrary metric 
}  Navigating nets/cover trees [Krauthgamer-Lee’04, Har-Peled-

Mendel’05, Beygelzimer-Kakade-Langford’06,…] 
}  Algorithm:  

}  A data-dependent tree: recursive space partition using balls 𝐵(𝑝,𝑟) 
}  At query 𝑞, follow all paths that intersect with the ball 𝐵(𝑞,𝑟) 



Embeddings 



General Theory: embeddings 
}  General motivation: given distance (metric) 𝑀, solve a 

computational problem 𝑃 under 𝑀  

Euclidean distance (ℓ2)  

Hamming distance 

Edit distance between two strings 

Earth-Mover (transportation) Distance 

Compute distance between two points 

Diameter/Close-pair of set S 

Clustering, MST, etc 

Nearest Neighbor Search 

𝑓  

Reduce problem  
<𝑃  under hard metric>  
to  
<𝑃  under simpler metric> 



Embeddings: landscape 
}  Definition: an embedding is a map 𝑓:𝑀𝐻 of a metric (𝑀,   𝑑↓𝑀 ) into 

a host metric (𝐻,   𝜌↓𝐻 ) such that for any 𝑥,𝑦𝑀: 
 𝑑↓𝑀 (𝑥,𝑦)≤ ↓𝐻 (𝑓(𝑥),  𝑓(𝑦))≤𝐷⋅   𝑑↓𝑀 (𝑥,𝑦) 

where 𝐷 is the distortion (approximation) of the embedding 𝑓. 

}  Embeddings come in all shapes and colors: 
}  Source/host spaces 𝑀,  𝐻  
}  Distortion 𝐷  
}  Can be randomized: 𝐻(𝑓(𝑥),  𝑓(𝑦))  ≈  𝑑𝑀(𝑥,𝑦) with 1− probability 
}  Time to compute 𝑓(𝑥) 

}  Types of embeddings: 
}  From norm to the same norm but of lower dimension (dimension reduction) 
}  From one norm ( ℓ𝓁↓2 ) into another norm ( ℓ𝓁↓1 ) 
}  From non-norms (edit distance, Earth-Mover Distance) into a norm (ℓ𝓁1) 
}  From given finite metric (shortest path on a planar graph) into a norm (ℓ𝓁1) 
}  𝐻 not a metric but a computational procedure ← sketches  not a metric but a computational procedure ← sketches 



Earth-Mover Distance 
}  Definition: 

}  Given two sets 𝐴,  𝐵  of points in a metric space 
}  𝐸𝑀𝐷(𝐴,𝐵)  = min cost bipartite matching between 𝐴  and 𝐵  

}  Which metric space? 
}  Can be plane, ℓ𝓁↓2 ,   ℓ𝓁↓1 … 

}  Applications in image vision 

Images courtesy of Kristen Grauman 



Embedding EMD into ℓ𝓁↓1  
}  At least as hard as ℓ𝓁↓1  
}  Theorem [Cha02, IT03]: Can embed EMD over [Δ]↑2  

into ℓ𝓁↓1  with distortion 𝑂(log Δ ). Time to embed a set 
of 𝑠 points: 𝑂(𝑠log Δ ). 

}  Consequences: 
}  Nearest Neighbor Search: 𝑂(𝑐log Δ   ) approximation with 𝑂(𝑠
𝑛↑1+1/𝑐 )  space, and 𝑂( 𝑛↑1/𝑐 ⋅𝑠log Δ ) query time. 

}  Computation: 𝑂(logΔ) approximation in 𝑂(𝑠log Δ ) time 
}  Best known: 1+𝜖  approximation in 𝑂 (𝑠) time [SA’12] 
}  The higher-dimensional variant is still fastest via embedding [AIK’08] 



High level embedding 

}  Sets of size 𝑠  in [1…Δ]×[1…Δ]  box 
}  Embedding of set 𝐴: 

}  take a quad-tree 
}  randomly shift it 
}  Each cell gives a coordinate: 

   𝑓  (𝐴)𝑐=#points in the cell 𝑐  
}  Need to prove 
𝐸[||𝑓(𝐴)−𝑓(𝐵)||↓1 ]≈𝐸𝑀𝐷(𝐴,𝐵) 

13 

2 2 
1 0 

0 
2 1 1 

1 

0 0 
0 

0 0 0 

0 

0 2 
2 1 

𝑓(𝑨)=  …2210… 0002…0011…0100…0000… 

𝑓(𝑩)=  …1202… 0100…0011…0000…1100… 



Main Approach 
}  Idea: decompose EMD over 

[Δ]2 into EMDs over smaller 
grids 

}  Recursively reduce to Δ=O(1)   

+ ≈ 



EMD over small grid 
}  Suppose Δ=3 

}  f(A) has nine coordinates, counting # points in each joint 
}  f(A)=(2,1,1,0,0,0,1,0,0) 
}  f(B)=(1,1,0,0,2,0,0,0,1) 

}  Gives O(1) distortion 



Decomposition Lemma [I07] 

Δ/k 

k 

}  For randomly-shifted cut-grid G of side length k, we have: 
}  EEMDΔ(A,B) ≤ EEMDk(A1, B1) + EEMDk(A2,B2)+… 

   + k*EEMDΔ/k(AG, BG) 
}  EEMDΔ(A,B) ≥ 1/3 Ε[ EEMDk(A1, B1) + EEMDk(A2,B2)+… ] 
}  EEMDΔ(A,B) ≥ Ε[ k*EEMDΔ/k(AG, BG) ] 

}  The distortion will 
follow by applying the lemma 
recursively to (AG,BG) 

lower bound 
on cost 

upper 
bound 



Part 1: lower bound 
}  For a randomly-shifted cut-grid G of side length k, we have: 

}  EEMDΔ(A,B) ≤ EEMDk(A1, B1) + EEMDk(A2,B2)+… 
   + k*EEMDΔ/k(AG, BG) 

}  Extract a matching π from the matchings on right-hand side 
}  For each a∈A, with a∈Ai, it is either: 

}  matched in EEMD(Ai,Bi) to some b∈Bi 

}  or a∈Ai\Bi, and it is matched 
in EEMD(AG,BG) to some b∈Bj 

}  Match cost in 2nd case:  
}  Move a to center (Δ) 

}  paid by EEMD(Ai,Bi) 

}  Move from cell i to cell j 
}  paid by EEMD(AG,BG) 

Δ/k 

k 



Parts 2 & 3: upper bound 
}  For a randomly-shifted cut-grid G of side length k, we have: 

}  EEMDΔ(A,B) ≥ 1/3 Ε[ EEMDk(A1, B1) + EEMDk(A2,B2)+… ] 
}  EEMDΔ(A,B) ≥ Ε[ k*EEMDΔ/k(AG, BG) ] 

}  Fix a matching π minimizing EEMDΔ(A,B) 
}  Will construct matchings for each EEMD on RHS 

}  Uncut pairs (a,b) are matched in respective (Ai,Bi) 
}  Cut pairs (a,b) are matched 

}  in (AG,BG) 
}  and remain unmatched in their  

 mini-grids 



Part 2: Cost? 
}  EEMDΔ(A,B) ≥ 1/3 Ε[ ∑i EEMDk(Ai, Bi)] 
}  Uncut pairs (a,b) are matched in respective (Ai,Bi) 

}  Contribute a total ≤ EEMD Δ(A,B) 

}  Consider a cut pair (a,b) at distance 𝑎−𝑏=( 𝑑↓𝑥 , 𝑑↓𝑦 ) 
}  Contribute ≤ 2k to ∑i EEMDk(Ai, Bi) 
}  Pr[(a,b) cut] = 1−(1− 𝑑↓𝑥 /𝑘)(1− 𝑑↓𝑦 /𝑘)  ≤ ||𝑎−𝑏||↓1 /𝑘  

}  Expected contribution ≤ Pr[(a,b) cut] ⋅2𝑘≤  2||𝑎−𝑏||1 

}  In total, contribute 2⋅EEMD Δ(A,B) 

dx 
k 



Wrap-up of EMD Embedding 
}  In the end, obtain that 

}  EMD(A,B) ≈ sum of EMDs of smaller grids in expectation 
}  Repeat 𝑂( log Δ ) times to get to 1×1 grid 
}  𝑂( log Δ ) approximation it total! 



Embeddings of various metrics into ℓ𝓁↓1  

Metric Upper bound 

Earth-mover distance 
(-sized sets in 2D plane) 

 
[Cha02, IT03] 

Earth-mover distance 
(-sized sets in ) 

 
[AIK08] 

Edit distance over  

(#indels to transform x->y) 
 

[OR05] 

Ulam (edit distance between 
permutations) 

 
[CK06] 

Block edit distance  
[MS00, CM07] 

edit(1234567,  
       7123456) = 2 

 
edit(  banana  , 
 
          ananas   ) = 2 



Non-embeddability into ℓ𝓁↓1  

Metric Upper bound 

Earth-mover distance 
(-sized sets in 2D plane) 

 
[Cha02, IT03] 

Earth-mover distance 
(-sized sets in ) 

 
[AIK08] 

Edit distance over  

(#indels to transform x->y) 
 

[OR05] 

Ulam (edit distance between 
permutations) 

 
[CK06] 

Block edit distance  
[MS00, CM07] 

Lower bounds 

 
[NS07] 

 
[KN05] 

 
[KN05,KR06] 

 
[AK07] 

4/3 
[Cor03] 



Non-embeddability proofs 
}  Via Poincaré-type inequalities… 
}  [Enflo’69]: embedding {0,1}↑𝑑  into ℓ𝓁↓2  (any dimension) must 

incur Ω(√𝑑 ) distortion 
}  Proof [Khot-Naor’05] 

}  Suppose 𝑓 is the embedding of {0,1}↑𝑑  into ℓ𝓁↓2  
}  Two distributions over pairs of points 𝑥,𝑦∈ {0,1}↑𝑑 : 

}  C: 𝑥=𝑦+ 𝑒↓𝑖  for random 𝑦 and index 𝑖  
}  F: 𝑥,𝑦 are random  are random 

}  Two steps: 
}  𝐸↓𝐶 [||𝑥−𝑦||↓1 ]≤𝑂(1/𝑑)⋅ 𝐸↓𝐹 [||𝑥−𝑦||↓1 ] 
}  𝐸↓𝐶 [||𝑓(𝑥)−𝑓(𝑦)||↓2↑2 ]≥Ω(1/𝑑)⋅ 𝐸↓𝐹 [||𝑓(𝑥)−𝑓(𝑦)||↓2↑2 ] (short 

diagonals) 
}  Implies Ω(√𝑑 ) lower bound! 



Other good host spaces? 

}  What is “good”: 
}  is algorithmically tractable 
}  is rich (can embed into it) 

sq-ℓ2=real space with distance: ||x-y||22 

sq-ℓ2, hosts with very good 
LSH (lower bounds via 
communication complexity) ̃ 
[AK’07] 

[AK’07] 

[AIK’08] 

sq- ,etc 

Metric Lower bound 
into  

Edit distance over   
[KN05, KR06] 

Ulam (edit distance 
between permutations) 

 
[AK07] 

Earth-mover distance 
(-sized sets in ) 

 
[KN05] 

??? 



The ℓ𝓁↓∞  story 
}  [Mat96]: Can embed any metric on 𝑛 points into ℓ𝓁↓∞↑𝑛   points into ℓ𝓁↓∞↑𝑛  

}  Theorem [I’98]: NNS for ℓ𝓁↓∞↑𝑑  with 
}  𝑂↓𝛿 (log log 𝑑  ) approximation 
}  𝑛↑1+𝛿  space, 𝛿>0 
}  𝑂(𝑑log 𝑛 ) query time 

 
}  Dimension 𝑛 is an issue though… 
}  Smaller dimension? 

}  Possible for some: Hausdorff,… [FCI99] 
}  But, not possible even for {0,1 }↑𝑑  [JL01] 



Other good host spaces? 

}  What is “good”: 
}  algorithmically tractable 
}  rich (can embed into it) 

}  But: combination sometimes works! 

sq- ,etc 



Meet our new host 

}  Iterated product space  
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[A-Indyk-Krauthgamer’09] 

d∞,1 

d1 

… β 

α 

γ 

d1 

… 

d∞,1 

d1 

… 

d∞,1 
d22,∞,1 

sq−ℓ𝓁↓2↑𝛾 (ℓ𝓁↓∞↑𝛽 (ℓ𝓁↓1↑𝛼 )) 

𝑥=(𝑥↓1 ,…, 𝑥↓𝛼 )∈ 𝑅↑𝛼  
𝑑↓1 (𝑥,𝑦)=∑𝑖=1↑𝛼▒| 𝑥↓𝑖 − 𝑦↓𝑖 |  

𝑥=(𝑥↓1 ,…, 𝑥↓𝛽 )∈ ℓ𝓁↓1↑𝛼 × ℓ𝓁↓1↑𝛼 ×…ℓ𝓁↓1↑𝛼  
𝑑↓∞,1 (𝑥,𝑦)= 𝑚𝑎𝑥↓𝑖=1..𝛽    𝑑↓1 ( 𝑥↓𝑖 , 𝑦↓𝑖 ) 

𝑥=(𝑥↓1 ,…, 𝑥↓𝛾 )∈ ℓ𝓁↓∞↑𝛽 (ℓ𝓁↓1↑𝛼 )×…× ℓ𝓁↓∞↑𝛽 (ℓ𝓁↓1↑𝛼 ) 
𝑑↓22,∞,1 (𝑥,𝑦)=∑𝑖=1↑𝛾▒(𝑑↓∞,1 ( 𝑥↓𝑖 , 𝑦↓𝑖 ))↑2   



Why sq−ℓ𝓁↓2↑𝛾 (ℓ𝓁↓∞↑𝛽 (ℓ𝓁↓1↑𝛼 )) ? 

}  Because we can… 
}  Embedding: …embed Ulam into sq−ℓ𝓁↓2↑𝛾 (ℓ𝓁↓∞↑𝛽 (
ℓ𝓁↓1↑𝛼 )) with constant distortion  
}  dimensions = length of the string 

}  NNS: Any t-iterated product space has NNS on n 
points with 
}  (log log 𝑛  )↑𝑂(𝑡)  approximation  
}  near-linear space and sublinear time 

}  Corollary: NNS for Ulam with 𝑂(log log 𝑛  )↑2  approx. 
}  Better than via each ℓ𝓁↓𝑝  component separately! 
	  

edit distance between permutations 
ED(1234567,  
      7123456) = 2 

[Indyk’02, A-Indyk-Krauthgamer’09] 
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Sketching 



Computational view 
}  𝐹:𝑀 ℜ↑𝑘  
}  Arbitrary computation 𝐶:𝑘𝑥𝑘 ↓+  

}  Cons:  
}  No/little structure (e.g., (𝐹,𝐶) not metric) 

}  Pros: 
}  More expressability: 
}  may achieve better distortion (approximation) 
}  smaller “dimension” 𝑘  

}  Sketch 𝐹 : “functional compression scheme”  : “functional compression scheme” 
}  for estimating distances 
}  almost all lossy (1+ distortion or more) and 

randomized 

x 
y 

F 

d↓M (x,y)≈√∑𝑖=1↑𝑘▒( 𝐹↓𝑖 (𝑥)− 𝐹↓𝑖 (𝑦))↑2    
𝐶(𝐹(𝑥),  𝐹(𝑦)) 

F(x) 

F(y) 

{0,1}↑𝑘  {0,1}↑𝑘 × {0,1}↑𝑘 ℜ 



Why? 
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}  1) Beyond embeddings:  
}  can more do if “embed” into computational space 

}  2) A waypoint to get embeddings: 
}  computational perspective can give actual embeddings 

}  3) Connection to informational/computational notions 
}  communication complexity 



Beyond Embeddings:  
}  “Dimension reduction” in ℓ𝓁↓1  ! 
}  Lemma [I00]: exists linear 𝐹:ℓ𝓁↓1  ℜ↑𝑘 , and 𝐶 

}  where 𝑘=𝑂( 𝜖↑−2 ⋅log𝑛)   
}  achieves:  for any 𝑥,𝑦 ℓ𝓁↓1 , with probability 1−1/ 𝑛↑2 : 

}  𝐶(𝐹(𝑥),  𝐹(𝑦))=  (1±𝜖)⋅   ‖𝑥−𝑦‖↓1  

}  𝐹(𝑥)=  (𝑠↓1 ⋅𝑥,   𝑠↓2 ⋅𝑥,    …   𝑠↓𝑘 ⋅𝑥)/𝑘=1/𝑘⋅𝑆𝑥  
}  Where 𝑠↓𝑖 =( 𝑠↓𝑖1 , 𝑠↓𝑖2 ,…𝑠↓𝑖𝑑 ) with each 𝑠𝑖𝑗 distributed from  distributed from 

Cauchy distribution (1-stable distribution) 
}  𝐶(𝐹(𝑥),𝐹(𝑦))=𝑚𝑒𝑑𝑖𝑎𝑛(| 𝐹↓1 (𝑥)− 𝐹↓1 (𝑦)|,   

                   | 𝐹↓2 (𝑥)− 𝐹↓2 (𝑦)|, 
              … 
                   | 𝐹↓𝑘 (𝑥)− 𝐹↓𝑘 

(𝑦)|  ) 
}  While |𝑠⋅𝑥| does not have expectation, it has median! 

𝑝𝑑𝑓(𝑠)= 1/𝜋( 𝑠↑2 +1)  



Waypoint to get embeddings 

}  Embedding of Ulam metric into sq−ℓ𝓁↓2↑𝛾 (ℓ𝓁↓∞↑𝛽 (
ℓ𝓁↓1↑𝛼 )) was obtained via “geometrization” of an 
algorithm/characterization: 
}  sublinear (local) algorithms:     property testing & streaming 

[EKKRV98, ACCL04, GJKK07, GG07, EJ08] 

X 
Y 

sum (ℓ1) 

max (ℓ∞) 

sum of squares (sq-ℓ2) edit(X,Y) 



Ulam: algorithmic characterization 

}  Lemma: Ulam(x,y) approximately equals 
the number of “faulty” characters a 
satisfying: 
}  there exists K≥1 (prefix-length) s.t. 
}  the set of K characters preceding a in x 

differs much from  
 the set of K characters preceding a in y 

123456789 

123467895 

Y[5;4] 

X[5;4] 

x= 

y= 

E.g., a=5; K=4 [Ailon-Chazelle-Commandur-Lu’04, Gopalan-Jayram- 
Krauthgamer-Kumar’07, A-Indyk-Krauthgamer’09] 



Connection to communication complexity 

35 

}  Enter the world of Alice and Bob… 

shared randomness 

Referee 

𝑥  𝑦  

sketch(𝑥) ) sketch(𝑦) ) 

Communication complexity model: 
n  Two-party protocol  
n  Shared randomness 
n  Promise (gap) version  
n  c = approximation ratio 
n  CC = min. # bits to decide (for 90% 

success) 
CC bits 

…
 

decide whether: 
𝑑(𝑥,𝑦)    𝑅  or 𝑑(𝑥,𝑦)>𝑐𝑅   or 𝑑(𝑥,𝑦)>𝑐𝑅  

Sketching model: 
n  Referee decides based on sketch(x), 

sketch(y) 
n  SK = min. sketch size to decide 

Fact: SK ≥ CC 



Communication Complexity 
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}  VERY rich theory [Yao’79, KN’97,…] 
}  Some notable examples: 

}  ℓ𝓁↓1 , ℓ𝓁↓2  are sketchable with 𝑂(1/𝜖↑2  ) bits! [AMS’96,KOR’98] 
}  hence also everything than embeds into it! 
}  Ω(1/𝜖↑2  ) is tight [IW’03,W’04, BJKS’08,CR’12] 
}  ℓ𝓁↓∞↑𝑑  requires Ω(𝑑/ 𝑐↑2 ) bits [BJKS’02] 
}  Coresets: sketches of sets of points for geometric problems [AHV04…] 

}  Connection to NNS: 
}  [KOR’98]: if sketch size is 𝑠, then NNS with 𝑛↑𝑂(𝑠)  space and one memory 

lookup! 
}  From the perspective of NNS lower bounds, communication complexity closer 

to ground truth 
}  Question: do non-embeddability result say something about non-

sketchability? 
}  also Poincaré-type inequalities… [AK07,AJP’10] 

}  Connections to streaming: see Graham Cormode’s lecture 



High dimensional  
geometry 

??? 



Closest Pair 

}  Problem: n points in d-dimensional Hamming space, which 
are random except a planted pair at distance ½-ε 

}  Solution 1: build NNS and query 𝑛 times 
}  LSH-type algo would give ~𝑑𝑛↑2−Θ(𝜖)  [PRR89,IM98,D08] 

}  Theorem [Valiant’12]: 𝑂(𝑑𝑛↑1.8 /𝑝𝑜𝑙𝑦())  time 
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p1 

p2 

pn 

p1
⊗ 

p2
⊗ 

pn
⊗ 

p1
⊗+p2

⊗ 

= M 
 
Find max entry of 
MMt 

using subcubic  
MM algorithms 



What I didn’t talk about: 
}  Too many things to mention 

}  Includes embedding of fixed finite metric into simpler/more-structured 
spaces like ℓ𝓁↓1  

}  Tiny sample among them: 
}  [LLR94]: introduced metric embeddings to TCS. E.g. showed can use 

[Bou85] to solve sparsest cut problem with 𝑂(log𝑛)  approximation 
}  [Bou85]: Arbitrary metric on 𝑛  points into ℓ𝓁↓1 , with 𝑂(log𝑛)  distortion 
}  [Rao99]: embedding planar graphs into ℓ𝓁↓1 , with 𝑂(√log 𝑛  ) distortion 
}  [ARV04,ALN05]: sparsest cut problem with 𝑂 (√log 𝑛  ) approximation 
}  [KMS98,…]: space partition for rounding SDPs for coloring 
}  Lots others… 

}  A list of open questions in embedding theory 
}  Edited by Jiří Matoušek + Assaf Naor: 

}  http://kam.mff.cuni.cz/~matousek/metrop.ps 



High dimensional geometry via NNS prism 

High dimensional 
geometry dimension reduction 

space partitions 

embedding 

NNS 
small dimension 

sketching 

+++ 


