User-Friendly Tools for Random Matrices

Joel A. Tropp

Computing + Mathematical Sciences
California Institute of Technology
jtropp@cms.caltech.edu

Download the Notes:

tinyurl.com/bocrqhe

[URL] http://users.cms.caltech.edu/~jtropp/notes/Tro12-User-Friendly-Tools-NIPS.pdf

Random Matrices in the Mist

Random Matrices in Statistics

Covariance estimation for the multivariate normal distribution

John Wishart

3. Multi-variate Distribution. Use of Quadratic co-ordinates.

A comparison of equation (8) with the corresponding results (1) and (2) for uni-variate and bi-variate sampling, respectively, indicates the form the general result may be expected to take. In fact, we have for the simultaneous distribution in random samples of the n variances (squared standard deviations) and the $\frac{n(n-1)}{2}$ product moment coefficients the following expression:

$$
\times\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{n n} \\
a_{n n} & a_{n 1} & \ldots & a_{n n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|^{\frac{N-n-2}{2}} d a_{n 1} d a_{n 2} \ldots . d a_{n n}
$$

\qquad
where $a_{p q}=s_{p} \varepsilon_{q} r_{p q}$, and $A_{p q}=\frac{N}{2 \sigma_{p} \sigma_{q}} \cdot \frac{\Delta_{p q}}{\Delta}, \Delta$ being the determinant

$$
\left|\rho_{p q}\right|, p, q=1,2,3, \ldots n
$$

and $\Delta_{p q}$ the minor of $\rho_{p q}$ in Δ.
[Refs] Wishart, Biometrika 1928. Photo from apprendre-math.info.

Random Matrices in Numerical Linear Algebra

Model for floating-point errors in LU decomposition

now combining (8.6) and (8.7) we obtain our desired result:

$$
\begin{align*}
\operatorname{Prob}\left(\lambda>2 \sigma^{2} r n\right) & <\frac{(r n)^{n-1 / 2} e^{-r n} \pi^{1 / 2} e^{n} \cdot 2^{n-2}}{\pi n^{n-1}(r-1) n} \tag{8.8}\\
& =\left(\frac{2 r}{e^{r-1}}\right)^{n} \times \frac{1}{4(r-1)(r \pi n)^{1 / 2}} .
\end{align*}
$$

We sum up in the following theorem:
(8.9) The probability that the upper bound $|A|$ of the matrix A of (8.1) exceeds $2.72 \sigma n^{1 / 2}$ is less than $.027 \times 2^{-n} n^{-1 / 2}$, that is, with probability greater than 99% the upper bound of A is less than $2.72 \sigma n^{1 / 2}$ for $n=2,3, \cdots$.

This follows at once by taking $r=3.70$.
[Refs] von Neumann and Goldstine, Bull. AMS 1947 and Proc. AMS 1951. Photo ©IAS Archive.

Random Matrices in Nuclear Physics

Model for the Hamiltonian of a heavy atom in a slow nuclear reaction

Eugene Wigner

Random sign symmetric matrix

The matrices to be considered are $2 N+1$ dimensional real symmetric matrices; N is a very large number. The diagonal elements of these matrices are zero, the non diagonal elements $v_{i k}=v_{k i}= \pm v$ have all the same absolute value but random signs. There are $\mathfrak{N}=2^{N(2 N+1)}$ such matrices. We shall calculate, after an introductory remark, the averages of $\left(H^{\nu}\right)_{00}$ and hence the strength function $S^{\prime}(x)=\sigma(x)$. This has, in the present case, a second interpretation: it also gives the density of the characteristic values of these matrices. This will be shown first.
[Refs] Wigner, Ann. Math 1955. Photo from Nobel Foundation.

Modern

 Applications
Randomized Linear Algebra

Input: An $m \times n$ matrix \boldsymbol{A}, a target rank k, an oversampling parameter p
Output: An $m \times(k+p)$ matrix \boldsymbol{Q} with orthonormal columns

1. Draw an $n \times(k+p)$ random matrix $\boldsymbol{\Omega}$
2. Form the matrix product $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\Omega}$
3. Construct an orthonormal basis \boldsymbol{Q} for the range of \boldsymbol{Y}
[Ref] Halko-Martinsson-T, SIAM Rev. 2011.

Other Algorithmic Applications

Sparsification. Accelerate spectral calculation by randomly zeroing entries in a matrix.

Subsampling. Accelerate construction of kernels by randomly subsampling data.
© Dimension Reduction. Accelerate nearest neighbor calculations by random projection to a lower dimension.

Relaxation \& Rounding. Approximate solution of maximization problems with matrix variables.
[Refs] Achlioptas-McSherry 2001 and 2007, Spielman-Teng 2004; Williams-Seeger 2001, Drineas-Mahoney
2006, Gittens 2011; Indyk-Motwani 1998, Ailon-Chazelle 2006; Nemirovski 2007, So 2009...

Random Matrices as Models

High-Dimensional Data Analysis. Random matrices are used to model multivariate data.
(e Wireless Communications. Random matrices serve as models for wireless channels.
© Demixing Signals. Random model for incoherence when separating two structured signals.
[Refs] Bühlmann and van de Geer 2011, Koltchinskii 2011; Tulino-Verdú 2004; McCoy-T 2011.

Theoretical Applications

Algorithms. Smoothed analysis of Gaussian elimination.

Combinatorics. Random constructions of expander graphs.

High-Dimensional Geometry. Structure of random slices of convex bodies.

Quantum Information Theory. (Counter)examples to conjectures about quantum channel capacity.
[Refs] Sankar-Spielman-Teng 2006; Pinsker 1973; Gordon 1985; Hayden-Winter 2008, Hastings 2009.

Random Matrices: My Way

The Conventional Wisdom

[Refs] youtube.com/watch?v=NOOcvqT1tAE, most monographs on RMT.

Principle A

"But...

In many applications, a random matrix can be decomposed as a sum of independent random matrices:

$$
\boldsymbol{Z}=\sum_{k=1}^{n} \boldsymbol{S}_{k}
$$

Principle B

and

There are exponential concentration inequalities for the spectral norm of a sum of independent random matrices:

$$
\mathbb{P}\{\|\boldsymbol{Z}\| \geq t\} \leq \exp (\quad \cdots \quad)
$$

The Vision

Challenge: Random matrices are tough!

Approach:
Write the random matrix as a sum of independent random matrices
Apply "packaged" concentration inequalities

Tradeoff:
[+] Wide range of applicability
[+] Simplicity
[-] Potential loss in accuracy

To learn more.

E-mail: jtropp@cms.caltech.edu
Web: http://users.cms.caltech.edu/~jtropp

Some papers:

e "User-friendly tail bounds for sums of random matrices," FOCM, 2011.
te "User-friendly tail bounds for matrix martingales." Caltech ACM Report 2011-01.
"Freedman's inequality for matrix martingales," ECP, 2011.
"A comparison principle for functions of a uniformly random subspace," PTRF, 2011.
" "From the joint convexity of relative entropy to a concavity theorem of Lieb," PAMS, 2012.
e "Improved analysis of the subsampled randomized Hadamard transform," AADA, 2011.
ce "Tail bounds for all eigenvalues of a sum of random matrices" with A. Gittens. Submitted 2011.
" "The masked sample covariance estimator" with R. Chen and A. Gittens. I\&I, 2012.
se "Matrix concentration inequalities..." with L. Mackey et al.. Submitted 2012.
ce "User-Friendly Tools for Random Matrices: An Introduction." 2012.
"Deriving matrix concentration inequalities..." with D. Paulin and L. Mackey. Submitted 2013.
"Subadditivity of matrix φ-entropy..." with R. Chen. Submitted 2013.

