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What Is the Big Data Phenomenon? 

•  Big Science is generating massive datasets to be used 
both for classical testing of theories and for exploratory 
science 

•  Measurement of human activity, particularly online 
activity, is generating massive datasets that can be used 
(e.g.) for personalization and for creating markets 

•  Sensor networks are becoming pervasive 
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•  Computer science studies the management of 
resources, such as time and space and energy 
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What Is the Big Data Problem? 

•  Computer science studies the management of 
resources, such as time and space and energy 

•  Data has not been viewed as a resource, but as a 
“workload” 

•  The fundamental issue is that data now needs to be 
viewed as a resource 
–  the data resource combines with other resources to yield timely, 

cost-effective, high-quality decisions and inferences 
•  Just as with time or space, it should be the case (to first 

order) that the more of the data resource the better 
–  is that true in our current state of knowledge? 



•  No, for two main reasons: 
–  query complexity grows faster than number of data points 

•  the more rows in a table, the more columns 
•  the more columns, the more hypotheses that can be considered  
•  indeed, the number of hypotheses grows exponentially in the 

number of columns 
•  so, the more data the greater the chance that random 

fluctuations look like signal (e.g., more false positives) 



•  No, for two main reasons: 
–  query complexity grows faster than number of data points 

•  the more rows in a table, the more columns 
•  the more columns, the more hypotheses that can be considered  
•  indeed, the number of hypotheses grows exponentially in the 

number of columns 
•  so, the more data the greater the chance that random 

fluctuations look like signal (e.g., more false positives) 
–  the more data the less likely a sophisticated algorithm will 

run in an acceptable time frame 
•  and then we have to back off to cheaper algorithms that may be 

more error-prone 
•  or we can subsample, but this requires knowing the statistical 

value of each data point, which we generally don’t know a priori 



Example of an Ultimate Goal 

Given an inferential goal and a fixed computational 
budget, provide a guarantee (supported by an 
algorithm and an analysis) that the quality of 
inference will increase monotonically as data accrue 
(without bound) 



Statistical Decision Theory 101 

•  Define a family of probability models for the data    , 
indexed by a “parameter” 

•  Define a “procedure”           that operates on the data 
to produce a decision  

•  Define a loss function  
•  The goal is to use the loss function to compare 

procedures, but both of its arguments are unknown 

X
θ

δ(X)

l(θ, δ(X))

R(θ) = Eθl(θ, δ(X))

frequentist expectation Bayesian expectation 

ρ(X) = E[l(θ, δ(X)) |X]
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Coherence and Calibration 

•  Coherence and calibration are two important goals for 
statistical inference 

•  Bayesian work has tended to focus on coherence while 
frequentist work hasn’t been too worried about coherence 
–  the problem with pure coherence is that one can be coherent and 

completely wrong 

•  Frequentist work has tended to focus on calibration while 
Bayesian work hasn’t been too worried about calibration 
–  the problem with pure calibration is that one can be calibrated and 

completely useless 

•  Many statisticians find that they make use of both the 
Bayesian perspective and the frequentist perspective, 
because a blend is often a natural way to achieve both 
coherence and calibration 



The Bayesian World 

•  The Bayesian world is further subdivided into 
subjective Bayes and objective Bayes 

•  Subjective Bayes: work hard with the domain expert 
to come up with the model, the prior and the loss 

•  Subjective Bayesian research involves (inter alia) 
developing new kinds of models, new kinds of 
computational methods for integration, new kinds of 
subjective assessment techniques 

•  Not much focus on analysis, because the spirit is that 
“Bayes is optimal” (given a good model, a good prior 
and a good loss) 



Subjective Bayes 

•  A fairly unassailable framework in principle, but there 
are serious problems in practice 
–  for complex models, there can be many, many unknown 

parameters whose distributions must be assessed 
–  independence assumptions often must be imposed to make 

it possible for humans to develop assessments 
–  independence assumptions often must be imposed to obtain 

a computationally tractable model 
–  it is particularly difficult to assess tail behavior, and tail 

behavior can matter (cf. marginal likelihoods and Bayes 
factors) 

•  Also, there are lots of reasonable methods out there 
that don’t look Bayesian; why should we not consider 
them? 



Objective Bayes 

•  When the subjective Bayesian runs aground in 
complexity, the objective Bayesian attempts to step in 

•  The goal is to find principles for setting priors so as to 
have minimal impact on posterior inference 

•  E.g., reference priors maximize the divergence 
between the prior and the posterior 

•  Objective Bayesians often make use of frequentist 
ideas in developing principles for choosing priors 

•  An appealing framework (and a great area to work 
in), but can be challenging to work with in complex 
(multivariate, hierarchical) models 



Frequentist Perspective 

•  From the frequentist perspective, procedures can 
come from anywhere; they don’t have to be derived 
from a probability model 

•  This opens the door to some possibly silly methods, 
so it’s important to develop principles and techniques 
of analysis that allow one to rule out methods, and to 
rank the reasonable methods 

•  Frequentist statistics has tended to focus more on 
analysis than on methods 
–  but machine learning research, allied with optimization, has 

changed that 
•  One general method—the bootstrap 



Frequentist Perspective 
•  There is a hierarchy of analytic activities: 

–  consistency 
–  rates 
–  sampling distributions 

•  Classical frequentist statistics focused on parametric 
statistics, then there was a wave of activity in 
nonparametric testing, and more recently there has been 
a wave of activity in other kinds of nonparametrics  
–  e.g., function estimation 
–  e.g., small n, large p problems 

•  One of the most powerful general tools is empirical 
process theory, where consistency, rates and sampling 
distributions are obtained uniformly on various general 
spaces (this is the general field that encompasses much 
of statistical learning theory) 



Outline 
 
Part I:  Convex relaxations to trade off statistical 

efficiency and computational efficiency 
 
Part II:  Bring algorithmic principles more fully into 

contact with statistical inference.  The principle in 
today’s talk:  divide-and-conquer 

 
 



Part I: Computation/Statistics 
Tradeoffs via Convex 

Relaxation 

with Venkat Chandrasekaran 
Caltech 

 
 



Computation/StatisticsTradeoffs 

•  More data generally means more computation in 
our current state of understanding 
–  but statistically more data generally means less risk 

(i.e., error) 
–  and statistical inferences are often simplified as the 

amount of data grows 
–  somehow these facts should have algorithmic 

consequences  



Related Work 

•  Bottou & Bousquet 
•  Shalev-Shwartz, Srebro, et al 
•  Agarwal, et al 
•  Amini & Wainwright 
•  Berthet & Rigollet 



Time-Data Tradeoffs 

•  Consider an inference problem with fixed risk 
•  Inference procedures viewed as points in plot 

Runtime 
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Time-Data Tradeoffs 
•  Consider an inference problem with fixed risk 

Runtime 

Number of samples n 

o  Trade off upper bounds 
o  More data means smaller 

runtime upper bound 
o  Need “weaker” 

algorithms for larger 
datasets 



An Estimation Problem 

•  Signal                          from known (bounded) set 
•  Noise 

•  Observation model 

•  Observe n i.i.d. samples  



Convex Programming Estimator 

•  Sample mean                         is sufficient statistic 

•  Natural estimator 

•  Convex relaxation 

–  C is a convex set such that  



Statistical Performance of Estimator 

•  Consider cone of feasible directions into C 

 



Statistical Performance of Estimator 

•  Theorem: The risk of the estimator              is  

 
•  Intuition: Only consider error in feasible cone 

•  Can be refined for better bias-variance tradeoffs 



Hierarchy of Convex Relaxations 

•  Corr: To obtain risk of at most 1, 

 
 
•  Key point: 

  
 If we have access to larger n, can use larger C 



Hierarchy of Convex Relaxations 

 
  

 

If we have access to larger n, can use larger C 
 Obtain “weaker” estimation algorithm 



Hierarchy of Convex Relaxations 

•  If       “algebraic”, then one can obtain family of 
outer convex approximations 

–  polyhedral, semidefinite, hyperbolic relaxations 
(Sherali-Adams, Parrilo, Lasserre, Garding, Renegar) 

•  Sets           ordered by computational complexity 
–  Central role played by lift-and-project 



Example 1 

•        consists of cut matrices 

•  E.g., collaborative filtering, clustering 



Example 2 

•  Signal set      consists of all perfect matchings in 
complete graph 

•  E.g., network inference 



Example 3 

•      consists of all adjacency matrices of graphs 
with only a clique on square-root many nodes 

•  E.g., sparse PCA, gene expression patterns 
•  Kolar et al. (2010) 



Example 4 

•  Banding estimators for covariance matrices 
–  Bickel-Levina (2007), many others 
–  assume known variable ordering 

•  Stylized problem: let M be known tridiagonal 
matrix 

•  Signal set  



Remarks 

•  In several examples, not too many extra samples 
required for really simple algorithms 

•  Approximation ratios vs Gaussian complexities 
–  approximation ratio might be bad, but doesn’t matter as 

much for statistical inference 

•  Understand Gaussian complexities of LP/SDP 
hierarchies in contrast to theoretical CS 



Part II: The Big Data Bootstrap 

with Ariel Kleiner, Purnamrita Sarkar and Ameet 
Talwalkar 

 
University of California, Berkeley 

 



Assessing the Quality of Inference 

•  Data mining and machine learning are full of algorithms 
for clustering, classification, regression, etc 
–  what’s missing:  a focus on the uncertainty in the outputs of such 

algorithms (“error bars”) 
•  An application that has driven our work:  develop a 

database that returns answers with error bars to all 
queries 

•  The bootstrap is a generic framework for computing error 
bars (and other assessments of quality) 

•  Can it be used on large-scale problems? 
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Form a “parameter” estimate θn = θ(X1, ..., Xn) 

 
Want to compute an assessment ξ of the quality of 

our estimate θn 
(e.g., a confidence region) 
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But, we only observe one dataset of size n. 



The Underlying Population 



The Unachievable Frequentist Ideal 

Ideally, we would 
①  Observe many independent datasets of size n. 
②  Compute θn on each. 
③  Compute ξ based on these multiple realizations of θn. 

 

X(m)
1 , . . . , X(m)

n

X(1)
1 , . . . , X(1)

n

...

X(2)
1 , . . . , X(2)

n

θ̂(1)n

θ̂(2)n

θ̂(m)
n

...

ξ(θ̂(1)n , . . . , θ̂(m)
n )

But, we only observe one dataset of size n. 



Sampling 



Approximation 



Pretend The Sample Is The Population 



The Bootstrap 

Use the observed data to simulate multiple datasets of size n: 
① Repeatedly resample n points with replacement from the 

original dataset of size n. 
② Compute θ*

n on each resample. 
③ Compute ξ based on these multiple realizations of θ*

n as 
our estimate of ξ for θn. 

...
...

X1, . . . , Xn

X∗(1)
1 , . . . , X∗(1)

n

X∗(2)
1 , . . . , X∗(2)

n

X∗(m)
1 , . . . , X∗(m)

n

θ̂∗(1)n

θ̂∗(2)n

θ̂∗(m)
n

ξ(θ̂∗(1)n , . . . , θ̂∗(m)
n )

(Efron, 1979) 



The Bootstrap: 
Computational Issues 

•  Seemingly a wonderful match to modern parallel 
and distributed computing platforms 

•  But the expected number of distinct points in a 
bootstrap resample is ~ 0.632n 
–  e.g., if original dataset has size 1 TB, then expect 

resample to have size ~ 632 GB 
•  Can’t feasibly send resampled datasets of this 

size to distributed servers 
•  Even if one could, can’t compute the estimate 

locally on datasets this large 



Subsampling 

n 

(Politis, Romano & Wolf, 1999) 
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n 

b 



Subsampling 

•  There are many subsets of size b < n 
•  Choose some sample of them and apply the estimator to 

each 
•  This yields fluctuations of the estimate, and thus error 

bars 
•  But a key issue arises:  the fact that b < n means that the 

error bars will be on the wrong scale (they’ll be too 
large) 

•  Need to analytically correct the error bars 



Subsampling 

Summary of algorithm: 
①  Repeatedly subsample b < n points without replacement from the 

original dataset of size n 
②  Compute θ*b on each subsample 
③  Compute ξ based on these multiple realizations of θ*b 
④  Analytically correct to produce final estimate of ξ for θn 

 

The need for analytical correction makes subsampling less 
automatic than the bootstrap 
Still, much more favorable computational profile than 
bootstrap 
Let’s try it out in practice… 
 
 



Empirical Results: 
Bootstrap and Subsampling 

•  Multivariate linear regression with d = 100 and n = 
50,000 on synthetic data. 

•  x coordinates sampled independently from StudentT(3). 
•  y = wTx + ε, where w in Rd is a fixed weight vector and ε 

is Gaussian noise. 
•  Estimate θn = wn in Rd via least squares. 
•  Compute a marginal confidence interval for each 

component of wn and assess accuracy via relative mean 
(across components) absolute deviation from true 
confidence interval size. 

•  For subsampling, use b(n) = nγ for various values of γ. 
•  Similar results obtained with Normal and Gamma data 

generating distributions, as well as if estimate a 
misspecified model. 



Empirical Results: 
Bootstrap and Subsampling 
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Bag of Little Bootstraps 

•  I’ll now present a new procedure that combines the 
bootstrap and subsampling, and gets the best of both 
worlds 

•  It works with small subsets of the data, like subsampling, 
and thus is appropriate for distributed computing 
platforms  

•  But, like the bootstrap, it doesn’t require analytical 
rescaling 

•  And it’s successful in practice 



Towards the Bag of Little Bootstraps 

n 

b 
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b 



Approximation 



Pretend the Subsample is the Population 



Pretend the Subsample is the Population 

 
•  And bootstrap the subsample! 
•  This means resampling n times with replacement, 

not b times as in subsampling 

  



 
The Bag of Little Bootstraps (BLB) 

•  The subsample contains only b points, and so the 
resulting empirical distribution has its support on b 
points 

•  But we can (and should!) resample it with 
replacement n times, not b times 

•  Doing this repeatedly for a given subsample gives 
bootstrap confidence intervals on the right scale---no 
analytical rescaling is necessary! 

•  Now do this (in parallel) for multiple subsamples and 
combine the results (e.g., by averaging) 



 
The Bag of Little Bootstraps (BLB) 
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Bag of Little Bootstraps (BLB) 
Computational Considerations 

A key point: 
•  Resources required to compute θ  generally scale in 

number of distinct data points 
•  This is true of many commonly used estimation algorithms 

(e.g., SVM, logistic regression, linear regression, kernel 
methods, general M-estimators, etc.) 

•  Use weighted representation of resampled datasets to 
avoid physical data replication 

 
Example: if original dataset has size 1 TB with each data 

point 1 MB, and we take b(n) = n0.6, then expect 
•  subsampled datasets to have size ~ 4 GB 
•  resampled datasets to have size ~ 4 GB 

(in contrast, bootstrap resamples have size ~ 632 GB) 
 



Empirical Results: 
Bag of Little Bootstraps (BLB) 
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Empirical Results: 
Bag of Little Bootstraps (BLB) 
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BLB: Theoretical Results 
Higher-Order Correctness 

Then: 
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Therefore, taking m1 = Ω(nVar(p̂(j)k − pk|Pn)) and b = Ω(
√
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in which case BLB enjoys the same level of higher-order correctness as the
bootstrap.



BLB: Theoretical Results 

BLB is asymptotically consistent and higher-
order correct (like the bootstrap), under 
essentially the same conditions that have been 
used in prior analysis of the bootstrap. 
 
Theorem (asymptotic consistency): Under standard 
assumptions (particularly that θ is Hadamard 
differentiable and ξ is continuous), the output of 
BLB converges to the population value of ξ as n, b 
approach ∞. 



BLB: Theoretical Results 
Higher-Order Correctness 

Assume: 
•  θ is a studentized statistic. 
•  ξ(Qn(P)), the population value of ξ for θn, can be written as 

 
 where the pk are polynomials in population moments. 

•  The empirical version of ξ based on resamples of size n 
from a single subsample of size b can also be written as 
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BLB: Theoretical Results 
Higher-Order Correctness 

Also, if BLB’s outer iterations use disjoint chunks of 
data rather than random subsamples, then 
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in which case BLB enjoys the same level of higher-order correctness as the
bootstrap.



Conclusions 

•  Many conceptual challenges in Big Data analysis 
•  Distributed platforms and parallel algorithms 

–  critical issue of how to retain statistical correctness 
–  see also our work on divide-and-conquer algorithms for 

matrix completion (Mackey, Talwalkar & Jordan, 2012) 
•  Algorithmic weakening for statistical inference 

–  a new area in theoretical computer science? 
–  a new area in statistics? 

•  For papers, see  www.cs.berkeley.edu/~jordan  


