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Disclaimer

This is a revised version of a course given at the Kent State
University in 2008, extended to include parts of other presentations.

It is an introduction to the subject, not a complete exposition of
the theory, its history and recent developments. Its main purpose is
to present various basic objects, notions and approaches. For a
more detailed and systematic approach see Ryan O’Donnell’s blog
and book Analysis of Boolean Functions, in preparation.
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Discrete cube

[n] := {1, 2, . . . , n}

Discrete cube (hypercube) Cn := {−1, 1}n, equipped with a
normalized counting (uniform probability) measure (1

2δ−1 + 1
2δ1)⊗n

Disclaimer: There will be no "cheating" as long as the discrete
cube Cn is considered, with n <∞. Many results of the present
talk can be extended to the case n =∞ and more general product
probability spaces. However, usually technical details become much
more delicate then.

Hamming’s metric: For x , y ∈ Cn let

d(x , y) = |{i ∈ [n] : xi 6= yi}| =
1
2
‖x − y‖1.

Expectation: For f : Cn −→ R we have

E [f ] = 2−n
∑
x∈Cn

f (x).
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L2 structure

Scalar product: For f , g : Cn −→ R let

〈f , g〉 = E [f · g ] = 2−n ·
∑
x∈Cn

f (x)g(x).

We denote ‖f ‖p = (E [|f |p])1/p for p > 0 and
‖f ‖∞ = maxx∈Cn |f (x)|.

Note that 〈f , f 〉 = ‖f ‖22.

Hilbert space:

Hn := L2(Cn,R); dimHn = 2n

K. Oleszkiewicz Analysis on the discrete cube



L2 structure

Scalar product: For f , g : Cn −→ R let

〈f , g〉 = E [f · g ] = 2−n ·
∑
x∈Cn

f (x)g(x).

We denote ‖f ‖p = (E [|f |p])1/p for p > 0 and
‖f ‖∞ = maxx∈Cn |f (x)|.

Note that 〈f , f 〉 = ‖f ‖22.

Hilbert space:

Hn := L2(Cn,R); dimHn = 2n

K. Oleszkiewicz Analysis on the discrete cube



L2 structure

Scalar product: For f , g : Cn −→ R let

〈f , g〉 = E [f · g ] = 2−n ·
∑
x∈Cn

f (x)g(x).

We denote ‖f ‖p = (E [|f |p])1/p for p > 0 and
‖f ‖∞ = maxx∈Cn |f (x)|.

Note that 〈f , f 〉 = ‖f ‖22.

Hilbert space:

Hn := L2(Cn,R); dimHn = 2n

K. Oleszkiewicz Analysis on the discrete cube



Walsh system

Boolean function: f : Cn → {−1, 1}

theoretical computer science (bits)
social choice theory (voting)
combinatorics (family of subsets of [n])

Walsh functions: For x ∈ {−1, 1}n and S ⊆ [n] let

wS(x) =
∏
i∈S

xi ,

w∅ ≡ 1

ri := wi = w{i} - i-th coordinate projection (i ∈ [n])

r1, r2, . . . , rn - a Rademacher sequence:
independent symmetric ±1 Bernoulli random variables
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Orthonormality

E [wS ] = 0 for S 6= ∅ and E [w∅] = 1

Indeed, expectation of the product of independent random variables
is equal to the product of their expectations (and they are all equal
to zero).

Orthonormality: wS · wT = wS∆T thus

〈wS ,wT 〉 = E [wS∆T ] = δS ,T

Here ∆ denotes a symmetric set difference (XOR) while δS ,T = 1
if S = T and δS ,T = 0 if S 6= T (Kronecker’s delta).

Example: w{1,2} · w{2,3} = r1r2 · r2r3 = r1r2
2 r3 = r1r3.

We have proved that the Walsh system (wS)S⊆[n] is orthonormal
(and therefore linearly independent). Since it is of cardinality 2n,
which is equal to the linear dimension of Hn, it spans the whole
space and thus is complete.
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Elementary argument

There is also a straightforward way to see that every function from
Hn is a linear combination of the Walsh functions. Indeed, for any
y ∈ Cn we have

1y (x) =
n∏

i=1

1 + xiyi

2
= 2−n

∑
S⊆[n]

wS(y)wS(x),

where 1y denotes the indicator (the characteristic function) of {y}.
Hence

f (x) =
∑
y∈Cn

f (y)1y (x) = 2−n
∑

S⊆[n]

( ∑
y∈Cn

f (y)wS(y)
)
wS(x) =

=
∑

S⊆[n]

〈f ,wS〉 · wS(x).

Therefore every f ∈ Hn admits one and only one Walsh-Fourier
expansion:

f =
∑

S⊆[n]

f̂ (S)wS .
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Simple consequences of the orthonormality

As we have seen above (it follows also from the orthonormality of
the Walsh system):

f̂ (S) = 〈f ,wS〉 = E [f · wS ].

In particular, for every f ∈ Hn we have

E [f ] = E [f · 1] = E [f · w∅] = 〈f ,w∅〉 = f̂ (∅)

and

E [f 2] = E [f · f ] = 〈f , f 〉 = 〈
∑

S⊆[n]

f̂ (S)wS ,
∑

T⊆[n]

f̂ (T )wT 〉 =

=
∑

S ,T⊆[n]

f̂ (S)f̂ (T )〈wS ,wT 〉 =
∑

S⊆[n]

f̂ (S)2 (Plancherel).
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LCA setting

Remark: Note that {−1, 1} (with multiplication as a group action)
is a locally compact (compact, in fact) abelian group and
Cn = {−1, 1}n (with coordinatewise multiplication as a group
action) shares this property. The case of the Cantor group (n =∞
with the natural product topology) is covered as well. The standard
product probability measure on Cn is the Haar measure then and
general harmonic analysis on LCA groups tools apply. It is easy to
check that, for n <∞, Cn is self-dual: the group of characters on
Cn is just the Walsh system and it is isomorphic with Cn itself and
the isomorphism is very natural - S ⊆ [n] is identified with x ∈ Cn
such that S = {i ∈ [n] : xi = −1}. Then the mapping f 7→ f̂ ,
which sends a real function on Cn to its Walsh-Fourier coefficients
collection, is just the classical Fourier transform (on LCA groups)
up to some normalization. The transform applied twice returns the
original function, up to a multiplicative factor. However, in what
follows we will not take advantage (at least explicitely) of the group
structure of Cn.
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Computing the Walsh-Fourier transform

At first glance, it may seem that to compute the Walsh-Fourier
transform of a function on Cn one needs O(2n · 2n), approximately
quadratic in the data size, arithmetic operations. However, only
O(n · 2n) operations are needed.

Indeed, note that knowing the Walsh-Fourier transforms of the
function restricted to two parallel (n − 1)-dimensional faces of Cn
one easily obtains the Walsh-Fourier transform of the function on
the whole discrete cube, using only O(2n) operations – addition,
subtraction and division by 2 suffice. Thus, if we denote by τ(n)
the number of operations needed to compute the Walsh-Fourier
transform on Cn then we have τ(n) ≤ 2τ(n − 1) + κ · 2n, i.e.,

τ(n)

2n ≤
τ(n − 1)

2n−1 + κ,

so that 2−nτ(n) ≤ τ0 + κn.
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Discrete time random walk

Example: Discrete time symmetric random walk on Cn

Let n ≥ 2 and let us consider a Markov chain with the state space
Cn i.e. a sequence of Cn-valued random variables (Yt)∞t=0 satisfying
the Markov condition and such that Y0 = (1, 1, . . . , 1) a.s. and
∀tP(Yt+1 = x |Yt = y) = 1/n whenever d(x , y) = 1. This models a
random walk starting from (1, 1, . . . , 1) and moving in every step
from a vertex it occupies to one of its neighbours, choosing each of
them with equal probability. The starting point (1, 1, . . . , 1) is
chosen for the sake of simplicity and it can be easily replaced by
another vertex of the cube.

Let ft(x) = P(Yt = x). Obviously,

f0(x) =
n∏

i=1

1 + xi

2
= 2−n

∑
S⊆[n]

wS(x).
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Discrete time walk - spectral properties

We have ft+1 = Kft , where K : Hn −→ Hn is a linear operator
defined by the following formula:

(Kf )(x) =
1
n
·

∑
y∈Cn: d(x ,y)=1

f (y).

Hence ft = K t f0.

Note that for S ⊆ [n] we have

KwS =
1
n

(
(n − |S |)wS − |S |wS

)
=
(
1− 2

|S |
n

)
wS ,

which means that Walsh functions are eigenfunctions of the
operator K (and therefore K is a multiplier). Indeed, for every
x ∈ Cn exactly |S | out of n neighbours of x differ from x on a
coordinate belonging to S (and wS takes value −wS(x) on these
vertices) whereas the remaining n − |S | neighbour vertices have the
same coordinates indexed by S as x and therefore wS does not
distinguish them from x (i.e. assigns the value wS(x) to them).
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Discrete time walk - estimates

Consequently, we have

K twS =
(
1− 2

|S |
n

)t
wS

and
ft = K t f0 = 2−n

∑
S⊆[n]

(
1− 2

|S |
n

)t
· wS .

Since the Walsh functions are Boolean and
∣∣∣1− 2 |S |n

∣∣∣ ≤ 1− 2
n

whenever S 6= ∅ and S 6= [n], we deduce that∥∥∥ft − 2−nw∅ − (−1)t2−nw[n]

∥∥∥
∞
≤
(
1− 2

n

)t
≤ e−2t/n.

Recall that w∅ ≡ 1 and w[n] = r1r2 . . . rn.
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Discrete random walk - ergodicity

Hence

f2t −→ 2−n(1 + r1 . . . rn) =
1

2n−1 · 1y1+...+yn≡n (mod 2)

and

f2t+1 −→ 2−n(1− r1 . . . rn) =
1

2n−1 · 1y1+...+yn 6≡n (mod 2),

uniformly on Cn and with exponential speed, as t −→∞.

Clearly, it is just a precise form of the ergodic theorem for this
Markov chain and the dependence on the parity of t is related to
the fact that the chain is 2-periodic. It is so beacuse Cn is a
bi-partite graph (we connect two vertices with an edge if and only if
they are neighbours).
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Lazy random walk

Let us modify the previous example a little bit. We choose
λ ∈ (0, 1/2] and define a new random walk Zt = Z v ,λ

t , starting
from v ∈ Cn. Now we set different transition probability rules:
∀t P(Zt+1 = x |Zt = y) = λ/n whenever d(x , y) = 1,
and P(Zt+1 = x |Zt = x) = 1− λ.

This random walk is "lazy" - sometimes it does not move
(especially when λ is small). When it does move, it chooses the
vertex to go to among the neighbours of its current position, each
of them with the same probability (one can also describe (Zt)∞t=0 as
a modification of (Yt)∞t=0 by some non-deterministic time change).

Let ft(x) = P(Zt = x). Clearly,

f0(x) =
n∏

i=1

1 + vixi

2
= 2−n

∑
S⊆[n]

wS(v)wS(x).
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Lazy random walk - ergodicity

Now
ft+1 = Kλft

where (Kλf )(x) = (1− λ)f (x) + λ
n
∑

y∈Cn: d(x ,y)=1 f (y),
i.e. Kλ = (1− λ)Id + λK .

Hence

KλwS = (1− λ)wS + λ ·
(
1− 2|S |

n

)
wS =

(
1− 2λ|S |

n

)
wS

and, as before, we get

ft = K t
λf0 = 2−n

∑
S⊆[n]

wS(v)
(
1− 2λ|S |

n

)t
wS .

Now for every S 6= ∅ we have |1− 2λ|S |
n | ≤ 1− 2λ

n , so that ft
converges uniformly on Cn and exponentially fast (but still possibly
quite slow if λ is close to zero) to the constant function 2−n, no
matter where v was.
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Lazy walk - limit behaviour

Obviously, this is the classical ergodic theorem again (the "laziness"
destroyed the 2-periodicity which we observed in the previous
example). What is more interesting is a time rescaling of the "lazy
walk": since it really moves only in λ fraction of time steps, due to
the Law of Large Numbers, it is natural to ask about fdnt/λe for real
t > 0. One easily arrives at

fdnt/λe
λ→0+

−→ 2−n
∑

S⊆[n]

wS(v)e−2t|S |wS .

If we start the process from some random point rather than from a
fixed v , we have some non-negative function f0 =

∑
S⊆[n] aSwS ,

a∅ = E [f0] = 2−n
∑
x∈Cn

f0(x) = 2−n

and
fdnt/λe

λ→0+

−→
∑

S⊆[n]

e−2t|S |aSwS .
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Poisson parity process

Let (N(t))t∈[0,∞) be the standard Poisson process, i.e. an
integer-valued Markov process with independent Poissonian
increments:

N(0) = 0, ∀t > s ≥ 0 N(t)− N(s) ∼ N(t − s) ∼ Pois(t − s).

With probability one its trajectory t 7→ N(t) is a non-decreasing
integer-valued function, and the time gaps between the trajectory’s
jumps (with probability one the function increases exactly by 1 at
the point of jump) are i.i.d. exponential random variables (with
expectation equal to 1).

Define M(t) = (−1)N(t). Although in general an image of a
Markov process under some map does not have to be a Markov
process, (M(t))t∈[0,∞) does satisfy Markov’s condition.
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Parity process - transition

The parity process defined above follows a simple transition rule:

P(M(t) = 1|M(s) = 1) = P(M(t) = −1|M(s) = −1) = (1+e−2(t−s))/2,

P(M(t) = −1|M(s) = 1) = P(M(t) = 1|M(s) = −1) = (1−e−2(t−s))/2,

for all t > s ≥ 0.

Indeed,

P(M(t) = 1|M(s) = 1) = P(N(t)− N(s) is even|N(s) is even) =

= P(N(t)− N(s) is even) = Pois(t − s)({0, 2, 4, . . .}) =

e−(t−s)
∞∑

k=0

(t−s)2k/(2k)! = e−(t−s)·e
t−s + e−(t−s)

2
= (1+e−2(t−s))/2

and thus

P(M(t) = −1|M(s) = 1) = 1− P(M(t) = 1|M(s) = 1) =

= 1− (1 + e−2(t−s))/2 = (1− e−2(t−s))/2.
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Parity procees - time rescaling

Due to the properties of the Poisson process (N(t))t∈[0,∞) the time
gaps between the sign flips are again i.i.d. exponential random
variables (with expectation equal to 1).

For notational simplicity we will consider the same process with
time running two times slower, i.e. we define X (t) = M(t/2) to
obtain, for all t > s ≥ 0,

P(X (t) = 1|X (s) = 1) = P(X (t) = −1|X (s) = −1) = (1+e−(t−s))/2,

P(X (t) = −1|X (s) = 1) = P(X (t) = 1|X (s) = −1) = (1−e−(t−s))/2.

Note that (X (t))t∈[0,∞) is both time and space homogenous
Markov process. In fact one may construct it out of scratch, at least
as long as one cares only about the finite-dimensional distributions,
forgetting about trajectories (which is our case) - one just needs to
prove the consistency conditions which in this case amounts to
checking whether the Chapman-Kolmogorov equations hold; then
the Kolmogorov consistency (extension) theorem does the rest.
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Parity process - consistency

Let u > t > s ≥ 0 and z , x ∈ {−1, 1}. We need to prove that

pu−s(x , z) =
∑

y∈{−1,1}

pt−s(x , y)pu−t(y , z).

Well, if x = z then we do have

(1 + e−(u−s))/2 =

= (1+e−(t−s))/2·(1+e−(u−t))/2+(1−e−(t−s))/2·(1−e−(u−t))/2,

and if x = −z then we do have

(1− e−(u−s))/2 =

= (1+e−(t−s))/2·(1−e−(u−t))/2+(1−e−(t−s))/2·(1+e−(u−t))/2,

so the proof is finished.
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Continuous time random walk

Now we may construct a continuous time random walk on Cn. Let
(X1(t))t∈[0,∞), (X2(t))t∈[0,∞), . . . (Xn(t))t∈[0,∞) be i.i.d. copies of
the process (X (t))t∈[0,∞). Given v ∈ Cn we define a Cn-valued
Markov process (Xv (t))t∈[0,∞) by setting

Xv (t) =
(
v1 · X1(t), v2 · X2(t), . . . , vn · Xn(t)

)
,

so that Xv (0) = v . The process starts at v and jumps from a
vertex to each of its n neighbours with probability 1/n, the time
gaps between jumps being i.i.d. exponential random variables with
expectation 2/n (the factor 2 comes from the fact that we have
slowed the time flow and the factor 1/n is related to the fact that
now jumps may occur on n coordinates).
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Semigroup

Given t ≥ 0 and a function f ∈ Hn we define a new function
Pt f ∈ Hn :

(Pt f )(v) = E [f (Xv (t))] =
∑
x∈Cn

pt(v , x)f (x)

for v ∈ Cn, where pt(v , x) denotes the transition probability from v
to x for the process (X(t))t∈[0,∞) - here we understand the process
as a set of transition rules, independent of the starting point.

Clearly, Pt is a linear operator with the following properties:
Pt1 = 1 (this reads as the invariance of the product probability
measure on Cn because the semigroup is symmetric),
f ≥ 0 a.s implies Pt f ≥ 0 a.s. (positivity preserving);
because of the linearity of Pt the second condition may be
equvialently stated as
f ≥ g a.s. implies Pt f ≥ Ptg a.s. (order preserving).
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Semigroup property

Obviously, P0 = Id , i.e. P0f ≡ f , and for t, s ≥ 0 we have
Pt ◦ Ps = Pt+s (the semigroup property). Indeed,

(Pt(Ps f ))(v) = E [(Ps f )(Xv (t))] =
∑
x∈Cn

P(Xv (t) = x) · (Ps f )(x) =

=
∑
x∈Cn

pt(v , x)·E [f (Xx(s))] =
∑
x∈Cn

(pt(v , x)
∑
y∈Cn

P(Xx(s) = y))·f (y))

=
∑
y∈Cn

( ∑
x∈Cn

pt(v , x) · P(Xx(s) = y)
)
f (y) =

=
∑
y∈Cn

( ∑
x∈Cn

pt(v , x)ps(x , y)
)
f (y) =

=
∑
y∈Cn

pt+s(v , y)f (y) = E [f (Xv (t + s))] = (Pt+s f )(v),

where we have used the Chapman-Kolmogorov equation.
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Markov semigroups

A semigroup, indexed by a time parameter t ∈ [0,∞), of linear
operators on L2(Ω, µ) which preserve positivity and the constant
function 1 is called Markovian.

We have proved that (Pt)t∈[0,∞) is a Markov semigroup.

The Markovianity of a semigroup of linear operators and possibility
of defining it via some time homogenous Markov process, as we did
for (Pt)t∈[0,∞), are strongly related.

We have already seen one way implication - the way in which we
verified Markovian properties of (Pt)t∈[0,∞) did not really use any
specific property of Cn and thus can be easily generalized. Now we
need to understand how to produce a homogenous Markov process
given a Markov semigroup (Qt)t∈[0,∞). We will discuss it in the
case of a finite Ω (all atoms with non-zero measure).
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Markov semigroups - equivalent condition

We will describe the Markov process we look for by expressing its
transition probabilities. For x , y ∈ Ω and t ≥ 0 let

qt(x , y) := (Qt1y )(x);

let us recall that 1x denotes the indicator function of {x}.

Certainly, q0(x , y) = (Q01y )(x) = 1y (x) = δx ,y . The fact that
(Qt)t∈[0,∞) is positivity preserving ensures that qt(x , y) ≥ 0.
We also see that∑
y∈Ω

qt(x , y) =
∑
y∈Ω

(Qt1y )(x) = Qt(
∑
y∈Ω

1y )(x) = (Qt1)(x) = 1(x) = 1.

Let x , z ∈ Ω and t, s ≥ 0. For every y ∈ Ω we have
qt(y , z) = (Qt1z)(y) and therefore

Qt1z =
∑
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qt(y , z) · 1y .
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Markov semigroups - equivalence continued

Hence

qs+t(x , z) = (Qs+t1z)(x) =
(
Qs(Qt1z)

)
(x) =

=
(
Qs(
∑
y∈Ω

qt(y , z) · 1y )
)

(x) =

=
∑
y∈Ω

qt(y , z)(Qs1y )(x) =
∑
y∈Ω

qt(y , z)qs(x , y).

We have verified the Chapman-Kolmogorov equation and thus
finished the proof that qt(x , y) defined as above is a consistent
family of transition probabilities.

Now it only remains to prove that the process defined by the above
transition probabilities yields the same semigroup which we started
with, i.e.

E [f (Xv (t))] = (Qt f )(v)

for every function f : Ω −→ R.
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Equivalence - this is the end...

E [f (Xv (t))]
?
= (Qt f )(v)

If f = 1y for some y ∈ Ω then the above follows just from the very
way in which we defined our process:

qt(v , y) = (Qt1y )(x).

By the linearity (with respect to f ) the equation holds for every f
as well, and the proof is finished.

Remark: In general setting, qt(v ,A) = (Qt1A)(v).
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Invariant measure

We will say that a probability measure µ on Ω is an invariant
measure for our semigroup, or a stationary distribution for our
Markov process, if for every y ∈ Ω and t > 0 there is∑

x∈Ω

µ({x})qt(x , y) = µ({y}),

so that the total "immigration" to y balances "emigration" from y .

It amounts to E [Qt1y ] =
∑

x∈Ω µ({x})(Qt1y )(x) = E [1y ], so that
µ is an invariant measure for our semigroup if and only if Qt ’s
preserve expectation for all 1y ’s, i.e., if and only if Qt ’s preserve
expectation for all functions.

As we will see soon, if the semigroup is symmetric and it preserves
the constant function 1 then it also preserves expectation.
Conversely, if the semigroup is symmetric and it preserves
expectation then Qt1 = 1.
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Generator

Warning: A Markovian (in the sense described above) semigroup
(Qt)t∈[0,∞) need not be continuous with respect to the parameter
t. As an example one may consider Q0f ≡ f and Qt f ≡ E [f ] for
t > 0 which is not time continuous unless f is constant a.s.

However, in many cases Markov semigroups are not only continuous
but also differentiable with respect to time. A linear operator
defined as − d

dt Qt

∣∣∣
t=0+

is then called a generator of the semigroup

(Qt)t∈[0,∞). Usually it cannot be defined on the whole L2 function
space but only on its dense linear subspace. There are quite many
technical problems and extensive literature concerning relations
between a Markov semigroup and its generator - we will discuss
them very briefly below.
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Semigroup and generator - spectral properties

Let us see how the semigroup (Pt)t∈[0,∞) acts on the Walsh
functions. For v ∈ Cn and S ⊆ [n] we have

(PtwS)(v) = E [wS(Xv (t))] = E
[∏

i∈S

viXi (t)
]

=

=
(∏

i∈S

vi

)
·
∏
i∈S

E [Xi (t)] =

= wS(v) ·
(1 + e−t

2
· 1 +

1− e−t

2
· (−1)

)|S |
= e−|S |twS(v).

Hence PtwS = e−|S |twS . If f =
∑

S⊆[n] aSwS then

Pt f =
∑

S⊆[n]

e−|S |taSwS

- compare to the formula for the limit of the lazy walk.
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Semigroup - notation

Remark: One may also define a family of multipliers
Tη : Hn −→ Hn by

Tη
( ∑

S⊆[n]

aSwS

)
:=

∑
S⊆[n]

η|S |aSwS .

This notation is better adapted for harmonic analysis use. Also,
it is often used in theoretical computer science. However, it is
less natural from the point of view of probability theory (note:
"our" (Pt)t∈[0,∞) is closely related to the Ornstein-Uhlenbeck
semigroup on the Gaussian space).

Clearly, Te−t ≡ Pt for t ≥ 0 but sometimes it makes sense to
consider also |η| ≤ 1 or even η from some sector on the complex
plane (holomorphic semigroups), and with vector coefficients aS .
Of course, Tη ◦ Tρ = Tηρ.

Warning: The notation in literature does vary!
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Time derivative

We know that
PtwS = e−|S |twS .

Now it is easy to differentiate Pt :

d
dt

PtwS = −|S |e−|S |twS = −|S |PtwS .

Let L : Hn −→ Hn be a linear operator defined by LwS := |S |wS ,
i.e.

L
( ∑

S⊆[n]

aSwS

)
=
∑

S⊆[n]

|S |aSwS .

We have proved that d
dt Pt f = −LPt f = −PtLf (the multipliers Pt

and L obviously commute) and in particular d
dt Pt

∣∣∣
t=0+

= −L.

Since for every Markovian semigroup Qt1 = 1 for all t ≥ 0,

L1 = − d
dt

Qt1
∣∣∣
t=0+

≡ 0.
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Retrieval of the semigroup from its generator

We can recover the semigroup from its generator by

Pt = e−tL = Id +
∞∑

k=1

(−t)kLk/k!.

Indeed,

e−tLwS = wS +
∞∑

k=1

(−1)ktk |S |kwS/k! = e−|S |twS = PtwS .

However, this approach works well if L is bounded and thus cannot
be easily generalized.

By writing a Markov semigroup (Qt)t∈[0,∞) in the form e−tL

one usually means that it is a solution of an operator differential
equation d

dt Qt = −LQt (t ≥ 0) with a boundary condition Q0 = Id .

K. Oleszkiewicz Analysis on the discrete cube



Retrieval of the semigroup from its generator

We can recover the semigroup from its generator by

Pt = e−tL = Id +
∞∑

k=1

(−t)kLk/k!.

Indeed,

e−tLwS = wS +
∞∑

k=1

(−1)ktk |S |kwS/k! = e−|S |twS = PtwS .

However, this approach works well if L is bounded and thus cannot
be easily generalized.

By writing a Markov semigroup (Qt)t∈[0,∞) in the form e−tL

one usually means that it is a solution of an operator differential
equation d

dt Qt = −LQt (t ≥ 0) with a boundary condition Q0 = Id .

K. Oleszkiewicz Analysis on the discrete cube



Explicit definition of the generator

There are more direct ways to define L. For any f ∈ Hn there is

(Lf )(x) =
1
2

∑
y∈Cn: d(x ,y)=1

(
f (x)−f (y)

)
=

n
2
f (x)−1

2
·
∑

y∈Cn: d(x ,y)=1

f (y),

i.e. L = n
2 (Id − K ), where K is the operator related to the discrete

time random walk on Cn. Indeed, it suffices to recall that∑
y∈Cn: d(x ,y)=1

wS(y) = (n−|S |)·wS(x)+|S |·(−wS(x)) = (n−2|S |)wS(x),

so that

1
2
·

∑
y∈Cn: d(x ,y)=1

(
wS(x)− wS(y)

)
= |S |wS(x) = (LwS)(x).

Now we can use the fact that the Walsh functions span Hn.

K. Oleszkiewicz Analysis on the discrete cube



Explicit definition of the generator

There are more direct ways to define L. For any f ∈ Hn there is

(Lf )(x) =
1
2

∑
y∈Cn: d(x ,y)=1

(
f (x)−f (y)

)
=

n
2
f (x)−1

2
·
∑

y∈Cn: d(x ,y)=1

f (y),

i.e. L = n
2 (Id − K ), where K is the operator related to the discrete

time random walk on Cn. Indeed, it suffices to recall that∑
y∈Cn: d(x ,y)=1

wS(y) = (n−|S |)·wS(x)+|S |·(−wS(x)) = (n−2|S |)wS(x),

so that

1
2
·

∑
y∈Cn: d(x ,y)=1

(
wS(x)− wS(y)

)
= |S |wS(x) = (LwS)(x).

Now we can use the fact that the Walsh functions span Hn.

K. Oleszkiewicz Analysis on the discrete cube



Symmetry

The operators Pt and L are symmetric (in fact, also bounded and
thus self-adjoint). We can expand every f , g ∈ Hn as
f =

∑
S⊆[n] aSwS and g =

∑
S⊆[n] bSwS , and arrive at

E [f · Ptg ] = 〈f ,Ptg〉 =
∑

S ,T⊆[n]

aSe−|T |tbT 〈wS ,wT 〉 =

=
∑

S⊆[n]

e−|S |taSbS = 〈Pt f , g〉 = E [Pt f · g ]

and
E [f · Lg ] = 〈f , Lg〉 =

∑
S ,T⊆[n]

aS |T |bT 〈wS ,wT 〉 =

=
∑

S⊆[n]

|S |aSbS = 〈Lf , g〉 = E [Lf · g ].
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Symmetry - warning

Warning: If a Markov semigroup (Qt)t∈[0,∞) is symmetric in the
above sense it usually does not mean that qt(x , y) = qt(y , x).
Indeed, in the case of a finite probability space (Ω, µ) we have
rather

µ({x}) · qt(x , y) = µ({x}) · (Qt1y )(x) = E [1xQt1y ] =

= E [1yQt1x ] = µ({y}) · (Qt1x)(y) = µ({y}) · qt(y , x).

The above concept of symmetry is equivalent to the symmetry of
the transition matrix for Cn equipped with the uniform probability
measure only because all atoms have equal measure in this case. In
general, the symmetry meant here is the symmetry of operators
with respect to the L2(Ω, µ) structure.
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Symmetry - a simple consequence

Let us note that (Pt)t∈[0,∞) preserves expectation:

E [Pt f ] = E [1 · Pt f ] = E [Pt1 · f ] = E [1 · f ] = E [f ]

for every t ≥ 0.

Obviously, the same holds for any symmetric Markov semigroup
(as long as the expectation is taken with respect to the underlying
invariant probability measure).
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Contractivity

The semigroup (Pt)t∈[0,∞) is contractive in Lp for every p ≥ 1, i.e.

∀f ∈Hn ‖Pt f ‖p ≤ ‖f ‖p.

We will prove a more general fact (the above is just the case
Φ(t) = |t|p):

For every convex function Φ : R −→ R there is

∀t≥0, f ∈Hn E [Φ(Pt f )] ≤ E [Φ(f )].

Indeed, Φ(x) = supα(aαx + bα) - every convex function is a
supremum of its supporting affine functions. For every α the
pointwise inequalities Φ(f ) ≥ aαf + bα and, due to the order
preserving property of (Pt)t∈[0,∞), also

Pt(Φ(f )) ≥ Pt(aαf + bα) = aαPt f + bα

hold.
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Contractivity - continued

Hence
Pt(Φ(f )) ≥ sup

α
(aαPt f + bα) = Φ(Pt f )

pointwise and we infer E [Φ(f )] = E [Pt(Φ(f ))] ≥ E [Φ(Pt f )], where
we have used the fact that (Pt)t∈[0,∞) preserves expectation.

Thus the semigroup (Pt)t∈[0,∞) is called a semigroup of
contractions. Indeed, we have proved that ‖Pt‖Lp→Lp ≤ 1 for
p ∈ [1,∞) and for p =∞ this is a consequence of the fact that
(Pt)t∈[0,∞) preserves order: −m ≤ f ≤ m a.s. implies
−m = Pt(−m) ≤ Pt f ≤ Ptm = m a.s.

Certainly, a similar reasoning works for every symmetric Markov
semigroup.
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Energy functional

Let us consider a bi-linear form E = EL : Hn ×Hn −→ R defined by

E(f , g) := E [f · Lg ].

Since E [f · Lg ] = E [Lf · g ] the form is symmetric. It is also positive
semi-definite.

Indeed, for t ≥ 0 and f ∈ Hn let us set
ψ(t) = ‖Pt f ‖22 = E [(Pt f )2]. Then

ψ′(t) = E
[
2Pt f ·

d
dt

Pt f
]

= E
[
2Pt f · −LPt f

]
,

so that ψ′(0+) = −2E [f · Lf ] = −2E(f , f ). On the other hand,
because of the contractivity of (Pt)t∈[0,∞) we have
ψ(t) ≤ ‖f ‖22 = ‖P0f ‖22 = ψ(0) for t ≥ 0, so that ψ′(0+) ≤ 0.
Thus E [f ] := E(f , f ) ≥ 0.

The above proof works (up to quite many technical details)
for a large subclass of symmetric Markov semigroups.
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Energy functional - elementary approach

However, for the semigroup (Pt)t∈[0,∞) the positive
semi-definiteness of its generator is related to a more elementary
observation.

Recall that

(Lf )(x) =
1
2
·

∑
y∈Cn: d(x ,y)=1

(
f (x)− f (y)

)
.

Hence, for any f , g ∈ Hn we have

E(f , g) = E [f · Lg ] =
2−n

2

∑
x∈Cn

∑
y∈Cn: d(x ,y)=1

f (x)
(
g(x)− g(y)

)
=

= 2−n−1
∑

x ,y∈Cn: d(x ,y)=1

(
f (x)g(x)− f (x)g(y)

)
=

= 2−n−1
∑

x ,y∈Cn: d(x ,y)=1

(
f (y)g(y)− f (y)g(x)

)
.
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Discrete gradient

f (x)g(x)−f (x)g(y)+f (y)g(y)−f (y)g(x) = (f (x)−f (y))(g(x)−g(y)),

so

E(f , g) = 2−n−2
∑

x ,y∈Cn: d(x ,y)=1

(
f (x)− f (y)

)(
g(x)− g(y)

)
,

in particular

E [f Lf ] = E [f ] = E(f , f ) = 2−n
∑

x ,y∈Cn: d(x ,y)=1

( f (x)− f (y)

2

)2

is clearly nonnegative.

The last expression is a discrete counterpart of the averaged |∇f |2
- the similarity to the physical kinetic energy notion explains the
name given to this quadratic form. Quadratic forms of this type
(under some additional conditions) are called Dirichlet forms and
play important role in the theory of Markov semigroups.

process ∼ semigroup ∼ generator ∼ Dirichlet form
K. Oleszkiewicz Analysis on the discrete cube



Discrete gradient

f (x)g(x)−f (x)g(y)+f (y)g(y)−f (y)g(x) = (f (x)−f (y))(g(x)−g(y)),

so

E(f , g) = 2−n−2
∑

x ,y∈Cn: d(x ,y)=1

(
f (x)− f (y)

)(
g(x)− g(y)

)
,

in particular

E [f Lf ] = E [f ] = E(f , f ) = 2−n
∑

x ,y∈Cn: d(x ,y)=1

( f (x)− f (y)

2

)2

is clearly nonnegative.

The last expression is a discrete counterpart of the averaged |∇f |2
- the similarity to the physical kinetic energy notion explains the
name given to this quadratic form. Quadratic forms of this type
(under some additional conditions) are called Dirichlet forms and
play important role in the theory of Markov semigroups.

process ∼ semigroup ∼ generator ∼ Dirichlet form
K. Oleszkiewicz Analysis on the discrete cube



Energy under Lipschitz map

Let Ψ : R −→ R be a Lipschitz map with constant C , i.e.
|Ψ(a)−Ψ(b)| ≤ C |a − b|.

Obviously, for any f ∈ Hn we have

E [Ψ(f )] = 2−n
∑

x ,y∈Cn: d(x ,y)=1

(Ψ(f (x))−Ψ(f (y))

2

)2
≤

≤ 2−n
∑

x ,y∈Cn: d(x ,y)=1

C 2
( f (x)− f (y)

2

)2
= C 2E [f ].

In particular, since Ψ(a) = |a| is 1-Lipschitz we get

E [|f |L(|f |)] = E [|f |] ≤ E [f ] = E [f Lf ].
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Energy stability - general case

A similar phenomenon is observed for a larger class of symmetric
Markov semigroups (again, up to technicalities).
Indeed, for all a, b ∈ R we have

(Ψ(a)−Ψ(b))2 ≤ C 2(a − b)2.

For t ≥ 0 and x ∈ Ω let us set a = f (x) and b = f (Xx(t)) :

Ψ(f (x))2 − 2Ψ(f (x))Ψ(f (Xx(t))) + Ψ(f (Xx(t)))2 ≤

≤ C 2
(
f (x)2 − 2f (x)f (Xx(t)) + f (Xx(t))2

)
.

By taking expectation (with respect to the Markov process Xx)
of both sides we obtain the following inequality:

Ψ(f )2 − 2Ψ(f )Qt(Ψ(f )) + Qt(Ψ(f )2) ≤ C 2(f 2 − 2fQt f + Qt(f 2)),

which holds pointwise (a.e. with respect to the invariant probability
measure).
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Energy stability - end of the proof

Now we average over Ω (with respect to the invariant probability
measure) and arrive at

0 ≥ α(t) = E [Ψ(f )2]− 2E [Ψ(f )Qt(Ψ(f ))] + E [Qt(Ψ(f )2)]−

−C 2E [f 2] + 2C 2E [fQt f ]− C 2E [Qt(f 2)] =

= 2E [Ψ(f )2]− 2E [Ψ(f )Qt(Ψ(f ))]− 2C 2E [f 2] + 2C 2E [fQt f ],

where we have used the fact that symmetric Markov semigroups
preserve expectation.

Since Q0 = Id we have α(0) = 0. Thus α′(0+) ≤ 0, i.e.

2E [Ψ(f )L(Ψ(f ))]− 2C 2E [f Lf ] ≤ 0,

E [Ψ(f )] ≤ C 2E [f ].
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Poincaré inequality

The classical Poincaré inequality comes from the partial differential
equations area: ∫

D
f 2 ≤ CD

∫
D
|∇f |2,

where D ⊂ Rn is bounded, f ∈ C1
c (D), and we integrate with

respect to the Lebesgue measure.

We say that a probability Borel measure ν on Rn satisfies the
Poincaré inequality with constant C if for every C1 function
f : Rn −→ R such that

∫
Rn f dν <∞ there is∫

Rn
f 2 dν −

(∫
Rn

f dν
)2
≤ C

∫
Rn
|∇f |2 dν.

On Cn the energy functional takes place of
∫
|∇f |2.

We will prove that for every f ∈ Hn

E [f 2]− (E [f ])2 ≤ E [f Lf ].
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Poincaré inequality for even functions

Moreover, if f is even, i.e. f (−x) = f (x) for all x ∈ Cn, then

E [f 2]− (E [f ])2 ≤ 1
2
E [f Lf ].

Indeed, let f =
∑

S⊆[n] aSwS . Recall that

E [f 2] =
∑

S⊆[n]

a2
S , E [f ] = a∅.

Thus
Var [f ] = E [f 2]− (E [f ])2 =

∑
S⊆[n]: S 6=∅

a2
S .

On the other hand

E [f Lf ] =
∑

S⊆[n]

|S |a2
S =

∑
S⊆[n]: S 6=∅

|S |a2
S .

This ends the proof of the first assertion (and, by the way,
it gives one more proof that L is positive semi-definite).

K. Oleszkiewicz Analysis on the discrete cube



Poincaré inequality for even functions

Moreover, if f is even, i.e. f (−x) = f (x) for all x ∈ Cn, then

E [f 2]− (E [f ])2 ≤ 1
2
E [f Lf ].

Indeed, let f =
∑

S⊆[n] aSwS . Recall that

E [f 2] =
∑

S⊆[n]

a2
S , E [f ] = a∅.

Thus
Var [f ] = E [f 2]− (E [f ])2 =

∑
S⊆[n]: S 6=∅

a2
S .

On the other hand

E [f Lf ] =
∑

S⊆[n]

|S |a2
S =

∑
S⊆[n]: S 6=∅

|S |a2
S .

This ends the proof of the first assertion (and, by the way,
it gives one more proof that L is positive semi-definite).

K. Oleszkiewicz Analysis on the discrete cube



Poincaré inequality for even functions

Moreover, if f is even, i.e. f (−x) = f (x) for all x ∈ Cn, then

E [f 2]− (E [f ])2 ≤ 1
2
E [f Lf ].

Indeed, let f =
∑

S⊆[n] aSwS . Recall that

E [f 2] =
∑

S⊆[n]

a2
S , E [f ] = a∅.

Thus
Var [f ] = E [f 2]− (E [f ])2 =

∑
S⊆[n]: S 6=∅

a2
S .

On the other hand

E [f Lf ] =
∑

S⊆[n]

|S |a2
S =

∑
S⊆[n]: S 6=∅

|S |a2
S .

This ends the proof of the first assertion (and, by the way,
it gives one more proof that L is positive semi-definite).

K. Oleszkiewicz Analysis on the discrete cube



Poincaré inequality - proof of the second assertion

To prove the second assertion, note that if f is an even function
then for all S ⊆ [n] with |S | odd we have

aS = 〈f ,wS〉 = E [f · wS ] = 0.

Indeed, for |S | odd, wS is an odd function, so that f · wS is odd as
well and thus it has expectation zero.

Since all natural numbers strictly between 0 and 2 are odd,
for every even f ∈ Hn we have

1
2
E [f Lf ] =

∑
S⊆[n]: S 6=∅

|S |
2

a2
S =

∑
S⊆[n]: |S |≥2

|S |
2

a2
S ≥

≥
∑

S⊆[n]: |S |≥2

a2
S =

∑
S⊆[n]: S 6=∅

a2
S = E [f 2]− (E [f ])2.
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Spectral gap

The above variance-energy inequalities are also called spectral
gap inequalities - as we have seen, they hold because there is a
gap in the spectrum σ(L) between eigenvalue 0, associated to the
constant function 1, and σ(L|f ∈Hn: E [f ]=0).

For the proof of the Poincaré inequality for even functions we have
used the existence of a gap between 0 and σ(L|f ∈Hn: f even,E [f ]=0).

The existence of the spectral gap (of the first type) for a symmetric
Markov semigroup (Qt)t∈[0,∞) implies

Qt f
t→∞−→ E [f ]

and the size of the gap is responsible for the speed of convergence.
This is of uttermost importance in physics (and the Poincaré-type
inequalities were considered in physics first, already in the middle
of the nineteenth century).
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Markov semigroup (Qt)t∈[0,∞) implies

Qt f
t→∞−→ E [f ]

and the size of the gap is responsible for the speed of convergence.
This is of uttermost importance in physics (and the Poincaré-type
inequalities were considered in physics first, already in the middle
of the nineteenth century).
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Elementary inequality

For any p > 1 and a, b ≥ 0 the following inequality holds:

(p − 2)2(ap + bp)− p2(ap−1b + abp−1) + 8(p − 1)ap/2bp/2 ≥ 0.

Because of the homogeneity, it suffices to prove that for t ≥ 1

u(t) = (p − 2)2tp − p2tp−1 + 8(p − 1)tp/2 − p2t + (p − 2)2 ≥ 0.

Indeed, u(1) = 2(p2 − 4p + 4)− 2p2 + 8p − 8 = 0, and

u′(t) = p(p − 2)2tp−1 − p2(p − 1)tp−2 + 4p(p − 1)t
p
2−1 − p2,

so that u′(1) = (p3− 4p2 + 4p)− (p3− p2) + (4p2− 4p)− p2 = 0.
Now it suffices to note that

u′′(t) = p(p−1)(p−2)2tp−2−p2(p−1)(p−2)tp−3+2p(p−1)(p−2)t
p
2−2

= p2(p − 1)(p − 2)tp−2
(p − 2

p
+

2
p
t−p/2 − t−1

)
=

= 2p(p − 1)(2− p)tp−2
(2− p

2
+

p
2
t−1 − t−p/2

)
.
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Elementary inequality - end of the proof

Recall:

u′′(t) = p2(p − 1)(p − 2)tp−2
(p − 2

p
+

2
p
t−p/2 − t−1

)
=

= 2p(p − 1)(2− p)tp−2
(2− p

2
+

p
2
t−1 − t−p/2

)
.

Since for p ≥ 2 there is

p − 2
p

+
2
p
t−p/2 =

p − 2
p
· 1 +

2
p
· t−p/2 ≥ 1

p−2
p (t−p/2)

2
p = t−1,

while for p ∈ (1, 2] there is

2− p
2

+
p
2
t−1 =

2− p
2
· 1 +

p
2
· t−1 ≥ 1

p−2
2 (t−1)

p
2 = t−p/2,

we have u′′(t) ≥ 0 and the proof is finished.

For p ∈ (0, 1) and a, b > 0 the reverse inequality holds.
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Stroock-Varopoulos inequality (1984/85)

For any p > 1 and f : Cn −→ [0,∞) there is

E [f p/2L(f p/2)] ≤ p2

4(p − 1)
E [f p−1Lf ].

The same inequality applies to any generator of a symmetric
Markov semigroup (under some technical assumptions about f ),
with a proof similar to the one below.

Recall that for a, b ≥ 0 there is

(p − 2)2(ap + bp)− p2(ap−1b + abp−1) + 8(p − 1)ap/2bp/2 ≥ 0.

Hence, for any a ≥ 0 we have

(p − 2)2(ap + f p)− p2(ap−1f + af p−1) + 8(p − 1)ap/2f p/2 ≥ 0

pointwise. Pt is linear and order preserving for any t ≥ 0, so that

(p−2)2(ap+Pt(f p))−p2(ap−1Pt f +aPt(f p−1))+8(p−1)ap/2Pt(f p/2) ≥ 0.
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Stroock-Varopoulos inequality - continued

(p−2)2(ap+Pt(f p))−p2(ap−1Pt f +aPt(f p−1))+8(p−1)ap/2Pt(f p/2) ≥ 0

pointwise, for every a ≥ 0. Thus also

(p−2)2(f p+Pt(f p))−p2(f p−1Pt f +f Pt(f p−1))+8(p−1)f p/2Pt(f p/2) ≥ 0

pointwise. By taking expectation we arrive at

(p − 2)2(E [f p] + E [Pt(f p)])− p2(E [f p−1Pt f ] + E [f Pt(f p−1)])+

+8(p − 1)E [f p/2Pt(f p/2)] ≥ 0.

Since Pt is symmetric and expectation preserving, we have

β(t) = 2(p−2)2E [f p]−2p2E [f p−1Pt f ]+8(p−1)E [f p/2Pt(f p/2)] ≥ 0

for t ≥ 0. Since P0 = Id we have

β(0) =
(
2(p − 2)2 − 2p2 + 8(p − 1)

)
· E [f p] = 0.
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Stroock-Varopoulos inequality - end of the proof

Thus β′(0+) ≥ 0. On the other hand,

β′(0+) = 2p2E [f p−1Lf ]− 8(p − 1)E [f p/2L(f p/2)],

so that

E [f p/2L(f p/2)] ≤ p2

4(p − 1)
E [f p−1Lf ]

and the proof is finished.

Remark: In the case of the Ornstein-Uhlenbeck semigroup
on (Rn, (2π)−n/2e−|x |

2/2 dx) there is

(Lf )(x) = 〈x ,∇f (x)〉 − (∆f )(x),

E [f ·Lg ] = (2π)−n/2
∫

Rn
〈(∇f )(x), (∇g)(x)〉e−|x |2/2 dx = E [〈∇f ,∇g〉]

(at least for f , g ∈ C∞c ; strictly speaking, one must extend L from
this dense subspace to a self-adjoint operator). It is easy to see
that always there is equality in the Stroock-Varopoulos inequality
in this case, at least if f is positive and smooth.
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Khinchine-Kahane inequality

In his studies on the law of the iterated logarithm, A. Khinchine
discovered that for every p > q > 0 there exists a positive constant
Cp,q such that for any natural n and arbitrary real numbers
a1, a2, . . . , an the inequality

(E [|
n∑

i=1

ai ri |p])1/p ≤ Cp,q · (E [|
n∑

i=1

ai ri |q])1/q

holds, where r1, r2, . . . are independent symmetric ±1 random
variables.

J.-P. Kahane extended this result. He proved that for every
p > q > 0 there exists a positive constant Kp,q such that for any
natural n, any normed linear space F and any collection of vectors
v1, v2, . . . , vn ∈ F there is

(E [‖
n∑

i=1

rivi‖p])1/p ≤ Kp,q · (E [‖
n∑

i=1

rivi‖q])1/q.
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Kahane inequality - optimal constants

The optimal (least possible) constants in the Khinchine inequality
were established for a large range of parameters p and q (Whittle,
Szarek and others). U. Haagerup found the optimal Cp,2 for p > 2
and C2,q for q ∈ (0, 2).

We will prove that the Kahane inequality holds with K2,1 =
√
2

and K4,2 = 4
√
3 (R. Latała, S. Kwapień).

Both constants are optimal even for the Khinchine inequality
(obviously, R is a special case of a normed linear space):

(E [|r1 + r2|2])1/2/E [|r1 + r2|] =
√
2

and in the (4, 2) case there is asymptotic equality for
a1 = . . . = an = n−1/2 as n→∞ - by the CLT it is enough
to check that

(E [G 4])1/4/(E [G 2])1/2 =
4
√
3,

where G ∼ N (0, 1).
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Seminorm

For n ≥ 2 let v1, v2, . . . , vn be vectors of some linear space and let
‖ · ‖ be a seminorm on this space. For x = (x1, x2, . . . , xn) ∈ Rn let

H(x) = ‖
n∑

i=1

xivi‖.

Obviously, H is a seminorm on Rn and h = H
∣∣∣
Cn

has the following

properties:
h ≥ 0 (pointwise),
h is even, i.e. h(−x) = h(x) for all x ∈ Cn.

Now we will also prove that
Lh ≤ h (pointwise).
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Seminorm bound - first proof

Indeed, by the triangle inequality

(Lh)(x) =
1
2
·

∑
y∈Cn: d(x ,y)=1

(
h(x)−h(y)

)
=

1
2
·

∑
y∈Cn: d(x ,y)=1

(
H(x)−H(y)

)

≤ n
2
H(x)− 1

2
H
( ∑

y∈Cn: d(x ,y)=1

y
)

=
n
2
H(x)− 1

2
H((n − 2)x) =

=
n
2
H(x)− n − 2

2
H(x) = H(x) = h(x).

To understand why ∑
y∈Cn: d(x ,y)=1

y = (n − 2)x

(we add elements of Cn in Rn) note that for each i ∈ [n] exactly
n− 1 of the y ’s have the same i-th coordinate as x and exactly one
of the y ’s has the same i-th coordinate as −x .
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Seminorm bound - second proof

Now let us follow a different reasoning. By the Hahn-Banach
theorem the seminorm H can be expressed as a pointwise
supremum of some family of linear functionals Φ:

∀x∈Rn H(x) = sup
ϕ∈Φ

ϕ(x).

Obviously, each of these linear functionals, when restricted to Cn,
is a linear combination of Rademacher functions and therefore
Ptϕ = e−tϕ for t ≥ 0. Since H ≥ ϕ pointwise and (Pt)t∈[0,∞)

is order preserving, we have

∀ϕ∈Φ Pth ≥ Ptϕ = e−tϕ

and thus
Pth ≥ e−t sup

ϕ∈Φ
ϕ = e−th.

Hence

Lh = − d
dt

Pth
∣∣∣
t=0+

= lim
t→0+

P0h − Pth
t

≤ lim
t→0+

h − e−th
t

= h.
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Optimal constant K2,1 - proof

We know that
h ≥ 0 (pointwise),
h is even,
Lh ≤ h (pointwise),

Thus, by the Poincaré inequality for even functions, we have

E [h2]− (E [h])2 ≤ 1
2
E [hLh] ≤ 1

2
E [h2]

and therefore (E [h2])1/2 ≤
√
2 · E [h], i.e.

(E [‖
n∑

i=1

rivi‖2])1/2 ≤
√
2 · E [‖

n∑
i=1

rivi‖].
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Optimal constant K4,2 - proof

Since h2 is an even function as well, we have

E [h4]− (E [h2])2 ≤ 1
2
E [h2L(h2)].

Recall the Stroock-Varopoulos inequality - for p > 1 and f ≥ 0

E [f p/2L(f p/2)] ≤ p2

4(p − 1)
E [f p−1Lf ],

in particular for p = 4 and f = h we have

E [h2L(h2)] ≤ 4
3
E [h3Lh] ≤ 4

3
E [h4].

Hence
E [h4]− (E [h2])2 ≤ 1

2
· 4
3
E [h4]

and thus (E [h4])1/4 ≤ 4
√
3 · (E [h2])1/2, i.e.

(E [‖
n∑

i=1

rivi‖4])1/4 ≤ 4
√
3 · (E [‖

n∑
i=1

rivi‖2])1/2.
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Open problems

Question 1 (Kwapień): Is it true that for every p > q > 0
the optimal constants in the Khinchine and Khinchine-Kahane
inequalities are equal, i.e., Cp,q = Kp,q?

It is known that this is the case for p = 4, q = 2, and for q ∈ (0, 1],
p ∈ (q, 2). It is also known that supq∈(1,p) Kp,q/Cp,q → 1 as
p →∞. Szarek showed that the Gaussian analog of this question,
with ±1 variables replaced by N (0, 1) random variables, follows
from the S-inequality.

Question 2 (Pełczyński): Let (vi ,j)1≤i<j≤n belong to some
normed linear space, and let r1, r2, . . . , rn be independent symmetric
±1 random variables. Let S =

∑
1≤i<j≤n ri rjvi ,j . Does it follow

that E [‖S‖2] ≤ 4(E [‖S‖])2?

Known to be true for n ≤ 6. In general, unknown even for
real-valued coefficients. Its decoupled counterpart follows easily
from the fact that K2,1 =

√
2.
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Chaos

We will say that a polynomial V ∈ R[x1, x2, . . . , xn] is multilinear
(polylinear) or of chaos type if for every i ∈ [n] there is

∂iiV =
∂2V
∂x2

i
≡ 0,

i.e. no variable appears squared or in higher power (with non-zero
coefficient). This is obviously equivalent to the fact that V belongs
to the linear span of the constant function 1 and multilinear
monomials x1, x2, . . . , xn, x1x2, x1x3, . . . , xn−1xn, x1x2x3, . . . ,
x1x2 . . . xn.

If Z1, Z2, . . . , Zn are independent random variables and
V ∈ R[x1, x2, . . . , xn] is multilinear then Z = V (Z1,Z2, . . . ,Zn)
is called a (tetrahedral) chaos.

Note that any real function on the discrete cube is a Rademacher
chaos (due to the Walsh-Fourier expansion).
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Elementary moment comparison

Lemma Let Z1,Z2, . . . ,Zn be independent real random variables
with E [Zi ] = E [Z 3

i ] = 0, E [Z 2
i ] = 1 and E [Z 4

i ] ≤ 9 for
i = 1, 2, . . . , n. Let V ∈ R[x1, x2, . . . , xn] be of chaos type,
d = degV , and let Z = V (Z1,Z2, . . . ,Zn).
Then E [Z 4] ≤ 9d (E [Z 2])2.

The main example one can have in mind is Zi = ri for i ∈ [n]
(comparison of moments for Rademacher chaos). The more general
statement above was given just to underline those features of
symmetric ±1 random variables which will be used in the proof.

Proof: We will prove our assertion by induction on n. For n = 1
it is trivial. Assume n > 1. We can express V as
V (x1, x2, . . . , xn) = P(x1, x2, . . . , xn−1) + xnQ(x1, x2, . . . , xn−1),
where P and Q are again chaos type polynomials, in at most n − 1
variables, with degP ≤ d and degQ ≤ d − 1.
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Moment comparison - proof

Let
X = P(Z1,Z2, . . . ,Zn−1)

and
Y = Q(Z1,Z2, . . . ,Zn−1).

Clearly, (X ,Y ) is independent of Zn. We have

E [Z 4] = E [(X+ZnY )4] = E [X 4]+4E [X 3Y ]·E [Zn]+6E [X 2Y 2]·E [Z 2
n ]+

+4E [XY 3] ·E [Z 3
n ]+E [Y 4] ·E [Z 4

n ] ≤ E [X 4]+6E [X 2Y 2]+9E [Y 4] ≤

≤ 9d (E [X 2])2 + 6(E [X 4])1/2(E [Y 4])1/2 + 9 · 9d−1(E [Y 2])2 ≤

≤ 9d (E [X 2])2 + 6 · 3dE [X 2] · 3d−1E [Y 2] + 9d (E [Y 2])2 =

9d (E [X 2]+E [Y 2])2 = 9d (E [X 2]+2E [XY ]·E [Zn]+E [Y 2]·E [Z 2
n ])2 =

= 9d (E [X + ZnY ]2)2 = 9d (E [Z 2])2,

where the induction hypothesis was used for P and Q. The proof is
finished.
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Comparison: example

In fact, if Zi ’s are just symmetric ±1 random variables, the
constant 9d is not optimal, for example for d = 1 one can prove
the above comparison of moments with factor 3 instead of 9.
However, the following example indicates that the asymptotic
behaviour of the constant is very close to optimal when d →∞
(even if we restrict our interest to Rademacher chaos only).

Denote by
([n]

d

)
all subsets of [n] = {1, 2, . . . , n} with cardinality d .

Let
V (x1, x2, . . . , xn) =

∑
S∈([n]

d )

∏
i∈S

xi ,

so that deg(V ) = d , and let

Z = V (r1, . . . , rn) =
∑

S∈([n]
d )

∏
i∈S

ri .
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Comparison example - computation

Let δi (A) = 1 if i ∈ A, and δi (A) = 0 if i 6∈ A, as usually. Then

E [Z 2] = E
[ ∑

S1∈([n]
d )

∏
i∈S1

ri ·
∑

S2∈([n]
d )

∏
j∈S2

rj
]

=

∑
S1∈([n]

d )

∑
S2∈([n]

d )

n∏
i=1

E [r δi (S1)+δi (S2)
i ] =

∑
S∈([n]

d )

1 =

(
n
d

)
.

Similarly, we have

E [Z 4] =
∑

S1,S2,S3,S4∈([n]
d )

n∏
i=1

E
[
r δi (S1)+δi (S2)+δi (S3)+δi (S4)
i

]

and all summands in the above sum are nonnegative.
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Comparison example - computations

For simplicity assume that d is divisible by 3 and n ≥ 2d .
Let A1,A2, . . . ,A6 ⊆ [n] be pairwise disjoint with cardinality d/3.
Let S1 = A1 ∪ A4 ∪ A5, S2 = A1 ∪ A2 ∪ A6, S3 = A3 ∪ A4 ∪ A6,
S4 = A2 ∪ A3 ∪ A5 (so that A1 = S1 ∩ S2, A2 = S2 ∩ S4,
A3 = S3 ∩ S4, A4 = S1 ∩ S3, A5 = S1 ∩ S4, A6 = S2 ∩ S3).

Hence E [Z 4] ≥
∑

A1,...,A6 as above

n∏
i=1

E
[
r δi (A1∪A4∪A5)+δi (A1∪A2∪A6)+δi (A3∪A4∪A6)+δi (A2∪A3∪A5)
i

]
=

∑
A1,...,A6

n∏
i=1

E
[
r2δi (A1∪A2∪A3∪A4∪A5∪A6)
i

]
=

=
∑

A1,...,A6

1 =

(
n

d/3, d/3, d/3, d/3, d/3, d/3

)
.
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Comparison example - conclusion

Finally, we have

(
E [Z 4]/(E [Z 2])2

)1/d
≥
(

n
d/3, d/3, d/3, d/3, d/3, d/3

)1/d/(n
d

)2/d

≥
(n(n − 1) · . . . (n − 2d + 1)

((d/3)!)6

)1/d/(nd

d !

)2/d n→∞−→

n→∞−→ (d !)2/d/((d/3)!)6/d d→∞−→ 9,

by Stirling’s formula.
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Entropy

For an integrable nonnegative function g on a probability space
we define its entropy as

Ent[g ] := E [g ln g ]− E [g ] · ln(E [g ]),

where we adopt a natural convention, extending in a continuous
way ψ(s) = s ln s from (0,∞) to [0,∞) by setting ψ(0) = 0.

Clearly, Ent[g ] <∞ if and only if g ln g is integrable.
Since ψ is strictly convex, always there is Ent[g ] ≥ 0,
and Ent[g ] = 0 if and only if g is constant a.s.

For λ > 0 we have Ent(λg) = λ · Ent(g).
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Logarithmic Sobolev inequality

The logarithmic Sobolev inequality (called also entropy-energy
inequality) was introduced by L. Gross. It resembles the Poincaré
inequality - the variance functional on the left hand side is replaced
by entropy. However, both variance and energy functionals are
quadratic forms while entropy is 1-homogenous. Therefore the
inequality takes form:

Ent[f 2] ≤ C · E [f ].

Strictly speaking, a symmetric Markov semigroup (Qt)t∈[0,∞) on Ω,
with an invariant measure µ and a self-adjoint (with respect to the
L2(Ω, µ) structure) generator L, satisfies the logarithmic Sobolev
inequality with constant C > 0 if for every function f belonging to
the domain of L there is

Eµ[f 2 ln(f 2)]− Eµ[f 2] lnEµ[f 2] ≤ C · Eµ[f Lf ].
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Logarithmic Sobolev inequalities - continued

We will prove that (Pt)t∈[0,∞) satisfies the logarithmic Sobolev
inequality with constant 2, i.e. for every f ∈ Hn we have

E [f 2 ln(f 2)]− E [f 2] lnE [f 2] ≤ 2 · E [f Lf ].

To avoid technicalities we will concentrate on the case of
(Pt)t∈[0,∞) but most of our arguments, after some appropriate
modifications, may be applied to a large class of symmetric Markov
semigroups. Therefore we will first describe some equivalent
formulations in which the constant C appears, and only then we
will prove that in our discrete cube setting we can set C = 2.

Remark: Note that a linear change of time parameter t in
(Pt)t∈[0,∞) is reflected by an analogous rescaling of the semigroup’s
generator. Thus the optimal constants in the logarithmic Sobolev
inequality for different symetric Markov semigroups may vary.
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Logarithmic Sobolev inequality - equivalent versions

The following statements are equivalent:

For every f ∈ Hn

E [f 2 ln(f 2)]− E [f 2] lnE [f 2] ≤ C · E [f Lf ].

For every nonnegative f ∈ Hn

E [f 2 ln(f 2)]− E [f 2] lnE [f 2] ≤ C · E [f Lf ].

For every nonnegative f ∈ Hn and every p > 1

E [f p ln(f p)]− E [f p] lnE [f p] ≤ Cp2

4(p − 1)
· E [f p−1Lf ].
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Logarithmic Sobolev inequalities - proof of the equivalence

The second statement (for nonnegative functions) trivially follows
from the first one (for the whole Hn). The reverse implication is
also easy. Let f ∈ Hn. We use the second statement for a
nonnegative function |f | and apply the inequality

E [|f |] = E [|f | L|f |] ≤ E [f Lf ] = E [f ],

which we proved earlier.

The second statement is a special case of the third one (for p = 2).
To prove the reverse implication we use the second statement for
f p/2 instead of f :

E [|f |p ln(f p)]−E [f p] lnE [f p] ≤ C ·E [f p/2L(f p/2)] ≤ Cp2

4(p − 1)
·E [f p−1Lf ],

where we have used the Stroock-Varopoulos inequality.
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Logarithmic Sobolev inequality - semigroup application

For a nonnegative f ∈ Hn and p > 1 let us define
φq : [q,∞) −→ R by

φq(p) = ln ‖Pt(p)f ‖p =
1
p
lnE [(Pt(p)f )p],

where t(p) = C
4 ln p−1

q−1 .

It is easy to see that t(q) = 0 and t(p) ≥ 0 for p ≥ q, so that
fp := Pt(p)f ≥ 0. Note that φq(q) = ln ‖f ‖q. An elementary
computation shows that

d
dp
φq(p) =

1
p

E [ d
dp (f p

p )]

E [f p
p ]

− 1
p2 lnE [f p

p ]

and
d
dp

(f p
p ) =

1
p
f p
p ln(f p

p )− Cp
4(p − 1)

f p−1
p Lfp.
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Semigroup application - continued

Thus d
dpφq(p) ≤ 0 if and only if

Ent(f p
p ) ≤ Cp2

4(p − 1)
· E [f p−1

p Lfp],

which, as we have seen, is the logarithmic Sobolev inequality with
constant C applied to the function fp.
Hence the logarithmic Sobolev inequality implies the fact that φq
is decreasing. The partial converse follows from computing
d
dpφq(p)

∣∣∣
p=q

and using the fact that it must be nonpositive.

Remark: In particular, it is just enough to know that φ2 is
nonincreasing to obtain

E [f 2 ln(f 2)]− E [f 2] lnE [f 2] ≤ C · E [f Lf ],

so E [f q ln(f q)]− E [f q] lnE [f q] ≤ Cq2

4(q − 1)
· E [f q−1Lf ]

for q > 1, and thus also φq is nonincreasing for all q > 1.
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Hypercontractivity

Let C > 0. The following statements are equivalent:

For every nonnegative f ∈ Hn

E [f 2 ln(f 2)]− E [f 2] lnE [f 2] ≤ C · E [f Lf ].

For every p > q > 1 and every nonnegative f ∈ Hn

‖Pt f ‖p ≤ ‖f ‖q
for t = t(p, q) = C

4 ln p−1
q−1 .

For every p > q > 1 and every nonnegative f ∈ Hn

‖Pt f ‖p ≤ ‖f ‖q
for every t ≥ t(p, q) = C

4 ln p−1
q−1 .

For every p > q > 1 and every f ∈ Hn

‖Pt f ‖p ≤ ‖f ‖q
for every t ≥ t(p, q) = C

4 ln p−1
q−1 .

This property of the semigroup is called hypercontractivity.
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Hypercontractivity - explanation

Many of the implications are obvious. Passing from t = t(p, q) to
general t ≥ t(p, q) follows from the fact that

Pt f = Pt−t(p,q)(Pt(p,q)f )

and from the contractivity of Pt−t(p,q).

To pass from nonnegative to arbitrary f ∈ Hn we just note that
|f | ≥ f ≥ −|f | pointwise, and since Pt is order preserving we have

Pt |f | ≥ Pt f ≥ −Pt |f |,

i.e. |Pt f | ≤ Pt |f | pointwise, so that ‖Pt f ‖p ≤ ‖Pt |f | ‖p.
Thus we can apply the inequality for nonnegative functions to |f |
and deduce the general statement.
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Hypercontractivity - application

For every p > q > 1 and for any natural n, any normed linear space
F and any collection of vectors v1, v2, . . . , vn ∈ F there is

(E [‖
n∑

i=1

rivi‖p])1/p ≤
(p − 1

q − 1

)C/4
· (E [‖

n∑
i=1

rivi‖q])1/q,

where C > 0 is such that the logarithmic Sobolev inequality with
constant C holds on Cn and r1, r2, . . . are independent symmetric
±1 random variables.

Since the optimal C = 2, we get the Kahane inequality with
constant

√
p − 1/

√
q − 1.
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Kp,q ≤
√

p − 1/
√

q − 1 - proof

Again we consider the function h(x) = ‖
∑n

i=1 xivi‖. We have
proved that Pth ≥ e−th ≥ 0 pointwise for t ≥ 0.

Therefore for t = C
4 ln p−1

q−1 we have

(q − 1
p − 1

)C/4
‖h‖p = e−t‖h‖p ≤ ‖Pth‖p ≤ ‖h‖q,

so that
(E [hp])1/p ≤

(p − 1
q − 1

)C/4
· (E [hq])1/q

and the proof is finished.
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q−1 we have

(q − 1
p − 1

)C/4
‖h‖p = e−t‖h‖p ≤ ‖Pth‖p ≤ ‖h‖q,

so that
(E [hp])1/p ≤

(p − 1
q − 1

)C/4
· (E [hq])1/q

and the proof is finished.
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Log-Sobolev inequality for (Pt)t∈[0,∞) - optimal constant

We will prove that the log-Sobolev inequality for the semigroup
(Pt)t∈[0,∞) holds with the constant C = 2.

This result is due to L. Gross but its equivalent versions were proved
earlier by A. Bonami and W.Beckner. The main ideas and the very
notion of hypercontractivity go back to the works of Nelson.

It is clear that the log-Sobolev inequality cannot hold with C < 2.
Indeed, we know that the Khinchine-Kahane inequality holds with
Cp,q = (p− 1)C/4/(q− 1)C/4 for any p > q > 1. For p = 2k , q = 2
we get by the CLT argument (a1 = . . . = an = n−1/2, n −→∞)(
(2k−1)!!

)1/2k
= (E [G 2k ])1/2k ≤ (2k−1)C/4(E [G 2])1/2 = (2k−1)C/4

where G ∼ N (0, 1). The left hand side grows like
√

k thus
C/4 ≥ 1/2, so that C ≥ 2.
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Lp → L2 hypercontractivity for p ∈ (1, 2]

Let p ∈ (1, 2]. We will prove that P− 1
2 ln(p−1) is contractive as a

linear operator from Lp to L2, i.e.

‖P− 1
2 ln(p−1)f ‖2 ≤ ‖f ‖p

for every f ∈ Hn (as we know, we may w.l.o.g. assume f ≥ 0).

Clearly, the inequality turns into equality for p = 2. Therefore
the above hypercontractive estimate implies

d
dp
‖P− 1

2 ln(p−1)f ‖2
∣∣∣
p=2−

≥ d
dp
‖f ‖p

∣∣∣
p=2−

which (after some elementary computation of the type we already
know) takes form of

Ent[f 2] ≤ 2 · E [f Lf ].

Hence our task is reduced to proving that ‖P− 1
2 ln(p−1)‖Lp→L2 ≤ 1.
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Elementary inequalities

We need two easy elementary inequalities:

∀a>−1, b>1 (1 + a)b ≥ 1 + ab

and

∀a,b∈R: a≥|b|

( (a + b)p + (a − b)p

2

)2/p
≥ a2 + (p − 1)b2.

The first one is well-known and trivial: a 7→ 1 + ab is a supporting
(tangent) function of a convex function a 7→ (1 + a)b at a = 0.

To prove the second inequality let us consider a function
γ : [−1, 1] −→ R defined by

γ(u) =
(1 + u)p + (1− u)p

2
.

Obviously, γ(0) = 1, γ′(0) = 0.
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Elementary inequalities - continued

We have

γ′′(u) = p(p − 1)
(1 + u)p−2 + (1− u)p−2

2
≥ p(p − 1)

because s 7→ sp−2 is convex on [0, 2].

Therefore γ(u) ≥ 1 + p(p − 1)u2/2, so that( (1 + u)p + (1− u)p

2

)2/p
= γ(u)2/p ≥

≥
(
1 +

p(p − 1)

2
u2
)2/p

≥ 1 +
2
p
· p(p − 1)

2
u2 = 1 + (p − 1)u2,

where we have used the first inequality.

The homogeneity yields that for |b| ≤ a there is( (a + b)p + (a − b)p

2

)2/p
≥ a2 + (p − 1)b2,

which is our second inequality.
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Lp → L2 hypercontractivity for p ∈ (1, 2] - case n = 1

We have proved that for |b| ≤ a( (a + b)p + (a − b)p

2

)2/p
≥ a2 + (p − 1)b2,

i.e.

‖P− 1
2 ln(p−1)f ‖2 = (a2+(p−1)b2)1/2 ≤

( (a + b)p + (a − b)p

2

)1/p
= ‖f ‖p,

where f : {−1, 1} −→ R is given by the formula f (x1) = a + bx1 or
f = a + br1, so that P− 1

2 ln(p−1)f = a + (p − 1)1/2br1.

Since every nonnegative f : {−1, 1} −→ R is of the above form
with |b| ≤ a, we have just proved the hypercontractive estimate on
C1 = {−1, 1}.

We will use induction on n to tranfer this result to Cn.
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Induction - notation

For A ⊆ [n] we will denote by EA expectation taken with respect to
all coordinates indexed by A, so that for f ∈ Hn the expectation
EA[f ] is a function depending on coordinates indexed by [n] \ A.

For A ⊆ [n] we will denote by PA
t the semigroup action restricted to

the coordinates indexed by A. Namely, for S ⊆ [n] we set

PA
t wS = e−|S∩A|twS

and extend PA
t to a linear operator on Hn.

One can easily check that if A ∪ B = [n] and A ∩ B = ∅ then

EA

[
EB [f ]

]
= E [f ] and PA

t (PB
t f ) = Pt f

for every f ∈ Hn and t ≥ 0.
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Induction step

Let t = −1
2 ln(p − 1).

‖Pt f ‖2 = (E [(Pt f )2])1/2 =
(
EA

[
EB [(PB

t (PA
t f ))2]

])1/2
≤

≤
(
EA

[
(EB [(PA

t f )p])2/p
])1/2 ?

≤
(
EB

[
(EA[(PA

t f )2])p/2
])1/p

≤

≤
(
EB

[
EA[f p]

])1/p
= (E [f p])1/p = ‖f ‖p,

where we have used the induction assumption ‖PB
t ‖Lp→L2 ≤ 1

in the first inequality and the induction assumption ‖PA
t ‖Lp→L2 ≤ 1

in the third inequality.

Now we only need to prove
?
≤ .
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Hypercontractivity - main trick

We will prove that(
EA

[
(EB [(PA

t f )p])2/p
])1/2

≤
(
EB

[
(EA[(PA

t f )2])p/2
])1/p

for every nonnegative f ∈ Hn.

Let g = (PA
t f )p ≥ 0 and s = 2/p ≥ 1. We need to prove that(

EA

[
(EB [g ])s

])1/s
≤ EB

[
(EA[g s ])1/s

]
,

which is just a form of the Minkowski inequality:∥∥∥EB [g ]
∥∥∥

s,A
≤ EB

[
‖g‖s,A

]
(an easy exercise).
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Subadditivity

There is also a standard method of tensorizing the Poincaré and
logarithmic Sobolev inequalities by using the subadditivity of the
variance and entropy functionals.

Thus the hypercontractive estimates we have just proved can be
also obtained by proving the logarithmic Sobolev inequality on
{−1, 1} and then deducing it on the discrete cube via subadditivity.

Hint (variational definition of entropy):
for every f > 0 we have

Ent(f ) = sup{E [fg ]; E [eg ] ≤ 1}.
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Talagrand’s Conjecture

Question (Talagrand):
Let t > 0 and let µ denote the normalized counting measure on
{−1, 1}n. Does there exist a function ψt : (1,∞)→ (1,∞) such
that limu→∞ ψt(u) =∞ and for any positive integer n, any u > 1,
and every function f : {−1, 1}n → [0,∞) there is

µ
({

x ∈ {−1, 1}n : (Pt f )(x) > u · E [f ]
})
≤ 1

uψt(u)
?

The bound with ψ(u) ≡ 1 follows trivially from the fact that
E [Pt f ] = E [f ], and from the Markov-Chebyshev inequality.
The problem is open, some partial affirmative answers have been
obtained for its Ornstein-Uhlenbeck analog in the Gaussian setting.
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Brief history of hypercontractivity

The following slides contain a sketch of the history of
hypercontractivity. They were prepared as a part of a 2011
presentation, joint with Ryan O’Donnell and Elchanan Mossel.
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Symmetric Markov semigroup setting

(Ω, µ) - probability measure space (with some reasonable σ-field)

H = L2(Ω, µ) - Hilbert space

L : H −→ H - positive semi-definite self-adjoint operator
(in fact, usually defined only on some dense subspace of H),
L1=0; usually L provides a link to a geometric structure of Ω

For f ∈ H and t ≥ 0 let Pt f = e−tLf ,
i.e. P0f = f and d

dt Pt f = −LPt f .

Semigroup property: Pt+s = Pt ◦ Ps for t, s ≥ 0.

Assume, additionally, that Pt : H −→ H is positivity preserving:
for t > 0, if f ≥ 0 µ-a.e. then also Pt f ≥ 0 µ-a.e.
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Heat semigroups

(Ω, µ) =
(
{−1, 1}n, (1

2δ−1 + 1
2δ1)⊗n

)
(Lf )(x) = 1

2
∑

y∼x

(
f (x)− f (y)

)
; we sum over neighbours of x ,

i.e. over y ’s that differ from x on exactly one coordinate.

Then PtwS = e−|S |twS for wS(x) =
∏

i∈S xi .

(Ω, µ) = (Rn, γn); (Lf )(x) = 〈x ,∇f (x)〉 −∆f (x)

Then (Pt f )(x) = Ef (e−tx +
√
1− e−2tG ), where G ∼ N (0, Idn),

with Hermite polynomials as eigenfuntions (the Ornstein-Uhlenbeck
semigroup, sort of a heat semigroup on Rn "compactified" by
replacing the non-probabilistic Lebesgue measure λn with γn).
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Heat semigroups

(Ω, µ) =
(
{−1, 1}n, (1

2δ−1 + 1
2δ1)⊗n

)
(Lf )(x) = 1

2
∑

y∼x

(
f (x)− f (y)

)
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Hypercontractivity

Let p > q > 1. We will say that a symmetric Markov semigroup
(Pt)t≥0 is (p, q)-hypercontractive if there exists t(p, q) > 0 such
that

‖Pt(p,q)f ‖p ≤ ‖f ‖q
for every f ∈ (Lq ∩ L2)(Ω, µ).

Then the same inequality holds also for every t ≥ t(p, q).

Examples: (Rn, γn) and
(
{−1, 1}n, (1

2δ−1 + 1
2δ1)⊗n

)
with t(p, q) =

(
ln(p − 1)− ln(q − 1)

)
/2 (for heat semigroups).

The first example follows from the second one via CLT.

Multiplier notation: Tρ = P− ln ρ (0 < ρ ≤ 1); then Tρη = Tρ ◦ Tη.
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History of the hypercontractive bounds - early period

Nelson 1966, Glimm 1968, Federbush 1969, Segal 1970,
Nelson 1973 - quantum field theory (the Gaussian case)

Gross 1973 - logarithmic Sobolev inequality,
Gross 1975 - Nelson’s result via LSI and CLT

Stam 1959 - a Euclidean variant of LSI (information theory)

Harmonic analysis:
Rudin 1960 - similar inequalities for Zn instead of {−1, 1}n
Bonami 1968 - the (4,2)-hypercontractivity (on discrete cube)
Bonami 1970 - the Boolean setting result (general p and q)
Beckner 1975 - as above, for vector-valued functions;
applications to tight Fourier transform norm bounds

Kahn, Kalai, Linial 1988 - KKL theorem
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Logarithmic Sobolev inequality

We say that L (as before) satisfies the logaritmic Sobolev inequality
with a constant C > 0 if∫

Ω
f 2 ln(f 2) dµ− (

∫
Ω

f 2 dµ) ln(

∫
Ω

f 2 dµ) ≤ C ·
∫

Ω
f · Lf dµ

for every f ∈ Dom(L).

Theorem (Gross): L satisfies the logarithmic Sobolev inequality
with constant C if and only if for all p > q > 1 the semigroup
(Pt)t≥0 generated by L is (p, q)-hypercontractive with

t(p, q) =
C
4
·
(
ln(p − 1)− ln(q − 1)

)
.
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Energy-entropy inequality

The left hand side of the LSI,

Entµ(f 2) =

∫
Ω

f 2 ln(f 2) dµ−(

∫
Ω

f 2 dµ) ln(

∫
Ω

f 2 dµ) ≤ C ·
∫

Ω
f ·Lf dµ,

is called entropy (here: entropy of f 2 with respect to µ).
It depends only on measure-theoretic properties of f ,
i.e. distribution of f on (Ω, µ).

The non-negative shift-invariant quadratic form
∫

Ω f · Lf dµ
on the right hand side usually takes into account also the geometry
of Ω (which is encoded in L). Expressions of this type are called
energy functionals. Another example of energy:

∫
Rn |∇f |2 dµ

(in the Ornstein-Uhlenbeck case it coincides with
∫
Rn f Lf dµ).
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Entropy

Lazare Carnot 1803, Sadi Carnot 1824
- first insights into the second law of thermodynamics

Second half of 19th century:
Clausius (thermodynamic definition),
Boltzmann (statistical definition), Gibbs, Maxwell

Carathéodory 1909 - links to irreversibility

Schrödinger, von Neumann, first half of 20th century
- in quantum mechanics

Information theory:
Shannon 1948 - information entropy,
Kullback and Leibler 1951 - relative entropy

Dynamical systems - Kolmogorov-Sinai and topological entropy
(middle of 20th century)
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Concentration of measure phenomenon

A metric space (Ω, ρ) equipped with a Borel probability measure µ
enjoys concentration if:

Every 1-Lipschitz (i.e. |f (x)− f (y)| ≤ ρ(x , y) for all x , y ∈ Ω)
function f : Ω −→ R is integrable, and it takes values far from its
mean

∫
Ω f dµ only with a very small (uniformly with respect to

choice of f ) probability.

Or, equivalently, for s > 0 the concentration function

α(s) = sup
A⊂Ω:µ(A)=1/2

µ
(
{x ∈ Ω : distρ(x ,A) > s}

)
decays quickly when s grows.

Lévy - sphere Sn−1 with geodesic distance and uniform measure
Milman 1971 - convex geometry, proof of Dvoretzky theorem
Sudakov & Tsirelson, and Borell 1974/75 - Gaussian isoperimetry
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Concentration via functional inequalities

Herbst (unpublished letter to Gross, mentioned in early 1980’s):
LSI-type inequality ∀f Entµ(f 2) ≤ C

∫
Rn |∇f |2 dµ

implies Gaussian concentration, α(s) ≤ c1e−c2s2
for ρ Euclidean

Gromov and Milman 1983:
Poincaré inequality ∀f

∫
Rn f 2 dµ−

( ∫
Rn f dµ

)2
≤ C

∫
Rn |∇f |2 dµ

implies exponential concentration, α(s) ≤ c1e−c2s for ρ Euclidean

Talagrand - concentration inequalities since late 1980s
Ledoux, Talagrand 1991 - Probability in Banach spaces book
Ledoux - since 1990s develops modern functional techniques
Bobkov 1997 - functional isoperimetry on the discrete cube
Beckner, Latała et al. 1990s - between Poincaré and log-Sobolev
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Reverse hypercontractivity

Borell 1982 - reverse hypercontractivity for the discrete cube
(Gaussian Ornstein-Uhlenbeck version follows via CLT):
For q < p < 1 and every f : {−1, 1}n −→ (0,∞)
there is

‖Pt f ‖q ≥ ‖f ‖p

for all t ≥ t(p, q) =
(
ln(1− q)− ln(1− p)

)
/2.

In recent years many applications and new extensions:
Boolean analysis, theoretical computer science
mixing estimates for Markov processes
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Probability in Banach spaces approach to hypercontractivity

Borell, Krakowiak, Kwapień, Szulga, Woyczyński - since 1980s
develop probabilistic Banach space version of hypercontractivity:

For p > q > 1 and σ ∈ (0, 1) we say that a random vector X
is (p, q, σ)-hypercontractive if(

E‖x + σ · X‖p
)1/p

≤
(
E‖x + X‖q

)1/q

for every vector x .

Among consequences: Khinchine-Kahane type inequalities for sums
of independent random vectors and vector-valued chaoses,
with important conseqences for stochastic integration theory

Combined with revival of Lindeberg’s technique of proof of CLT
yields universality principles (MOO 2005/10).
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MOO

In the slides that follow, there are sketched some basic ideas of a
joint paper with Elchanan Mossel and Ryan O’Donnell (MOO),
dealing with the noise stability and a related invariance principle.
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Notation

Discrete cube (with a normalized counting measure): {−1, 1}n

Boolean function:

f : {−1, 1}n → {−1, 1}

Walsh functions: for x ∈ {−1, 1}n and S ⊆ [n],

wS(x) =
∏
i∈S

xi

Fourier expansion: f =
∑

S⊆[n] f̂ (S)wS

Influence of the i-th variable:

Inf i (f ) = Ex [Varxi [f (x)]] =
∑
S3i

f̂ (S)2
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Noise stability

Noise stability of f : For ρ ∈ [0, 1], let

Sρ(f ) =
∑

S⊆[n]

ρ|S | f̂ (S)2.

Let x ∈ {−1, 1}n be chosen uniformly and let θ1, θ2, . . . , θn be a
sequence of independent random variables with

P[θi = −1] = (1− ρ)/2, P[θi = 1] = (1 + ρ)/2,

independent of x . Let y ∈ {−1, 1}n be given by yi = xiθi . Then

E [f (x)f (y)] = Sρ(f ).

Thus: ρ ' 0 – great noise, ρ ' 1 – small noise.

Usually we assume E [f ] = 0, E [f 2] = 1.
Then S0(f ) = 0 and S1(f ) = 1.
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Majority (is Stablest)

Majority function: For n odd, let Majn(x) = sgn(x1 + . . .+ xn).
Then

lim
n→∞

Sρ(Majn) =
2
π
arcsin ρ.

Majority is Stablest conjecture:
For any ρ ∈ [0, 1] there is

lim
τ→0+

sup
f

Sρ(f ) =
2
π
arcsin ρ,

where the supremum is taken over all Boolean f with E [f ] = 0 and
having all influences less than τ : maxi Inf i (f ) ≤ τ (and over all n).
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It Ain’t Over (Till It’s Over)

It Ain’t Over Till It’s Over conjecture [Kalai]:

Let ρ ∈ [0, 1). Let x ∈ {−1, 1}n be chosen randomly with uniform
measure. Each of its coordinates is revealed with probability ρ
(independently for each i and independently of x). Then

sup
f

P
[
E [f | rev . x ′i s] > 1− δ

]
δ,τ→0+

−→ 0,

where the supremum is taken over all Boolean f with E [f ] = 0 and
having all influences less than τ (and over all n).

For fixed δ, the limit (as τ → 0) is roughly δ(1−ρ)/ρ

– the asymptotics one gets for f = Majn when n is large.
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Invariance Principle

Invariance Principle:
Given a multilinear polynomial (chaos) of bounded degree in
independent random variables, one can replace them by
independent N (0, 1) Gaussians without changing the polynomial’s
distribution too much, under some reasonable assumptions.

Classical examples:
the Central Limit Theorem
the Berry-Esséen inequality

Related results:
Rotar’ (1975, 1979)
Chatterjee (2004)
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Reasonable assumptions

Reasonable assumptions:

E [Xi ] = 0,E [X 2
i ] = 1, small influences

– small coefficients do not suffice:

rn+1(r1 + r2 + . . .+ rn)/
√

n D→ N (0, 1)

as n→∞ but

gn+1(g1 + . . .+ gn)/
√

n D
= g1g2

D
6= N (0, 1).

Also: bounds on higher moments, e.g.,

sup
i

E [|Xi |3] <∞.

An obstacle: Dependence on degree.
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What we want to measure

Closeness in distribution:

For cumulative distribution functions F and G , Lévy’s metric is
defined by

ρL(F ,G ) = inf{a > 0 : ∀t∈RF (t − a)− a ≤ G (t) ≤ F (t + a) + a}.

Generalization of approach: sequences of independent
orthonormal ensembles instead of independent random variables.

Motivation: Finite probability spaces
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Orthonormal ensemble

Orthonormal ensemble:
Xi = {Xi ,0 ≡ 1,Xi ,1, . . . ,Xi ,mi}

Examples:
Let (Ω, µ) be a finite probability space. Any orthonormal basis in
L2(Ω, µ) to which the constant 1 belongs is OK. Also:
Gi = {Gi ,0 ≡ 1,Gi ,1,Gi ,2, . . .}, where Gi ,j ’s are i.i.d. N (0, 1).

Sequence of independent ensembles:
X = (X1,X2, . . . ,Xn)

For any sequence of (measurable) functions f1, f2, . . . , fn we want
random variables fi (Xi ,1,Xi ,2, . . . ,Xi ,mi ) (i = 1, 2, . . . , n) to be
independent.
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Hypercontractivity

Notation: ‖Z‖p = (E [|Z |p])1/p.

Hypercontractivity: Let p > q > 1. We will say that a real r.v. X
is (p, q)-hypercontractive with constant η ∈(0,1) if
∀x ,y∈R ‖x + ηyX‖p ≤ ‖x + yX‖q or, equivalently,
∀x∈R ‖x + ηX‖p ≤ ‖x + X‖q.

We will say that an orthonormal ensemble
Xi = {Xi ,0 ≡ 1,Xi ,1, . . . ,Xi ,mi} is (p, q, η)-hypercontractive if for
any sequence of reals (a1, . . . , ami ) a random variable
a1Xi ,1 + a2Xi ,2 + . . .+ ami Xi ,mi is (p, q)-hypercontractive with
constant η.
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Hypercontractive ensembles

A sequence of independent orthonormal ensembles is called
(p, q, η)-hypercontractive if all of the ensembles are
(p, q, η)-hypercontractive. Hence any union of two independent
(p, q, η)-hypercontractive sequences of independent orthonormal
ensembles X ∪ Y = (X1, . . . ,Xn,Y1, . . . ,Ym) is also a
(p, q, η)-hypercontractive sequence of independent orthonormal
ensembles.
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Hypercontractive estimates

Proposition [Wolff]: Let (Ω, µ) be a finite probability space with

α = min
x∈Ω:µ(x)>0

µ(x) ≤ 1/2.

Then any orthonormal ensemble defined on (Ω, µ) is
(3, 2, η)-hypercontractive, η = ((α−1− 1)1/3 + (α−1− 1)−1/3)−1/2,
i.e., η ∼ α1/6 as α→ 0. No better bound in terms of α is possible.

[Nelson/Bonami/Beckner/Gross] Theorem: An orthonormal
Gaussian ensemble is (p, q,

√
q − 1/

√
p − 1)-hypercontractive for

any p > q > 1, as well as an orthonormal Rademacher ensemble
(this way it is proved, then via CLT). The constant

√
q − 1/

√
p − 1

is optimal.
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Auxiliary notation

Notation:
multi-index: σ = (σ1, . . . , σn) ∈ INn

degree: |σ| = |{i ∈ [n] : σi > 0}|
monomial: xσ =

∏n
i=1 xi ,σi

multilinear polynomial: Q(x) =
∑

σ cσxσ
deg(Q) = maxσ:cσ 6=0 |σ|

Replacing x ′i ,js by X ′i ,js from a sequence of independent orthonormal
ensembles X = (X1, . . . ,Xn), we obtain a random variable Q(X).

Contraction: (TηQ)(x) :=
∑

σ η
|σ|cσxσ, so that Tηξ = TηTξ.

Hence Pt := Te−t is a semigroup of contractions (t ≥ 0).
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Hypercontractive lemma

Lemma: If a sequence of independent orthonormal ensembles X is
(p,q,η)-hypercontractive then ‖(TηQ)(X)‖p ≤ ‖Q(X)‖q.
(Proof: induction on the length of X.)

Corollary: If a sequence of independent orthonormal ensembles X
is (p,2,η)-hypercontractive then

‖Q(X)‖p ≤ η−deg(Q)‖Q(X)‖2,

since summands in R(X) =
∑

σ η
−|σ|cσXσ are orthogonal and

Q(x) = (TηR)(x), so that we can use the above Lemma for R .
Note that deg(R) = deg(Q).
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Proof of the Invariance Principle

Proof of the Invariance Principle:

Choose Φ : R→ R with |Φ′′′| uniformly bounded. Replace each of
the X ′i ,js (i ∈ [n], j ≥ 1), step by step, by i.i.d. N (0, 1) r.v.’s Gi ,j .
Prove, by the Taylor theorem and comparison of moments, that the
difference between E [Φ(Q(X))] and E [Φ(Q(G))] is small since the
change is controlled in each step by const(d , η) · Inf i (Q)3/2 and∑

i Infi (Q)3/2 ≤
∑

i Inf i (Q) ·
√

maxi Infi (Q) ≤ d ·
√

maxi Inf i (Q).
By an appropriate choice of Φ one can prove that distributions of
Q(X) and Q(G) are close to each other (in Lévy’s metric or some
other sense).
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Proof of Majority is Stablest

Proof of Majority Is Stablest:

Note that Sρ1ρ2(f ) = ‖T√ρ1((T√ρ2 f ))‖22 for ρ1, ρ2 > 0, so that we
can use part of ρ to kill high frequencies and obtain essentially a
polynomial of bounded degree. Then we can transfer the problem
to the Gaussian setting, where we can use an old theorem due to
Borell to obtain the result on the Gauss space and then come back
to the discrete cube setting (we use the fact that the heat
semigroup on the cube and the Ornstein-Uhlenbeck semigroup
modify Q ′s coefficients in the same way).
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Proof of It Ain’t Over Till It’s Over

Proof of It Ain’t Over Till It’s Over:

Let X denote a sequence of Rademacher ensembles. Given
ρ ∈ (0, 1) let V1, . . . ,Vn be an i.i.d. sequence independent of X;
P[Vi = 0] = 1− ρ, P[Vi = 1] = ρ. Then define a new sequence of
orthonormal ensembles X(ρ) by Xi ,0 ≡ 1 and X (ρ)

i ,1 = ρ−1/2ViXi ,1 for
i ∈ [n]. The i ′s for which Vi = 1 can be understood as revealed
votes.

The key observation:
E (Q(X) | revealed i ′s) has the same distribution as (T√ρQ)(X(ρ)),
i.e., close to the distribution of (T√ρQ)(G).
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Proof of It Ain’t Over - the end

Note that high frequencies in T√ρQ are already “killed”. Then we
use the knowledge than in the Gauss space the contractions Tρ
applied to mean zero functions with values in [−a, a] “push them
away” from the ends of the interval, letting them stay close to these
ends with a small probability only. This basically ends the proof.
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Product placement

Theorem [Fund. Math. 1996] in search of applications:

Let f : {−1, 1}n → Rk and assume that for every x , y ∈ {−1, 1}n
there is ‖f (x)− f (y)‖ ≤ d(x , y), where ‖ · ‖ is some norm on Rk

and d denotes the Hamming metric on the discrete cube. Then
there exists some z ∈ {−1, 1}n such that

‖f (z)− f (−z)‖ ≤ min(k , n).

Moreover, if the norm ‖ · ‖ is Euclidean then the bound min(k , n)
may be strenghtened to min(

√
k ,
√

n).
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