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Chapter 5: Diseases of the Will  
Contemplators.  

    Bibliophiles and polyglots. 
    Megalomaniacs.  
    Instrument addicts.  
    Misfits.  
    Theorists. 
 

 

 Advice for a Young Investigator  
                        by Ramón y Cajal   



“Let us emphasize again this obvious conclusion: a scholar’s 
positive contribution is measured by the sum of the original 
data that he contributes. Hypotheses come and go but data 
remain. Theories desert us, while data defend us. They are 
our true resources, our real estate, and our best pedigree. In 
the eternal shifting of things, only they will save us from the 
ravages of time and from the forgetfulness or injustice of 
men. To risk everything on the success of one idea is to 
forget that every fifteen or twenty years theories are replaced 
or revised. So many apparently conclusive theories in 
physics, chemistry, geology, and biology have collapsed in 
the last few decades! On the other hand, the well-established 
facts of anatomy and physiology and of chemistry and 
geology, and the laws and equations of astronomy and 
physics remain—immutable and defying criticism.” 

                                                                 Ramón y Cajal  (1894?) 
 
 



Computation and the Brain 
•  “We may compare a man in the process of computing a real 

number to a machine which is only capable of a finite number 
of conditions ...  .”  Turing (1936). 

•  “It is easily shown … that every net …can compute only such 
numbers as can a Turing machine; that each of the latter 
numbers can be computed by such a net … . This is of interest 
as affording psychological justification of the Turing 
definition of computability  … .” McCulloch and Pitts (1943). 

                                        . 
                                        . 
                                        . 
•  1950s onward: “It is computation, stupid.”   



David Marr (1982): 
1. Computational theory: What is the goal of the computation, why is it 

appropriate, and what is the logic of the strategy by which it can be carried 
out? 

2. Representation and algorithm: How can this computational theory be 
implemented? In particular, what is the representation for the input and 
output, and what is the algorithm for the transformation? 

3. Hardware implementation: How can the representation and algorithm be 
realized physically? 

Marr: Theories of Cerebellum (1969), Cortex (1970), Hippocampus (1971). 
Marr (1973): “I do not expect to write many more papers in theoretical 

neurophysiology – at least not for a long time: but … I shall be very 
surprised if my 1969 or 1971 papers turn out to be very wrong.” 

Marr (1975): “With problems of biological information processing there has 
been almost no experience, and one's intuition is at best untrustworthy. It 
may even be that biological information processing admits of no general 
theories except ones so unspecific as to have only descriptive, and no 
predictive powers.” 
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4. Marr +  
   Model of computation with costs +  
   Explanations of quantitatively challenging tasks 
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Difficulty 

4. Darwinian evolution of n-argument function. 
 
 
3. Inductive learning of n-argument function. 
 
 
2. Computation of n-argument function. 
 
 
1. Communication of n-bit sequence. 

Random jumble of neurons 
 should do something 

useful. 
 

Perceptrons, 
Nearest Neighbors, 

are powerful. 
 



Given a Model of Computation: 

TASK SPECIFICATION 

ALGORITHM REPRESENTATION 
       Data Structure 



 
 
 
Marr (1975):  “… the primary unresolved issue is what 

functions you want implemented, and why.” 
 



The Brain is  
Communication-challenged 

 
Each neuron connected to a small fraction of the 

others, and the influences of many connections 
are small ….. 
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Random Access Tasks: Type II 
Add relationships among represented concepts 
(2) (e.g. David Beckham → Retired) 
    Association: For any stored items A, B, 

change synaptic weights so that in future when 
A is active then B will be caused to be also. 

(3) Inductive Learning: of simple threshold      
      functions from examples. 
(4) Supervised Memorization of conjunctions:      
      For items A, B, C want that if in future A and      
      B activated then C activated also. 



WHERE THERE ARE NO  
VIABLE THEORIES: 

1. Use neural model that underestimates the 
brain. 

2. Specify some challenging set of multiple task 
types. 

3. Show that these task types can be executed on 
the model. 

4. Show that sequences of thousands of 
interleaved tasks of these types can be 
supported without degradation of earliest. 



The Neuroidal Model of Computation 

Resource Bounds: n neurons, each connected to d 
others, with max. synaptic weights  

   1/k × threshold. 
Local Updates to states and synapses …..  
Timing: Inputs to neurons can be activated 

simultaneously by prompt. Neurons have local 
timing mechanism which can keep them in sync. 
for a few steps. 



Representations 

Each real world “item” corresponds to a set of 
(about r) neurons. 

 
Note: Correspondences between items and 

neurons are “experimentally determinable” 
           

                          r is large. 
(e.g. in hippocampus, IT, olfactory bulb) 



Representations: 
 Disjoint or Shared? 

•  Disjoint: Each neuron represents just one, 
possibly complex, item. 

•  Shared: Each neuron may represent many 
items.  

   In general shared allows more items to be 
represented, but makes information processing 
more difficult. 



Random Graphs 

Expanders: For n node graphs, for some 
constants b, c > 0, every set of bn nodes have 
at least (b+ c)n neighbors in total. 

 
Fact: Random graphs are expanders. 
 
Kolmogorov and Barzdin (1967): Fixed degree 

graphs on n nodes that are “expanders” need 
volume n3/2. 
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Actual Conditions Are More Complex  
 

e.g. for Hierarchical Memorization: 
                     A and B       C 
 
(1)  Expected number of nodes suitably 

connected to both A and B is r. 
(2)  If fewer than “a half” of A fire and all of B 

then fewer than “a half” of C will fire. 
(3)  If a different conjunction, say A and D, fire 

then less than a half of C fire. 



Some Large Scale Simulations 
 (V. Feldman & LV, Neural Computation, 2009) 

Simulate mixed sequences of associations, 
supervised memorization, and inductive 
learning tasks, on initial allocation by 
hierarchical memorization. 

 
What is capacity, the total number of tasks 

before effectiveness of acquired functions  
(even those done early) degrades? 



A Most Basic Physiological Question 

1/k 

1 

Fraction 
of  
Synapses 

k =10 

  What is˄strength of influence of cortical 
neurons on each other? ( via dynamic 
synapses.) 

k = 2 k = 1 

effective 



Thesis : The Two Regimes 
•  Regime  [V04] : Weak synapses, 8 ≤  k < 1000:      
   Shared dense representations, 
   (Large r, Item-neuron correspondences easier to identify) 
   (? IT, hippocampus, olfactory systems?) 
   Moderate capacities 103 -104 

   Very simple algorithms – first to evolve? 
•  Regime  [V94]: Strong synapses, k = 1:       
    Disjoint sparse representations,  
   (Small r, Item-neuron correspondences hard to identify) 
   (? Role in prefrontal cortex?) 
     



Results of Simulations: Regime α 
(V.Feldman & LV, Neural Computation, 2009) 

n = 108 neurons. 
d = 8,000 connections per neuron. 
k = 16 (i.e. inputs from 16 needed for a.p.) 
r = 360000 neurons per item, shared. 

     ↓ 
Sequences of 3,200  actions can be supported 

with small interference. 



Results of Simulations: Regime β  
(V.Feldman & LV, Neural Computation, 2009) 

n = 108 neurons. 
d = 4,000 connections per neuron. 
k = 1 (i.e. maximally strong synapses) 
r = 100 neurons per item, disjoint. 

     ↓ 
Sequences of 250,000 actions can be supported 

with small interference. 



Thesis : The Two Regimes 
•  Regime  [V04] : Weak synapses, 8 ≤  k < 1000:      
   Shared dense representations, 
   (Large r, Item-neuron correspondences easier to identify) 
   (? IT, hippocampus, olfactory systems?) 
   Moderate capacities 103 -104 

   Very simple algorithms – first to evolve? 
•  Regime  [V94]: Strong synapses, k = 1:       
    Disjoint sparse representations,  
   (Small r, Item-neuron correspondences hard to identify) 
   (? Role in prefrontal cortex?) 
    Large capacities >105 

     Slightly less simple algorithms – harder to evolve - ???  
 



Locust 



Rule of Thumb: k ~ rd/n 
For weak synapses parameters satisfy: 

                 β(r, d/n, k)2 = r/n   

Expected value of r trials is rd/n. Hence 

             Prob(> k successes)  = small 

when    k >~ rd/n.  

How abot Bill Clinton?         
n = no. of nodes in network 
d/n = prob. of edge 
r = no. of nodes for a concept 
k = no. of inputs to fire a node 



Olfactory System of Locust 
                     (Jortner, Farivar and Laurent, 2007) 
Bipartite graph: projection neurons  KENYON CELLS 
n = 830 inputs,   r = 100 – 150. 
N = 50,000 outputs,   R = 5 – 250.  
 
D/n = .5 ± .13, 
K = 100. 
                                                                        p.n.          K.C. 
Theory predicts :   K >~ rD/n.  
More exactly: β(r, D/n, K) = R/N. 
e.g. fit with: β(138, .63, 100) = .0015. 



A Stability Problem 

Fact: Hierarchical Memorization mechanism is unstable 
[V94, Gerbessiotis 03]. 

The simulations for 250,000 acts were for one level of 
memory allocation, but arbitrary everything else. 

Solution 1: Allocate to fixed depth (naming), then build 
arbitrary data structure via other operations [V94]. 

Solution 2: Other cortical – Gunay & Maida [06], Beal 
& Knight [08]. 

Solution 3 [V12]: The hippocampus does hierarchical 
memory allocation. (c.f. Wickelgren  [79] chunking.) 

 



Hippocampus (in yellow) 

pbs.jhu.edu 



   1. View the hippocampus as a feedforward 
network of say 2-4 layers, each layer a 
random bipartite graph, each neuron a 
threshold element. 

 
   2. Analyze what this does for stability of 

number of neurons allocated, for different 
activity densities, weights. 



The Hippocampus as Stable 
Memory Allocator for Cortex 

Input      Level 1     Level 2    Level 3   Level 4 
0.0400   0.00135   0.00348   0.00713            0.00974 
0.0300   0.00315   0.00667   0.00958             0.00997 
0.0250   0.00464   0.00834   0.00996             0.00994 
0.0200   0.00650   0.00950   0.00997             0.00993 
0.0150   0.00854   0.00996   0.00995             0.00993 
0.0100   0.00992   0.00995  0.00995             0.00993 
0.0075   0.00983   0.00996   0.00992             0.00993 
0.0050   0.00865   0.01000   0.00992             0.00995 
0.0033   0.00690   0.00967   0.00996             0.00994 
0.0020   0.00482   0.00849  0.00996             0.00993 
0.0015   0.00383   0.00754  0.00984             0.00994 
0.0010   0.00271   0.00603   0.00929             0.00999 





Stable Memory Allocator 

Like a hash function, with properties that: 
1. Stable 
2. Continuous 
3. Orthogonal 
 
To show that networks of threshold gates 

with plausible parameters have these 
three properties. 



Theory: Hierarchical memory allocation in cortex essential.  
Mediated by hippocampus which ensures stability of 
numbers of neurons allocated to various concepts. 



The Choices 

 
Model of Computation: neuroidal 
Representation: positive 
Algorithms: vicinal 
Tasks: Creating circuits for 4 tasks of learning or 

memorization (versus storing strings.) 



      
 
 
                       THANK YOU 


