An information theoretic proof of a hypercontractive inequality

Ehud Friedgut

Weizmann Institute of Science

April 30, 2015
Playing in a theatre near you

Ehud Friedgut (WIS)
Overview

1. The Beckner-Bonami-Gross inequality
 - Propoganda
 - The Fourier-Walsh basis
 - Definitions of the operator
 - The tensor definition
 - The spectral definition
 - The noise/averaging definition
 - The inequality, and the dual version

2. An entropy proof of the dual (w/ Rödl)

3. An information theoretic proof of the primal version
Applications

Quote from [BT]:
Applications

Quote from [BT]:
First introduced into theoretical computer science by the celebrated work of Kahn, Kalai, and Linial [15], the Hypercontractive Inequality has seen utility in a surprisingly wide variety of areas, spanning distributed computing, random graphs, k-SAT, social choice, inapproximability, learning theory, metric spaces, statistical physics, convex relaxation hierarchies, etc. [2, 6, 22, 8, 9, 10, 11, 5, 18, 17, 21, 13, 19, 1]. In almost every one of these results there are no known alternate proofs that do not require the use of hypercontractivity.
Consider the coordinates X_i of a vector X as functions on $\{-1, 1\}^n$
Consider the coordinates X_i of a vector X as functions on $\{-1, 1\}^n$. For every $I \subseteq \{1, \ldots, n\}$ define

$$X_I := \prod_{i \in I} X_i$$
The Fourier-Walsh Basis

Consider the coordinates X_i of a vector X as functions on $\{-1, 1\}^n$. For every $I \subseteq \{1, \ldots, n\}$ define

$$X_I := \prod_{i \in I} X_i$$

This set, of 2^n monomials, forms an orthonormal basis of the space of real functions on $\{-1, 1\}^n$.
The Fourier-Walsh Basis

Consider the coordinates X_i of a vector X as functions on $\{-1, 1\}^n$. For every $I \subseteq \{1, \ldots, n\}$ define

$$X_I := \prod_{i \in I} X_i$$

This set, of 2^n monomials, forms an orthonormal basis of the space of real functions on $\{-1, 1\}^n$. Every real function on $\{-1, 1\}^n$ has a unique expansion

$$f = \sum \hat{f}(I) X_I$$
Let $\epsilon \in [0, 1]$.

Let $f : \{-1, 1\} \rightarrow \mathbb{R}, \ f(X) = aX + b$.
The tensor definition of the operator

Let $\epsilon \in [0, 1]$.

Let $f : \{-1, 1\} \to \mathbb{R}$, $f(X) = aX + b$.

Define $T_\epsilon(f)(X) := \epsilon aX + b$.
Let $\epsilon \in [0, 1]$.

Let $f : \{-1, 1\} \rightarrow \mathbb{R}, \ f(X) = aX + b$.

Define $T_\epsilon(f)(X) := \epsilon aX + b$.

Then $T_\epsilon := T_\epsilon \otimes^n$ is a linear operator acting on real functions on $\{-1, 1\}^n$.
Let $\epsilon \in [0, 1]$. Define

$$T_\epsilon X_i = \epsilon X_i$$
Let $\epsilon \in [0, 1]$. Define

$$T_\epsilon X_i = \epsilon X_i$$

$$T_\epsilon X_{I} = \prod_{\{i \in I\}} T_\epsilon X_i = \epsilon^{|I|} X_{I}$$
The spectral definition of the operator

Let $\epsilon \in [0,1]$. Define

$$T_\epsilon X_i = \epsilon X_i$$

$$T_\epsilon X_I = \prod_{\{i \in I\}} T_\epsilon X_i = \epsilon^{|I|} X_I$$

$$T_\epsilon f = \sum \hat{f}(I) \epsilon^{|I|} X_I$$
Let $\epsilon \in [0, 1]$. Let X be chosen from any distribution on $\{-1, 1\}^n$. Let Y be such that for every $1 \leq i \leq n$, the coordinate Y_i is chosen independently so that $\Pr[Y_i = X_i] = 1 + \epsilon^2$, or, in other words, $E[X_i Y_i] = \epsilon$. X and Y are called an ϵ-correlated pair.
The operator as a noise/averaging operator

Let $\epsilon \in [0, 1]$. Let X be chosen from any distribution on $\{-1, 1\}^n$. Let Y be such that for every $1 \leq i \leq n$, the coordinate Y_i is chosen independently so that $PR[Y_i = X_i] = \frac{1+\epsilon}{2}$, or, in other words, $E[X_i Y_i] = \epsilon$.
The operator as a noise/averaging operator

Let $\epsilon \in [0, 1]$. Let X be chosen from any distribution on $\{-1, 1\}^n$. Let Y be such that for every $1 \leq i \leq n$, the coordinate Y_i is chosen independently so that $PR[Y_i = X_i] = \frac{1+\epsilon}{2}$, or, in other words, $E[X_i Y_i] = \epsilon$.

X and Y are called an ϵ-correlated pair.
The operator as a noise/averaging operator

Let $\epsilon \in [0, 1]$. Let X be chosen from any distribution on $\{-1, 1\}^n$. Let Y be such that for every $1 \leq i \leq n$, the coordinate Y_i is chosen independently so that $PR[Y_i = X_i] = \frac{1+\epsilon}{2}$, or, in other words, $E[X_i Y_i] = \epsilon$.

X and Y are called an ϵ-correlated pair.

Define for any f and fixed X

$$T_\epsilon(f)(X) = E[f(Y)],$$

where X and Y are ϵ correlated.
The inequality and its dual

Bonami[68,70], Gross[75], Beckner[75]

Let $f : \{-1, 1\}^n \to \mathbb{R}$, and $\epsilon \in [0, 1]$. Then

$$|T_\epsilon f|_2 \leq |f|_{1+\epsilon^2}$$
The inequality and its dual

Bonami[68,70], Gross[75], Beckner[75]

Let $f: \{-1, 1\}^n \rightarrow \mathbb{R}$, and $\epsilon \in [0, 1]$. Then

$$|T_\epsilon f|_2 \leq |f|_{1+\epsilon^2}$$

Dual version

Let $f: \{-1, 1\}^n \rightarrow \mathbb{R}$ be a polynomial of degree m, and $q \geq 2$. Then

$$|f|_q \leq \left(\sqrt{q - 1}\right)^m |f|_2$$
Theorems

F, Rödl, 2001

Bonami and others proved a similar result in the seventies, however our result is more recent, and less general (but it uses entropy.)

Theorem: Let \(f : \{-1,1\}^n \) be a polynomial of degree \(m \). Then

\[
|f|_4 \leq (4\sqrt{28})^m |f|_2
\]

Blais, Tan, 2013

Let \(f : \{-1,1\}^n \) be a polynomial of degree \(m \), and \(q \) an even positive integer. Then

\[
|f|_q \leq (\sqrt{q} - 1)^m |f|_2
\]

Note that this is the optimal constant.
We might have written in the introduction:

Bonami and others proved a similar result in the seventies, however our result is more recent, and less general.

Theorem: Let $f: \{-1, 1\}^n$ be a polynomial of degree m. Then

$$|f|^4 \leq (4\sqrt{28})^m |f|^2$$

Blais, Tan, 2013

Let $f: \{-1, 1\}^n$ be a polynomial of degree m, and q an even positive integer. Then

$$|f|^q \leq (\sqrt{q} - 1)^m |f|^2$$

Note that this is the optimal constant.
Theorems

F, Rödl, 2001

We might have written in the introduction: ”Bonami and others proved a similar result in the seventies, however our result is more recent, and less general”
Theorems

F, Rödl, 2001

We might have written in the introduction: ”Bonami and others proved a similar result in the seventies, however our result is more recent, and less general” (…but it uses entropy.)
We might have written in the introduction: “Bonami and others proved a similar result in the seventies, however our result is more recent, and less general” (...but it uses entropy.)

Theorem: Let $f : \{-1,1\}^n$ be a polynomial of degree m. Then

$$|f|_4 \leq (\sqrt[4]{28})^m |f|_2$$
Theorems

F, Rödl, 2001

We might have written in the introduction: "Bonami and others proved a similar result in the seventies, however our result is more recent, and less general" (...but it uses entropy.)

Theorem: Let $f : \{-1, 1\}^n$ be a polynomial of degree m. Then

$$|f|_4 \leq (\sqrt{28})^m |f|_2$$

Blais, Tan, 2013

Let $f : \{-1, 1\}^n$ be a polynomial of degree m, and q an even positive integer. Then

$$|f|_q \leq \left(\sqrt{q-1}\right)^m |f|_2$$

Note that this is the optimal constant.
Let $f = \sum \hat{f}(I)X_I$, where every X_I is monomial of degree m, $X_I = \prod_{i \in I} X_i$. Then
Let $f = \sum \hat{f}(I)X_I$, where every X_I is monomial of degree m, $X_I = \prod_{i \in I} X_i$. Then

$$|f|^2_2 = E(f^2) = \sum \hat{f}(I)^2$$
Let $f = \sum \hat{f}(I)X_I$, where every X_I is monomial of degree m, $X_I = \prod_{i \in I} X_i$. Then

$$|f|^2_2 = E(f^2) = \sum \hat{f}(I)^2$$

and

$$|f|^4_4 = E(f^4) = \sum_{I \Delta J \Delta K \Delta L = \emptyset} \hat{f}(I)\hat{f}(J)\hat{f}(K)\hat{f}(L).$$
Plan of proof

Let $\mathcal{I} \Delta \mathcal{J} \Delta \mathcal{K} \Delta \mathcal{L} = \emptyset$. Fix a partition P of $\{1, \ldots, n\}$ with parts corresponding to the Venn diagram of $(\mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L})$ and prove that

$$\left(\sum_{I \Delta J \Delta K \Delta L = \emptyset} \hat{f}(I) \hat{f}(J) \hat{f}(K) \hat{f}(L) \right)^2 \leq \left(\sum_I \hat{f}(I)^2 \right) \left(\sum_J \hat{f}(J)^2 \right) \left(\sum_K \hat{f}(K)^2 \right) \left(\sum_L \hat{f}(L)^2 \right)$$

where all sums are only over quadruples of sets, that are consistent with P. To this end invoke a fractional version of Shearer's lemma.

Show that the above expressions for a random partition reflect $|f|^4$ and $|f|^2$ fairly well. (This already introduces a loss of a multiplicative constant).
Plan of proof

Let $I \Delta J \Delta K \Delta L = \emptyset$. Fix a partition P of $\{1, \ldots, n\}$ with parts corresponding to the Venn diagram of (I, J, K, L) and prove that

$$\left(\sum_{I \Delta J \Delta K \Delta L = \emptyset} \hat{f}(I)\hat{f}(J)\hat{f}(K)\hat{f}(L) \right)^2 \leq \left(\sum_I \hat{f}(I)^2 \right) \left(\sum_J \hat{f}(J)^2 \right) \left(\sum_K \hat{f}(K)^2 \right) \left(\sum_L \hat{f}(L)^2 \right)$$

where all sums are only over quadruples of sets, that are consistent with P.

To this end invoke a fractional version of Shearer’s lemma.
Plan of proof

Let $\mathcal{I} \Delta \mathcal{J} \Delta \mathcal{K} \Delta \mathcal{L} = \emptyset$. Fix a partition P of $\{1, \ldots, n\}$ with parts corresponding to the Venn diagram of $(\mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L})$ and prove that

$$\left(\sum_{\mathcal{I} \Delta \mathcal{J} \Delta \mathcal{K} \Delta \mathcal{L} = \emptyset} \hat{f}(\mathcal{I})\hat{f}(\mathcal{J})\hat{f}(\mathcal{K})\hat{f}(\mathcal{L}) \right)^2 \leq \left(\sum_{\mathcal{I}} \hat{f}(\mathcal{I})^2 \right) \left(\sum_{\mathcal{J}} \hat{f}(\mathcal{J})^2 \right) \left(\sum_{\mathcal{K}} \hat{f}(\mathcal{K})^2 \right) \left(\sum_{\mathcal{L}} \hat{f}(\mathcal{L})^2 \right)$$

where all sums are only over quadruples of sets, that are consistent with P.

To this end invoke a *fractional version* of Shearer’s lemma.

Show that the above expressions for a *random partition* reflect $|f|_4$ and $|f|_2$ fairly well. (This already introduces a loss of a multiplicative constant).
Shearer’s Lemma[’86]

Let t be a positive integer. Let $E \subseteq P(V)$, and let $F_1 \ldots F_r \subseteq V$ such that every vertex in V belongs to at least t of the sets F_i. Let $E_i = \{ e \cap F_i : e \in E \}$. Then

$$|E|^t \leq \prod |E_i|.$$
Shearer’s Lemma[’86]

Let t be a positive integer. Let $E \subseteq P(V)$, and let $F_1 \ldots F_r \subseteq V$ such that every vertex in V belongs to at least t of the sets F_i. Let $E_i = \{ e \cap F_i : e \in E \}$. Then

$$|E|^t \leq \prod |E_i|.$$

Fractional version [F, 2004]

Let $e_i := e \cap F_i$. Let every edge $e_i \in E_i$ be endowed with a nonnegative weight $w_i(e_i)$. Then

$$\left(\sum_{e \in E} \prod_{i=1}^{r} w_i(e_i) \right)^t \leq \prod \sum_{i} \sum_{e_i \in E_i} w_i(e_i)^t.$$

So.
Fractional Shearer

\[
\left(\sum_{e \in E} \prod_{i=1}^{r} w_i(e_i) \right)^t \leq \prod_{i} \sum_{e_i \in E_i} w_i(e_i)^t.
\]
Shearer \rightarrow Beckner

Fractional Shearer

$$\left(\sum_{e \in E} \prod_{i=1}^r w_i(e_i) \right)^t \leq \prod_{i} \sum_{e_i \in E_i} w_i(e_i)^t.$$

Comparison of norms

$$\left(\sum_{I \Delta J \Delta K \Delta L = \emptyset} \hat{f}(I)\hat{f}(J)\hat{f}(K)\hat{f}(L) \right)^2 \leq \left(\sum_I \hat{f}(I)^2 \right) \left(\sum_J \hat{f}(J)^2 \right) \left(\sum_K \hat{f}(K)^2 \right) \left(\sum_L \hat{f}(L)^2 \right).$$
The Boolean case

Let $\epsilon \in (0, 1)$, and let $\mathcal{X}, \mathcal{Y} \subseteq \{0, 1\}^n$ be nonempty. Let X be uniformly distributed on $\{0, 1\}^n$, and let Y be such that for each $1 \leq i \leq n$ independently $Pr[X_i = Y_i] = \frac{1 + \epsilon}{2}$. Then

$$E[\mathbf{1}_X(X)\mathbf{1}_Y(Y)] \leq (\mu(\mathcal{X})\mu(\mathcal{Y}))^{\frac{1}{1+\epsilon}},$$

with equality iff $\mathcal{X} = \mathcal{Y} = \{0, 1\}^n$.
Theorems

The Boolean case

Let $\epsilon \in (0, 1)$, and let $\mathcal{X}, \mathcal{Y} \subseteq \{0, 1\}^n$ be nonempty. Let X be uniformly distributed on $\{0, 1\}^n$, and let Y be such that for each $1 \leq i \leq n$ independently $\Pr[X_i = Y_i] = \frac{1+\epsilon}{2}$. Then

$$E[\mathbf{1}_\mathcal{X}(X)\mathbf{1}_\mathcal{Y}(Y)] \leq (\mu(\mathcal{X})\mu(\mathcal{Y}))^{\frac{1}{1+\epsilon}},$$

with equality iff $\mathcal{X} = \mathcal{Y} = \{0, 1\}^n$.

The general case

Let $\epsilon \in (0, 1)$, and $X, Y \in \{0, 1\}^n$ as above, and let $f, g : \{0, 1\}^n \to \mathbb{R}_{\geq 0}$. Then

$$E[f(X)g(Y)] \leq |f|_{1+\epsilon}|g|_{1+\epsilon}.$$
The Boolean case

We want to prove

\[E[\mathbf{1}_X(X)\mathbf{1}_Y(Y)] \leq (\mu(X)\mu(Y))^{\frac{1}{1+\epsilon}}. \]
The Boolean case

We want to prove

$$E[\mathbf{1}_X(X)\mathbf{1}_Y(Y)] \leq (\mu(X)\mu(Y))^{\frac{1}{1+\epsilon}}.$$

This easily translates to

$$\log \left(\sum_{X \in \mathcal{X}} \sum_{Y \in \mathcal{Y}} (1 + \epsilon)^{a(X,Y)} (1 - \epsilon)^{d(X,Y)} \right)^* \leq \frac{1}{1 + \epsilon} \left(2\epsilon n + \log(|\mathcal{X}|) + \log(|\mathcal{Y}|) \right)$$

Where a stands for "agree" and d for "disagree".
The Boolean case

Letting $s \leq r$ be positive integers so that \(\frac{1+\epsilon}{2} = \frac{r}{s+r} \) and \(\frac{1-\epsilon}{2} = \frac{s}{r+s} \) this gives
The Boolean case

Letting $s \leq r$ be positive integers so that $\frac{1+\epsilon}{2} = \frac{r}{s+r}$ and $\frac{1-\epsilon}{2} = \frac{s}{r+s}$ this gives

$$\log \left(\sum_{X \in \mathcal{X}} \sum_{Y \in \mathcal{Y}} r^a(X,Y) s^d(X,Y) \right) \leq$$

$$n \left(\log(r+s) - \frac{s}{r} \right) + \frac{r+s}{2r} \left(\log(|\mathcal{X}|) + \log(|\mathcal{Y}|) \right)$$
The Boolean case

\[
\log \left(\sum_{X \in \mathcal{X}} \sum_{Y \in \mathcal{Y}} r^{a(X,Y)} s^{d(X,Y)} \right) \leq n \left(\log(r + s) - \frac{s}{r} \right) + \frac{r + s}{2r} \left(\log(|\mathcal{X}|) + \log(|\mathcal{Y}|) \right)
\]
The Boolean case

\[
\log \left(\sum_{X \in \mathcal{X}} \sum_{Y \in \mathcal{Y}} r^{a(X,Y)} s^{d(X,Y)} \right) \leq \n \left(\log(r + s) - \frac{s}{r} \right) + \frac{r + s}{2r} \left(\log(|\mathcal{X}|) + \log(|\mathcal{Y}|) \right)
\]

\[
H(Z) \leq n \left(\log(r + s) - \frac{s}{r} \right) + \frac{r + s}{2r} \left(H(X) + H(Y) \right)
\]
The Boolean case

\[H(Z) \leq n(\log(r + s) - s/r) + \frac{r + s}{2r}(H(X) + H(Y)) \]
The Boolean case

\[H(Z) \leq n(\log(r + s) - s/r) + \frac{r + s}{2r}(H(X) + H(Y)) \]

Using the chain rule this will follow from

\[H(Z_i|\text{Past}) \leq (\log(r + s) - s/r) + \frac{r + s}{2r}(H(X_i|\text{Past}) + H(Y_i|\text{Past})). \]
The Boolean case

\[H(Z_i|Past) \leq (\log(r + s) - s/r) + \frac{r + s}{2r}(H(X_i|Past) + H(Y_i|Past)). \]
The Boolean case

\[H(Z_i|\text{Past}) \leq (\log(r + s) - s/r) + \frac{r + s}{2r} (H(X_i|\text{Past}) + H(Y_i|\text{Past})). \]

Using \(H(Z_i) = H(X_i, Y_i) + H(Z_i|X_i, Y_i) \) this is equivalent to

\[\frac{r + s}{2r} (H(X_i) + H(Y_i)) - H(X_i, Y_i) - (Pr[X_i = Y_i]) \log r \]

\[-(Pr[X_i \neq Y_i]) \log s + \log(r + s) - \frac{s}{r} \geq 0 \]
The Boolean case

\[H(Z_i|\text{Past}) \leq (\log(r + s) - s/r) + \frac{r + s}{2r}(H(X_i|\text{Past}) + H(Y_i|\text{Past})). \]

Using \(H(Z_i) = H(X_i, Y_i) + H(Z_i|X_i, Y_i) \) this is equivalent to

\[\frac{r + s}{2r} (H(X_i) + H(Y_i)) - H(X_i, Y_i) - (Pr[X_i = Y_i]) \log r \]
\[-(Pr[X_i \neq Y_i]) \log s + \log(r + s) - \frac{s}{r} \geq 0 \]

Note this is invariant if \(s \) and \(r \) are multiplied by a positive constant, so set \(r = 1, s = \delta \), \(0 \leq \delta \leq 1. \)
The Boolean case

So now we have an elementary calculus problem. Let \(\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} \) be a distribution of \((X, Y)\) on \(\{0, 1\}^2\). Prove
The Boolean case

So now we have an elementary calculus problem. Let \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) be a distribution of \((X, Y)\) on \(\{0, 1\}^2\). Prove

\[
F_\delta \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) := (1 + \delta) [H(X) + H(Y)] - H(X, Y)
\]

\[-(Pr[X \neq Y]) \log \delta + \log(1 + \delta) - \delta \geq 0\]
The Boolean case

So now we have an elementary calculus problem. Let \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) be a distribution of \((X, Y)\) on \(\{0, 1\}^2\). Prove

\[
F_\delta \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) := (1 + \delta) [H(X) + H(Y)] - H(X, Y)
\]

\[-(Pr[X \neq Y]) \log \delta + \log(1 + \delta) - \delta \geq 0\]

Show \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \frac{\delta}{2+2\delta} & \frac{1}{\delta} \\ \frac{1}{2+2\delta} & \frac{2+2\delta}{2+2\delta} \end{pmatrix} \) is a unique minimum.
The Boolean case

Using Lagrange multipliers, a necessary condition for a local extramum is
The Boolean case

Using Lagrange multipliers, a necessary condition for a local extramum is

\[
\frac{\delta}{a} [(a + b)(a + c)]^{(1+\delta)/2} =
\]

\[
\frac{1}{b} [(a + b)(b + d)]^{(1+\delta)/2} =
\]

\[
\frac{1}{c} [(a + c)(c + d)]^{(1+\delta)/2} =
\]

\[
\frac{\delta}{d} [(c + d)(b + d)]^{(1+\delta)/2}.
\]
The Boolean case

This implies (without much effort...) $a = d$ and $ad = \delta^2 bc$.
The Boolean case

This implies (without much effort...) \(a = d \) and \(ad = \delta^2 bc \). All that is missing is \(b = c \).
The Boolean case

This implies (without much effort...) $a = d$ and $ad = \delta^2 bc$. All that is missing is $b = c$. Sadly, for some values of δ there are other local minima.
The Boolean case

This implies (without much effort...) $a = d$ and $ad = \delta^2 bc$. All that is missing is $b = c$. Sadly, for some values of δ there are other local minima.
The Boolean case

However...
The Boolean case

However... we haven’t really used the facts that

\[H(Z_i \mid X_i = 0, Y_i = 1) = H(Z_i \mid X_i = 1, Y_i = 0) \]

and

\[H(Z_i \mid X_i = 1, Y_i = 1) = H(Z_i \mid X_i = 0, Y_i = 0). \]
The Boolean case

However... we haven’t really used the facts that

$$H(Z_i|X_i = 0, Y_i = 1) = H(Z_i|X_i = 1, Y_i = 0)$$

and

$$H(Z_i|X_i = 1, Y_i = 1) = H(Z_i|X_i = 0, Y_i = 0).$$

So instead of using

$$H(Z_i) = H(X_i, Y_i) + H(Z_i|X_i, Y_i)$$
The Boolean case

However... we haven’t really used the facts that

\[H(Z_i | X_i = 0, Y_i = 1) = H(Z_i | X_i = 1, Y_i = 0) \]

and

\[H(Z_i | X_i = 1, Y_i = 1) = H(Z_i | X_i = 0, Y_i = 0). \]

So instead of using

\[H(Z_i) = H(X_i, Y_i) + H(Z_i | X_i, Y_i) \]

we let \(W \) indicate whether \(X_i = Y_i \) or not, and use

\[H(Z_i) = H(W) + H(Z_i | W). \]
The Boolean case

This leads to a slightly different expression, with the Lagrange multipliers now yielding $a + d = \delta(b + c)$.
The Boolean case

This leads to a slightly different expression, with the Lagrange multipliers now yielding \(a + d = \delta(b + c) \). Together with our previous information \((a = d, \ ad = \delta^2bc) \), this shows that the unique minimum on the interior of the region in question is

\[
\begin{pmatrix}
\frac{\delta}{2+2\delta} & \frac{1}{2+2\delta} \\
\frac{1}{2+2\delta} & \frac{\delta}{2+2\delta}
\end{pmatrix}
\]

as required.
The not-necessarily-Boolean case

How about non-Boolean functions?
The not-necessarily-Boolean case

How about non-Boolean functions? now we have to prove that for non-negative (w.l.o.g. positive integer-valued) f, g

$$\log \left(\sum_{X \in \mathcal{X}} \sum_{Y \in \mathcal{Y}} r^{a(X,Y)} s^{d(X,Y)} f(X) g(Y) \right) \leq n(\log(r + s) - s/r) + \frac{r + s}{2r} \left(\log \left(\sum_{X \in \{0,1\}^n} f(X) \frac{2r}{r+s} \right) + \log \left(\sum_{Y \in \{0,1\}^n} f(Y) \frac{2r}{r+s} \right) \right).$$
The not-necessarily-Boolean case

\[
\log \left(\sum_{X \in X} \sum_{Y \in Y} r^{a(X,Y)} s^{d(X,Y)} f(X) g(Y) \right) \leq n \left(\log (r + s) - \frac{s}{r} \right) + \frac{r + s}{2r} \left(\log \left(\sum_{X \in 0,1^n} f(X)^{\frac{2r}{r+s}} \right) + \log \left(\sum_{Y \in 0,1^n} f(Y)^{\frac{2r}{r+s}} \right) \right).
\]
The not-necessarily-Boolean case

$$\log \left(\sum_{X \in \mathcal{X}} \sum_{Y \in \mathcal{Y}} r^{a(X,Y)} s^{d(X,Y)} f(X) g(Y) \right) \leq n(\log(r + s) - s/r) +$$

$$\frac{r + s}{2r} \left(\log \left(\sum_{X \in \{0,1\}^n} f(X) \frac{2r}{r+s} \right) + \log \left(\sum_{Y \in \{0,1\}^n} f(Y) \frac{2r}{r+s} \right) \right).$$

"Enhance" (Z, X, Y) of before to (Z, X, Y, a, b), where (a, b) is uniform on $\{1, \ldots, f(X)\} \times \{1, \ldots, g(Y)\}$.
Punchline

\[H(Z, a, b) = H(Z) + H((a, b) | Z) = \]
\[H(Z) + E[\log(f(X)) + \log(g(Y))] \]
Punchline

\[H(Z, a, b) = H(Z) + H((a, b) \mid Z) = \]

\[H(Z) + E[\log(f(X)) + \log(g(Y))] \]

Note that \(H(X) + E[\log(f(X))] \leq \sum_X \log(f(X)) \) and hence
Punchline

\[H(Z, a, b) = H(Z) + H((a, b)|Z) = \]
\[H(Z) + E[\log(f(X)) + \log(g(Y))] \]

Note that \(H(X) + E[\log(f(X))] \leq \sum_X \log(f(X)) \) and hence
\[\frac{r + s}{2r} (H(X) + H(Y)) + E[\log(f(X)) + \log(g(Y))] \]
\[\leq \frac{r + s}{2r} \left(\log \left(\sum_{X \in \{0,1\}^n} f(X)^{\frac{2r}{r+s}} \right) + \log \left(\sum_{Y \in \{0,1\}^n} f(Y)^{\frac{2r}{r+s}} \right) \right). \]

which is what we needed.
Thank you for your attention!