
Tensor Methods for Feature Learning

Anima Anandkumar

U.C. Irvine



Feature Learning For Efficient Classification

Find good transformations of input for improved classification

Figures used attributed to Fei-Fei Li, Rob Fergus, Antonio Torralba, et al.



Principles Behind Feature Learning

Classification/regression tasks: Predict y given x.

Find feature transform φ(x) to better predict y.

x

y

Feature learning: Learn φ(·) from data.



Principles Behind Feature Learning

Classification/regression tasks: Predict y given x.

Find feature transform φ(x) to better predict y.

x

φ(x)

y

Feature learning: Learn φ(·) from data.



Principles Behind Feature Learning

Classification/regression tasks: Predict y given x.

Find feature transform φ(x) to better predict y.

x

φ(x)

y

Feature learning: Learn φ(·) from data.

Learning φ(x) from Labeled vs. Unlabeled Samples

Labeled samples {xi, yi} and unlabeled samples {xi}.

Labeled samples should lead to better feature learning φ(·) but are
harder to obtain.



Principles Behind Feature Learning

Classification/regression tasks: Predict y given x.
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Feature learning: Learn φ(·) from data.

Learning φ(x) from Labeled vs. Unlabeled Samples

Labeled samples {xi, yi} and unlabeled samples {xi}.

Labeled samples should lead to better feature learning φ(·) but are
harder to obtain.

Learn features φ(x) through latent variables related to x, y.
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Multi-layer Neural Networks

E[y|x] = σ(Ad σ(Ad−1 σ(· · ·A2 σ(A1x))))
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Challenges in Learning LVMs

Challenge: Identifiability Conditions

When can model be identified (given infinite computation and data)?

Does identifiability also lead to tractable algorithms?

Computational Challenges

Maximum likelihood is NP-hard in most scenarios.

Practice: Local search approaches such as Back-propagation, EM,
Variational Bayes have no consistency guarantees.

Sample Complexity

Sample complexity needs to be low for high-dimensional regime.

Guaranteed and efficient learning through tensor methods
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Classical Spectral Methods: Matrix PCA and CCA

Unsupervised Setting: PCA
For centered samples {xi}, find projection P with
Rank(P ) = k s.t.

min
P

1

n

∑

i∈[n]

‖xi − Pxi‖
2.

Result: Eigen-decomposition of S = Cov(X).

Supervised Setting: CCA
For centered samples {xi, yi}, find

max
a,b

a⊤Ê[xy⊤]b
√

a⊤Ê[xx⊤]a b⊤Ê[yy⊤]b
.

Result: Generalized eigen decomposition.

x y

〈a, x〉
〈b, y〉



Beyond SVD: Spectral Methods on Tensors

How to learn the mixture models without separation constraints?

◮ PCA uses covariance matrix of data. Are higher order moments helpful?

Unified framework?

◮ Moment-based estimation of probabilistic latent variable models?

SVD gives spectral decomposition of matrices.
◮ What are the analogues for tensors?



Moment Matrices and Tensors

Multivariate Moments

M1 := E[x], M2 := E[x⊗ x], M3 := E[x⊗ x⊗ x].

Matrix

E[x⊗ x] ∈ R
d×d is a second order tensor.

E[x⊗ x]i1,i2 = E[xi1xi2 ].

For matrices: E[x⊗ x] = E[xx⊤].

Tensor

E[x⊗ x⊗ x] ∈ R
d×d×d is a third order tensor.

E[x⊗ x⊗ x]i1,i2,i3 = E[xi1xi2xi3 ].



Spectral Decomposition of Tensors

M2 =
∑

i

λiui ⊗ vi

= + ....

Matrix M2 λ1u1 ⊗ v1 λ2u2 ⊗ v2

M3 =
∑

i

λiui ⊗ vi ⊗ wi

= + ....

Tensor M3 λ1u1 ⊗ v1 ⊗ w1 λ2u2 ⊗ v2 ⊗ w2

u⊗ v ⊗ w is a rank-1 tensor since its (i1, i2, i3)
th entry is ui1vi2wi3 .

Guaranteed recovery. (Anandkumar et al 2012, Zhang & Golub 2001).



Moment Tensors for Conditional Models

Multivariate Moments: Many possibilities...

E[x⊗ y],E[x⊗ x⊗ y],E[φ(x)⊗ y] . . . .

Feature Transformations of the Input: x 7→ φ(x)

How to exploit them?

Are moments E[φ(x)⊗ y] useful?

If φ(x) is a matrix/tensor, we have matrix/tensor moments.

Can carry out spectral decomposition of the moments.



Moment Tensors for Conditional Models

Multivariate Moments: Many possibilities...

E[x⊗ y],E[x⊗ x⊗ y],E[φ(x)⊗ y] . . . .

Feature Transformations of the Input: x 7→ φ(x)

How to exploit them?

Are moments E[φ(x)⊗ y] useful?

If φ(x) is a matrix/tensor, we have matrix/tensor moments.

Can carry out spectral decomposition of the moments.

Construct φ(x) based on input distribution?
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Score Function of Input Distribution

Score function S(x) := −∇ log p(x)

1-d PDF

(a) p(x) = 1
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exp(−E(x))
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(b) ∂
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Figures from Alain and Bengio 2014.
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Why Score Function Features?

S(x) := −∇ log p(x)

Utilizes generative models for input.

Can be learnt from unlabeled data.

Score matching methods work for non-normalized models.

Approximation of score function using denoising auto-encoders

∇ log p(x) ≈
r∗(x+ n)− x

σ2

Recall our goal: construct moments E[y ⊗ φ(x)]

Beyond vector features?



Matrix and Tensor-valued Features

Higher order score functions

Sm(x) := (−1)m
∇(m)p(x)

p(x)

Can be a matrix or a tensor instead of a vector.

Can be used to construct matrix and tensor moments E[y ⊗ φ(x)].
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Form the cross-moments: E [y ⊗ Sm(x)].

Our result

E [y ⊗ Sm(x)] = E

[

∇(m)G(x)
]

, G(x) := E[y|x].

Extension of Stein’s lemma.

Extract discriminative directions through spectral decomposition

E [y ⊗ Sm(x)] = E

[

∇(m)G(x)
]

=
∑

j∈[k]

λj · uj ⊗ uj . . .⊗ uj
︸ ︷︷ ︸

m times
.

Construct σ(u⊤j x) for some nonlinearity σ.



Automated Extraction of Discriminative Features



Learning Mixtures of Classifiers/GLMs

A mixture of r classifiers, hidden choice variable h ∈ {e1, . . . , er}.

E[y|x, h] = g(〈Uh, x〉 + 〈b, h〉)

∗ U = [u1|u2 . . . |ur] are the weight vectors of GLMs.

∗ b is the vector of biases.

M3 = E[y · S3(x)] =
∑

i∈[r]

λi · ui ⊗ ui ⊗ ui.

First results for learning non-linear mixtures using spectral methods



Learning Multi-layer Neural Networks

E[y|x] = 〈a2, σ(A
⊤
1 x)〉 .

A1

a2

x

h

y

Our result

M3 = E[y · S3(x)] =
∑

i∈[r]

λi · A1,i ⊗A1,i ⊗A1,i.



Framework Applied to MNIST
Unlabeled data: {xi}

Auto-Encoder

Train SVM with
σ(〈xi, uj〉)

r(x)
Labeled data:
{(xi, yi)}

uj ’s

Compute score function
Sm(x) using r(x)

Form cross-moment:
E [y · Sm(x)]

Spectral/tensor method:

= + ....

Tensor T = u
⊗3

1
+ u

⊗3

2
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Conclusion: Learning Conditional Models using

Tensor Methods

Tensor Decomposition

Efficient sample and computational complexities

Better performance compared to EM, Variational Bayes etc.

Scalable and embarrassingly parallel: handle large datasets.

Score function features

Score function features crucial for learning conditional models.

Related: Guaranteed Non-convex Methods

Overcomplete Dictionary Learning/Sparse Coding: Decompose data
into a sparse combination of unknown dictionary elements.

Non-convex robust PCA: Same guarantees as convex relaxation
methods, lower computational complexity. Extensions to tensor
setting.
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