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Feature Learning For Efficient Classification

Find good transformations of input for improved classification

Figures used attributed to Fei-Fei Li, Rob Fergus, Antonio Torralba, et al.
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o Labeled samples {z;, y;} and unlabeled samples {z;}.

@ Labeled samples should lead to better feature learning ¢(-) but are
harder to obtain.

Learn features ¢(z) through latent variables related to x,y.
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Conditional Latent Variable Models: Two Cases

Multi-layer Neural Networks
(Elyle] = 0(Aq 0(Aa-1 o(- - 42 0(412))))

Mixture of Classifiers or GLMs
(G(z) :=Elylz, h] = o((Uh, ) + (b,h))




Challenges in Learning LVMs

Challenge: Identifiability Conditions
@ When can model be identified (given infinite computation and data)?

@ Does identifiability also lead to tractable algorithms?

Computational Challenges
@ Maximum likelihood is NP-hard in most scenarios.

@ Practice: Local search approaches such as Back-propagation, EM,
Variational Bayes have no consistency guarantees.

Sample Complexity
@ Sample complexity needs to be low for high-dimensional regime.

Guaranteed and efficient learning through tensor methods
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© Spectral and Tensor Methods



Classical Spectral Methods: Matrix PCA and CCA

Unsupervised Setting: PCA
For centered samples {z;}, find projection P with

Rank(P) = k s.t.

mm— Z |zi — P2

ze [n]

Result: Eigen-decomposition of S = Cov(X).

Supervised Setting: CCA
For centered samples {z;,y;}, find

a Elzy )b
max

b \/aTI@l[a:xT]a bTE[yyT]b

Result: Generalized eigen decomposition.



Beyond SVD: Spectral Methods on Tensors

@ How to learn the mixture models without separation constraints?

» PCA uses covariance matrix of data. Are higher order moments helpful?

@ Unified framework?

» Moment-based estimation of probabilistic latent variable models?

@ SVD gives spectral decomposition of matrices.
» What are the analogues for tensors?



Moment Matrices and Tensors

Multivariate Moments

M, :=E[z], My=Ez®z|, M;:=Ezr®zxz]

Matrix

o Elz ® z] € R¥ is a second order tensor. H
° E[JZ & 33]1‘171‘2 = E[J?“Qj,z]
@ For matrices: E[z ® z] = E[zx

T]_

Tensor

o Elr ® z ® x] € R¥¥4xd s 3 third order tensor. %

o Elz®x® xli, iyiy = Elwi, xi,24,].




Spectral Decomposition of Tensors
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@ u®v®uw is a rank-1 tensor since its (i1,12,73)" entry is w;, Vi, Ww;s.

Guaranteed recovery. (Anandkumar et al 2012, Zhang & Golub 2001).



Moment Tensors for Conditional Models
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Feature Transformations of the Input: = — ¢(x)
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@ Are moments E[¢(z) ® y] useful?
o If ¢(x) is a matrix/tensor, we have matrix/tensor moments.

@ Can carry out spectral decomposition of the moments.



Moment Tensors for Conditional Models

Multivariate Moments: Many possibilities...

Ez®y,Ez@zy,Eld(z)®y]....

Feature Transformations of the Input: = — ¢(x)
@ How to exploit them?
@ Are moments E[¢(z) ® y] useful?
o If ¢(x) is a matrix/tensor, we have matrix/tensor moments.

@ Can carry out spectral decomposition of the moments.

Construct ¢(x) based on input distribution?
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© Generative Models for Feature Learning



Score Function of Input Distribution
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Beyond vector features?



Matrix and Tensor-valued Features

Higher order score functions

m V™Mp(z)

Sm(a) i= (-1

@ Can be a matrix or a tensor instead of a vector.

@ Can be used to construct matrix and tensor moments E|y @ ¢(z)].



Outline

@ Proposed Framework



Operations on Score Function Features

@ Form the cross-moments: E [y @ S,,(x)].



Operations on Score Function Features

@ Form the cross-moments: E [y @ S,,(x)].

Our result

[]E [y ® Sm(z)] = E [v<m>G(x)] . Ga) = E[y|:c]}




Operations on Score Function Features

@ Form the cross-moments: E [y @ S,,(x)].

Our result

[]E [y ® Sm(z)] = E [v<m>G(x)} . Ga) = E[y|:c]}

@ Extension of Stein's lemma.



Operations on Score Function Features

@ Form the cross-moments: E [y @ S, (x)].

Our result

[]E [y ® Sm(z)] = E [v<m>G(x)} . Ga) = E[y|:c]}

@ Extension of Stein's lemma.

Extract discriminative directions through spectral decomposition

{E[y@&m(x)]_m[vw } Y Nueu.. J

clk
J€lk] m times




Operations on Score Function Features

@ Form the cross-moments: E [y @ S, (x)].

Our result

[]E [y ® Sm(z)] = E [v<m>G(x)} . Ga) = E[y|:c]}

@ Extension of Stein's lemma.

Extract discriminative directions through spectral decomposition

]E[y@Sm(x)]zla[vW } Y Nueu..
JEK]

m times

@ Construct a(uJT:L) for some nonlinearity o.



Automated Extraction of Discriminative Features

Unlabeled data: {x;}
2!
General-purpose features: Score functions S,,(x)

l Labeled data:
Form cross-moments: E [y - S,,(x)] «——
Ly - Sml(0) )]

l

Our result: obtaining derivatives of label function:
E[y- Su(x)] =E |[V"G(x)]
when E[y|x] := G(x)
{
Spectral/tensor method:
find u’s s.t. E[V(m ] Zu®m
JelK]
{
Extract discriminative features using u;’s/

do model-based prediction with u’s as parameters



Learning Mixtures of Classifiers/GLMs

@ A mixture of r classifiers, hidden choice variable i € {e1,... e, }.

(Elyle, h] = g((Uh,z) + (b, 1) |

« U = [ug|uz...|u,] are the weight vectors of GLMs.

* b is the vector of biases.

M; =E[y'83(a:)] = Z)\i~ui®ui®ui.

i€[r]

First results for learning non-linear mixtures using spectral methods



Learning Multi-layer Neural Networks

az

(Elyla] = (a2, 0(A] 2)) |

Our result

Mz =Ely - S3(z)] = Z Aiv A1 ® Ay ® Agg

i€[r]




Framework Applied to MNIST

Unlabeled data: {z;}
11 543
75353

Labeled data:

—

Compute score function Form cross-moment
Sm(z) using r(x) Ely - Sm(x)]

Train SVM with
o((zi,u;))

T

u]-'s
e
i EE_! i |

HEE ,

B
T

Spectral /tensor method:

R ats

Tensor T = u?s i u5®3
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Conclusion: Learning Conditional Models using
Tensor Methods

Tensor Decomposition
o Efficient sample and computational complexities
@ Better performance compared to EM, Variational Bayes etc.

@ Scalable and embarrassingly parallel: handle large datasets.

Score function features
@ Score function features crucial for learning conditional models.

Related: Guaranteed Non-convex Methods
@ Overcomplete Dictionary Learning/Sparse Coding: Decompose data
into a sparse combination of unknown dictionary elements.

@ Non-convex robust PCA: Same guarantees as convex relaxation
methods, lower computational complexity. Extensions to tensor
setting.
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