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Problem setup

Task

Given samples from a discrete distribution, how to make statistical
inference on certain property of the distribution?

discrete
distribution

statistical
procedure

decision/estimatesamples
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Estimating the unseen

• Support size:

S(P ) =
∑
i

1{pi>0}

• Example:

S


 = 5

• ⇔ estimating the number of unseens (SEEN + UNSEEN = S(P ))
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Classical results

• maybe the Egyptians have studied it...

• Ecology:

• Linguistics, numismatics, etc:

Biomttrika (1976), 63, 3, pp. 436-47 4 3 5
WithZ t«xt-flgun»

Printed in Great Britain

Estimating the number of unseen species: How many
words did Shakespeare know?

BY BRADLEY EFRON AND RONALD TBISTED

Department of Statistics, Stanford University, California

SUMMARY

Shakespeare wrote 31534 different words, of which 14376 appear only once, 4343 twice,
etc. The question considered is how many words he knew but did not use. A parametric
empirical Bayes model due to Fisher and a nonparametric model due to Good & Toulmin
are examined. The latter theory is augmented using linear programming methods. We
conclude that the models are equivalent to supposing that Shakespeare knew at least
35000 more words.

Some key words: Empirical Bayes; Euler transformation; Linear programming; Negative binomial;
Vocabulary.

1. LVTBODTJOTIOK

Estimating the number of unseen species is a familiar problem in ecological studies. In
this paper the unseen species are words Shakespeare knew but did not use. Shakespeare's
known works comprise 884647 total words, of which 14376 are types appearing just one
time, 4343 are types appearing twice, etc. These counts are based on Spevaok's (1968)
concordance and on the summary appearing in an unpublished report by J. Gani &
I. Saunders. Table 1 summarizes Shakespeare's word type counts, where nx is the number
of word types appearing exactly x times (x = 1,..., 100). Including the 846 word types
which appear more than 100 times, a total of

2 nx = 31534
x-1

different word types appear. Note that 'type' or 'word type' will be used to indicate a
distinct item in Shakespeare's vocabulary. 'Total words' will indicate a total word count
including repetitions. The definition of type is any distinguishable arrangement of letters.
Thus, 'girl' is a different type from 'girls' and 'throneroom' is a different type from both
' throne' and ' room'.

How many word types did Shakespeare actually know? To put the question more opera-
tionally, suppose another large quantity of work by Shakespeare were discovered, say
884 647J total words. How many new word types in addition to the original 31534 would we
expect to find? For the case t = 1, corresponding to a volume of new Shakespeare equal to
the old, there is a surprisingly explicit answer. We will show that a parametric model due
to Fisher, Corbet & Williams (1943) and a nonparametric model due to Good & Toulmin
(1956) both estimate about 11460 expected new word types, with an expected error of less
than 150.

The case t = oo corresponds to the question as originally posed: how many word types
did Shakespeare know? The mathematical model at the beginning of §2 makes explicit
the sense of the question. No upper bound is possible, but we will demonstrate a lower bound
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Mathematical formulation

• Data: X1, . . . , Xn
i.i.d.∼ P

• Estimate: Ŝ = Ŝ(X1, . . . , Xn) close to S(P ) in prob or expectation

• Goal: �nd minimal sample size & fast algorithms

• Need to assume minimum non-zero mass
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Sample complexity

Space of distributions

Dk , {prob distributions whose non-zero mass is at least 1/k}

Sample complexity

n∗(k, ε) , min{n : ∃Ŝ, s.t. P[|Ŝ − S(P )| ≤ εk] ≥ 0.5,∀P ∈ Dk}

Remarks

• Upgrade the con�dence: n→ n log 1
δ ⇒ 0.5→ 1− δ (subsample +

median + Hoe�ding)

• Zero error (ε = 0): n∗(k, 0) � k log k (coupon collector)
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Naive approach: plug-in

• WYSIWYE:

Ŝseen = number of seen symbols

• underestimate:

Ŝseen ≤ S(P ), P -a.s.

• severely underbiased in the sublinear-sampling regime: n� k
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Do we have to estimate the distribution itself?

From a statistical perspective

• high-dimensional problem
I estimating P provably requires n = Θ(k) samples
I empirical distribution is optimal up to constants

• functional estimation

I scalar functional (support size)
?

=⇒ n = o(k) su�ces
I plug-in is frequently suboptimal

Yihong Wu (Illinois) Estimating the unseen 8



Su�cient statistics

• Histogram:

Nj =
∑
i

1{Xi=j} : # of occurences of jth symbol

• Histogram2/�ngerprints/pro�les:

hi =
∑
j

1{Nj=i} : # of symbols that occured exactly i times

• h0: # of unseens

Yihong Wu (Illinois) Estimating the unseen 9
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Linear estimators

Estimators that are linear in the �ngerprints:

Ŝ =
∑
i

f(Ni) =
∑
j≥1

f(j)hj

Classical procedures:

• Plug-in:
Ŝseen = h1 + h2 + h3 + . . .

• Good-Toulmin '56: empirical Bayes

ŜGT = th1 − t2h2 + t3h3 − t4h4 + . . .

• Efron-Thisted '76: Bayesian

ŜET =

J∑
j=1

(−1)j+1tjbjhj

where bj = P[Binomial(J, 1/(t+ 1)) ≥ j]

Yihong Wu (Illinois) Estimating the unseen 10
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State of the art

• Ŝseen: n
∗(k, ε) ≤ k log 1

ε

• Valiant '08, Raskhodnikova et al. '09, Valiant-Valiant '11-'13:
sublinear is possible.

I Upper bound: n∗(k, ε) . k
log k

1
ε2 by LP [Efron-Thisted '76]

I Lower bound: n∗(k, ε) & k
log k

Theorem (W.-Yang '14)

n∗(k, ε) � k

log k
log2

1

ε
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Minimax risk

Theorem (W.-Yang '14)

inf
Ŝ

sup
P∈Dk

E[(Ŝ − S(P ))2] � k2 exp

(
−
√
n log k

k
∨ n
k

)

Yihong Wu (Illinois) Estimating the unseen 12



Remainder of this talk

Objectives

• a principled way to obtain rate-optimal linear estimator

• a natural lower bound to establish optimality via duality

Yihong Wu (Illinois) Estimating the unseen 13



Best polynomial approximation



Best polynomial approximation

• PL = {polynomials of degree at most L}.
• I = [a, b]: a �nite interval.

• Optimal approximation error

EL(f, I) , inf
p∈PL

sup
x∈I
|f(x)− p(x)|

• Stone-Weierstrass theorem: f continuous ⇒ EL(f, I)
L→∞−−−−→ 0

• Speed of convergence related to modulus of continuity.

• Finite-dim convex optimization/In�nite-dim LP

• Many fast algorithms (e.g., Remez)

Yihong Wu (Illinois) Estimating the unseen 15
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Example

deg-6 approximation Chebyshev alternation theorem
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Moment matching

EL(f, I) , sup E [f(U)]− E
[
f(U ′)

]
s.t. E

[
U j
]

= E
[
U ′j
]
, j = 1, . . . , L

U,U ′ ∈ I
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Moment matching

EL(f, I) , sup

∫
fdµ−

∫
fdµ′

s.t.

∫
fdµ =

∫
fdµ′, j = 1, . . . , L,

µ, µ′ supported on I
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Moment matching

EL(f, I) , sup E [f(U)]− E
[
f(U ′)

]
s.t. E

[
U j
]

= E
[
U ′j
]
, j = 1, . . . , L,

λj ∈ R

U,U ′ ∈ I

In�nite-dim linear programming. Dual:

inf
λL1

sup
U,U ′∈I

E [f(U)]− E
[
f(U ′)

]
+
∑
j

λj(E
[
U j
]
− E

[
U ′j
]
)

= inf
λL1

sup
U∈I

E
[
f(U)−

∑
j

λjU
j
]
− inf
U ′∈I

E
[
f(U ′)−

∑
j

λjU
′j
]

= inf
λL0

(
sup
u∈I

f(u)−
∑
j

λju
j
)
−
(

inf
u∈I

f(u′)−
∑
j

λju
j
)

= 2 inf
p∈PL

sup
u∈I
|f(u)− p(u)|
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Moment matching ⇔ best polynomial approximation

EL(f, I) = 2EL(f, I)

Yihong Wu (Illinois) Estimating the unseen 20



Moment matching ⇔ best polynomial approximation

EL(f, I) = 2EL(f, I)
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Optimal estimator



Poissonization

• Poisson sampling model
I draw sample size n′ ∼ Poi(n)
I draw n′ i.i.d. samples from P .

• Histograms are independent: Ni
ind∼ Poi(npi)

• sample complexity/minimax risks remain unchanged within constant
factors

Yihong Wu (Illinois) Estimating the unseen 22



MSE

Recall
MSE = bias2 + variance

Main problem of Ŝseen: huge bias.

Yihong Wu (Illinois) Estimating the unseen 23



Unbiased estimators?

Unbiased estimator for f(P ) from n samples:

• Independent sampling: f(P ) is polynomial of degree ≤ n
• Poissonized sampling: f(P ) is real analytic.

Example

• Flip a coin with bias p for n times and estimate f(p)

• Su�cient stat: Y ∼ Binomial(n, p).

• Unbiased estimator exists ⇔ f(p) is a polynomial of degree ≤ n

E[f̂(Y )] =
n∑
k=0

f̂(k)

(
n

k

)
pk(1− p)k.

Yihong Wu (Illinois) Estimating the unseen 24
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No unbiased estimator

S(P ) =
∑
i

1{pi>0}

• Approximate 1{x>0} by q(x) =
∑L

m=0 amx
m

• Find an unbiased estimator for the proxy

S̃(P ) =
∑
i

q(pi)

• |bias| ≤ uniform approx error

• But the function is discontinuous...

Yihong Wu (Illinois) Estimating the unseen 25
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Linear estimators

Consider estimators that are linear in the �ngerprints:

Ŝ =
∑
i

f(Ni) =
∑
j≥1

f(j)hj

Guidelines:

• f(0) = 0

• f(j) = 1 for su�ciently large j > L

• How to choose f(1), . . . , f(L)?

Yihong Wu (Illinois) Estimating the unseen 26



Linear estimators

Consider estimators that are linear in the �ngerprints:
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Bias

Choose

• L = c0 log k.

• Ŝ =
∑

j≥1 f(Ni), Ni ∼ Poi(npi)

Bias:

E[Ŝ − S] =
∑

E[(f(Ni)− 1)1{Ni≤L}]1{pi>1/k}

≈
∑

E[(f(Ni)− 1)1{Ni≤L}]︸ ︷︷ ︸

e−npi× poly of deg L!

1{2L/n>pi>1/k}
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• Ŝ =
∑

j≥1 f(Ni), Ni ∼ Poi(npi)

Bias:
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Bias

• Observe

E[(f(N)− 1)1{N≤L}] = e−λ
∑
j≥0

f(j)− 1

j!
λj

︸ ︷︷ ︸
q(λ)

• Then
|bias| ≤ k sup

n/k≤λ≤c log k
|q(λ)|

• Choose the best deg-L polynomial q s.t. q(0) = −1

• Solution: Chebyshev polynomial
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Chebyshev polynomial

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

best approximation to one by
polynomial passing through origin is
Chebyshev polynomial

pL(x) = 1− cosL arccosx

cosL arccos a

Yihong Wu (Illinois) Estimating the unseen 29



Final estimator

• Chebyshev polynomial: r , c1 log k and l , n
k ,

−
cosL arccos( 2

r−lx−
r+l
r−l )

cosL arccos(− r+l
r−l )

,
L∑
j=0

amx
m.

• Choose

f(j) =


0 j = 0

1 + ajj! j = 1, . . . , L

1 j > L.

• Linear estimator (precomputable coe�cients): no sample splitting!!

Ŝ =
L∑
j=1

f(j)hj +
∑
j>L

hj

• Signi�cantly faster than LP [Efron-Thisted '76, Valiant-Valiant '11]
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Analysis

1 bias ≤ approximation error of Chebyshev polynomial:

1

|cosM arccos(− r+l
r−l )|

� exp

(
−c
√
n log k

k

)
,

2 variance ≈ poly(k).
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Optimal estimator

Plot of coe�cients (k = 106 and n = 2× 105):

Ŝ =
∑
j≥1

f(j)hj

-300

-200

-100

 0

 100

 200

 300

 1  3  5  7  9  11  13

g
L(

j)

j
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Why oscillatory and alternating?

Ŝ =
∑
j≥1

f(j)hj

The same oscillation also happens in:

• Good-Toulmin '56: empirical Bayes

ŜGT = th1 − t2h2 + t3h3 − t4h4 + . . .

• Efron-Thistle '76: Bayesian

ŜET =

J∑
j=1

(−1)j+1tjbjhj

I HAVE NO EXPLANATION!
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Impossibility results



Minimax lower bound

n∗(k, ε) &
k

log k
log2

1

ε
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Total variation

• TV(P0, P1) = 1
2

∫
|dP0 − dP1|

• optimal error probability for testing P0 vs P1

1− TV(P0, P1) = min
ψ
P0[ψ = 1] + P1[ψ = 0]
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Poisson mixtures

Given U ∼ µ,
E[Poi(U)] =

∫
R+

Poi(λ)µ(dλ)

Yihong Wu (Illinois) Estimating the unseen 37



Randomization

Two-prior argument (composite HT):

• draw random distribution P
Poisson−−−−→ Ni

ind∼ Poi(npi)

• draw random distribution P′
Poisson−−−−→ N ′i

ind∼ Poi(np′i)

Le Cam's lemma applies if

• S(P) and S(P′) di�er with high probability

• Distributions of N and N ′ are indistinguishable (k-dim Poisson
mixtures)

Main hurdle: di�cult to work with distributions on high-dimensional
probability simplex.
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Key construction: reduction to one dimension

• Given U,U ′ with unit mean:

P =
1

k
(U1, . . . , Uk︸ ︷︷ ︸

i.i.d.∼ U

), P′ =
1

k
(U ′1, . . . , U

′
k︸ ︷︷ ︸

i.i.d.∼ U ′

)

• By LLN,

I P and P′ are not, but close to, probability distributions.

I support size concentrates on the mean:

E [S(P)]− E [S(P′)] = k(P {U > 0} − P {U ′ > 0})

• Su�cient statistic are iid:

Ni
i.i.d.∼ E[Poi(nU/k)], N ′i

i.i.d.∼ E[Poi(nU ′/k)].

• Su�ce to show TV(E[Poi(nU/k)],E[Poi(nU ′/k)]︸ ︷︷ ︸
one-dimensional Poisson mixtures

) = o(1/k).
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Moment matching ⇒ statistically close Poisson mixtures

Lemma

• U,U ′ ∈ [0, k log kn ]

• E
[
U j
]

= E
[
U ′j
]
, j = 1, . . . , L = C log k

• Then

TV(E [Poi (nU/k)] ,E
[
Poi

(
nU ′/k

)]
) = o(1/k)
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Optimize the lower bound

Let λ = k log k/n.

Choose the best U,U ′:

sup P {U = 0} − P
{
U ′ = 0

}
s.t. E [U ] = E

[
U ′
]

= 1

E
[
U j
]

= E
[
U ′j
]
, j ∈ [L]

U,U ′ ∈ {0} ∪ [1, λ]

= sup E [1/X]− E
[
1/X ′

]
s.t. E

[
Xj
]

= E
[
X ′j
]
, j ∈ [L]

X,X ′ ∈ [1, λ],

= 2EL(1/x, [1, λ]) & e
−c

√
n log k

k

PU (du) =(
1− E

[
1
X

])
δ0(du) + 1

uPX(du)
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Optimize the lower bound
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Related work in statistics

Our inspiration: earlier work on Gaussian models

• Ibragimov-Nemirovskii-Khas'minskii '87: smooth functions

• Lepski-Nemirovski-Spokoiny '99: Lq norm of Gaussian regression
function

• Cai-Low '11: L1 norm of normal mean
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Comparison

Lower bound in [Valiant-Valiant '11]

• Deal with �ngerprints � high-dim distribution with dependent
components

• Approximate distribution by quantized Gaussian

• Bound distance between mean and covariance matrices

Lower bound here: reduce to one dimension
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Experiments



Uniform over 1 million elements
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Uniform mixed with point mass
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How many words did Shakespeare know?

• Hamlet: total words 32000, total distinct words ∼ 7700,

• deg-10 Chebyshev polynomial

• sampling with replacement

• compare with LP [Efron-Thisted '76, Valiant-Valiant '13]
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How many words did Shakespeare know?

· · · · · · · · · · · · · · · · · · · · · · · ·
Feed the entire Shakespearean canon into the estimator:

• Ŝ = 68944 ∼ 73257

• Efron-Thisted '76: 66534
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Species problem

Formulation

Given an urn containing k balls, estimate the number of distinct colors S
by sampling (e.g. with replacement).

• Special case of support size estimation: pi ∈ {0, 1k ,
2
k , . . .}.

• Same sample complexity as DISTINCT-ELEMENT problem in TCS.

• Use Chebyshev: k
log k samples can achieve achieve 0.1k

• Converse: k
log k samples are necessary to achieve 0.1k [Valiant '12]
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Can we do better?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Use Lagrange interpolation
polynomial to achieve zero bias

• Uniform approximation:
ε . exp(−c

√
log k)

• Interpolation:
ε . exp(−c log k).

qL(x) = 1−
∏L
j=1(j − x)

L!
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More generally...

minimax risk & k2 exp

(
−cn log k

k

)

• Tight when n = 0.1k

• Compare to general support size:

minimax risk � k2 exp

(
−c
√
n log k

k

)
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Estimating entropy

H(P ) =
∑

pi log
1

pi

Theorem (W.-Yang '14)

Sample complexity to estimate within ε bits: n � max
{

k
ε log k ,

log2 k
ε2

}
(upper bound also in Jiao et al. '14)

Strategy

• degree: L ∼ log k

• small masses: polynomial
approximation

• large masses: plug-in with bias
correction

• coe�'s bounded by Chebyshev
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Estimating Rényi entropy

• Estimating Hα(P ) = 1
1−α log

∑
pαi [Jiao et al. '14, Acharya et al.

'14]
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Concluding remarks

To estimate
F (P ) =

∑
f(pi)

Sample complexity is roughly governed by the following convex
optimization problem (over logarithmic variables):

F(λ) , sup E [f(U)]− E
[
f(U ′)

]
s.t. E

[
U j
]

= E
[
U ′j
]
j = 1, . . . , log k,

E [U ] ≤ 1/k,

U, U ′ ∈ [0, log k/n],

• Lower bound: primal program (inapproximability result)

• Upper bound: dual program (approximability result)
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Concluding remarks

• Many open problems and directions
I Con�dence intervals
I Adaptive estimation
I How to go beyond iid sampling
I How to incorporate structures

References

• W. & P. Yang (2014). Minimax rates of entropy estimation on large

alphabets via best polynomial approximation. arXiv:1407.0381

• W. & P. Yang (2015). Chebyshev polynomials, moment matching, and

optimal estimation of the unseen. arXiv:1503.xxxx
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Bias

Choose

• M = c log k.

• Ŝ =
∑

j≥1 f(Ni), Ni ∼ Poi(npi)

Bias:

E[Ŝ − S] =
∑

E[f(Ni)]− 1{pi>0}

f(0)=0
=

∑
E[(f(Ni)− 1)]1{pi>0}

=
∑

E[(f(Ni)− 1)]1{pi>1/k}

=
∑

E[(f(Ni)− 1)1{Ni≤L}]1{pi>1/k}

whp
=

∑
E[(f(Ni)− 1)1{Ni≤L}]︸ ︷︷ ︸1{L/2n>pi>1/k}

Observe: g(λ) , E[(f(N)− 1)1{N≤L}] = e−λ× poly of deg L
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