Chebyshev polynomials, moment matching and optimal estimation of the unseen

Yihong Wu

Department of ECE
University of Illinois at Urbana-Champaign
yihongwu@illinois.edu
Joint work with Pengkun Yang (Illinois)

Mar 17, 2014

Problem setup

Task

Given samples from a discrete distribution, how to make statistical inference on certain property of the distribution?

Estimating the unseen

- Support size:

$$
S(P)=\sum_{i} \mathbf{1}_{\left\{p_{i}>0\right\}}
$$

- Example:

- \Leftrightarrow estimating the number of unseens (SEEN + UNSEEN $=S(P)$)

Classical results

Classical results

- maybe the Egyptians have studied it...

Classical results

- maybe the Egyptians have studied it...
- Ecology:

THE RELATION BETWEEN THE NUMBER OF SPECIES AND THE NUMBER OF INDIVIDUALS IN A RANDOM SAMPLE OF AN ANIMAL POPULATION

By R. A. FISHER (Galton Laboratory), A. STEVEN CORBET (British Museum, Natural History) $\wedge^{n} \mathrm{ND}$ C. B. WILLIAMS (Rothamsted Experimental Station)

Classical results

- maybe the Egyptians have studied it...
- Ecology:

THE RELATION BETWEEN THE NUMBER OF SPECIES AND
THE NUMBER OF INDIVIDUALS IN A RANDOM SAMPLE OF AN ANIMAL POPULATION

By R. A. FISHER (Galton Laboratory), A. STEVEN CORBET (British Museum, Natural History) ^nd C. B. WILLIAMS (Rothamsted Experimental Station)

- Linguistics, numismatics, etc:

Estimating the number of unseen species: How many words did Shakespeare know?

By BRADLEY EFRON and RONALD THISTED
Department of Statistics, Stanford University, California

- maybe the Egyptians have studied it...
- Ecology:

> THE RELATION BETWEEN THE NUMBER OF SPECIES AND THE NUMBER OF INDIVIDUALS IN A RANDOM SAMPLE OF AN ANIMAL POPULATION
> By R. A. FISHER (Galton Laboratory), A.STEVEN CORBET (British Museum, Natural History)幺ND C. B. WILLIAMS (Rothamsted Experimental Station)

- Linguistics, numismatics, etc:

Estimating the number of unseen species: How many words did Shakespeare know?

By BRADLEY EFRON and RONALD THISTED
Department of Statistics, Stanford University, California

- Will not discuss probability estimation [Good-Turing, Orlitsky et al., ...]

Mathematical formulation

- Data: $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} P$

Mathematical formulation

- Data: $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} P$
- Estimate: $\hat{S}=\hat{S}\left(X_{1}, \ldots, X_{n}\right)$ close to $S(P)$ in prob or expectation

Mathematical formulation

- Data: $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} P$
- Estimate: $\hat{S}=\hat{S}\left(X_{1}, \ldots, X_{n}\right)$ close to $S(P)$ in prob or expectation
- Goal: find minimal sample size \& fast algorithms

Mathematical formulation

- Data: $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} P$
- Estimate: $\hat{S}=\hat{S}\left(X_{1}, \ldots, X_{n}\right)$ close to $S(P)$ in prob or expectation
- Goal: find minimal sample size \& fast algorithms
- Need to assume minimum non-zero mass

Sample complexity

Space of distributions

$\mathcal{D}_{k} \triangleq\{$ prob distributions whose non-zero mass is at least $1 / k\}$

Sample complexity

Space of distributions

$\mathcal{D}_{k} \triangleq\{$ prob distributions whose non-zero mass is at least $1 / k\}$

Sample complexity

$$
n^{*}(k, \epsilon) \triangleq \min \left\{n: \exists \hat{S}, \text { s.t. } \mathbb{P}[|\hat{S}-S(P)| \leq \epsilon k] \geq 0.5, \forall P \in \mathcal{D}_{k}\right\}
$$

Sample complexity

Space of distributions

$\mathcal{D}_{k} \triangleq\{$ prob distributions whose non-zero mass is at least $1 / k\}$

Sample complexity

$$
n^{*}(k, \epsilon) \triangleq \min \left\{n: \exists \hat{S}, \text { s.t. } \mathbb{P}[|\hat{S}-S(P)| \leq \epsilon k] \geq 0.5, \forall P \in \mathcal{D}_{k}\right\}
$$

Remarks

- Upgrade the confidence: $n \rightarrow n \log \frac{1}{\delta} \Rightarrow 0.5 \rightarrow 1-\delta$ (subsample + median + Hoeffding)

Sample complexity

Space of distributions

$\mathcal{D}_{k} \triangleq\{$ prob distributions whose non-zero mass is at least $1 / k\}$

Sample complexity

$$
n^{*}(k, \epsilon) \triangleq \min \left\{n: \exists \hat{S}, \text { s.t. } \mathbb{P}[|\hat{S}-S(P)| \leq \epsilon k] \geq 0.5, \forall P \in \mathcal{D}_{k}\right\}
$$

Remarks

- Upgrade the confidence: $n \rightarrow n \log \frac{1}{\delta} \Rightarrow 0.5 \rightarrow 1-\delta$ (subsample + median + Hoeffding)
- Zero error $(\epsilon=0): n^{*}(k, 0) \asymp k \log k$ (coupon collector)

Naive approach: plug-in

- WYSIWYE:
$\hat{S}_{\text {seen }}=$ number of seen symbols

Naive approach: plug-in

- WYSIWYE:

$$
\hat{S}_{\text {seen }}=\text { number of seen symbols }
$$

- underestimate:

$$
\hat{S}_{\text {seen }} \leq S(P), \quad P \text {-a.s. }
$$

- severely underbiased in the sublinear-sampling regime: $n \ll k$

Do we have to estimate the distribution itself?

From a statistical perspective

- high-dimensional problem
- estimating P provably requires $n=\Theta(k)$ samples
- empirical distribution is optimal up to constants
- functional estimation
- scalar functional (support size) $\stackrel{?}{\Rightarrow} n=o(k)$ suffices
- plug-in is frequently suboptimal

Sufficient statistics

- Histogram:

$$
N_{j}=\sum_{i} \mathbf{1}_{\left\{X_{i}=j\right\}}: \# \text { of occurences of } j^{\text {th }} \text { symbol }
$$

Sufficient statistics

- Histogram:

$$
N_{j}=\sum_{i} \mathbf{1}_{\left\{X_{i}=j\right\}}: \# \text { of occurences of } j^{\text {th }} \text { symbol }
$$

- Histogram ${ }^{2}$ /fingerprints/profiles:

$$
h_{i}=\sum_{j} \mathbf{1}_{\left\{N_{j}=i\right\}}: \# \text { of symbols that occured exactly } i \text { times }
$$

Sufficient statistics

- Histogram:

$$
N_{j}=\sum_{i} \mathbf{1}_{\left\{X_{i}=j\right\}}: \# \text { of occurences of } j^{\text {th }} \text { symbol }
$$

- Histogram ${ }^{2}$ /fingerprints/profiles:

$$
h_{i}=\sum_{j} \mathbf{1}_{\left\{N_{j}=i\right\}}: \# \text { of symbols that occured exactly } i \text { times }
$$

- h_{0} : \# of unseens

Linear estimators

Estimators that are linear in the fingerprints:

$$
\hat{S}=\sum_{i} f\left(N_{i}\right)=\sum_{j \geq 1} f(j) h_{j}
$$

Linear estimators

Estimators that are linear in the fingerprints:

$$
\hat{S}=\sum_{i} f\left(N_{i}\right)=\sum_{j \geq 1} f(j) h_{j}
$$

Classical procedures:

- Plug-in:

$$
\hat{S}_{\text {seen }}=h_{1}+h_{2}+h_{3}+\ldots
$$

Linear estimators

Estimators that are linear in the fingerprints:

$$
\hat{S}=\sum_{i} f\left(N_{i}\right)=\sum_{j \geq 1} f(j) h_{j}
$$

Classical procedures:

- Plug-in:

$$
\hat{S}_{\text {seen }}=h_{1}+h_{2}+h_{3}+\ldots
$$

- Good-Toulmin '56: empirical Bayes

$$
\hat{S}_{\mathrm{GT}}=t h_{1}-t^{2} h_{2}+t^{3} h_{3}-t^{4} h_{4}+\ldots
$$

Linear estimators

Estimators that are linear in the fingerprints:

$$
\hat{S}=\sum_{i} f\left(N_{i}\right)=\sum_{j \geq 1} f(j) h_{j}
$$

Classical procedures:

- Plug-in:

$$
\hat{S}_{\text {seen }}=h_{1}+h_{2}+h_{3}+\ldots
$$

- Good-Toulmin '56: empirical Bayes

$$
\hat{S}_{\mathrm{GT}}=t h_{1}-t^{2} h_{2}+t^{3} h_{3}-t^{4} h_{4}+\ldots
$$

- Efron-Thisted '76: Bayesian

$$
\hat{S}_{\mathrm{ET}}=\sum_{j=1}^{J}(-1)^{j+1} t^{j} b_{j} h_{j}
$$

where $b_{j}=\mathbb{P}[\operatorname{Binomial}(J, 1 /(t+1)) \geq j]$

State of the art

- $\hat{S}_{\text {seen }}: n^{*}(k, \epsilon) \leq k \log \frac{1}{\epsilon}$

State of the art

- $\hat{S}_{\text {seen }}: n^{*}(k, \epsilon) \leq k \log \frac{1}{\epsilon}$
- Valiant '08, Raskhodnikova et al. '09, Valiant-Valiant '11-'13: sublinear is possible.
- Upper bound: $n^{*}(k, \epsilon) \lesssim \frac{k}{\log k} \frac{1}{\epsilon^{2}}$ by LP [Efron-Thisted '76]
- Lower bound: $n^{*}(k, \epsilon) \gtrsim \frac{k}{\log k}$

State of the art

- $\hat{S}_{\text {seen }}: n^{*}(k, \epsilon) \leq k \log \frac{1}{\epsilon}$
- Valiant '08, Raskhodnikova et al. '09, Valiant-Valiant '11-'13: sublinear is possible.
- Upper bound: $n^{*}(k, \epsilon) \lesssim \frac{k}{\log k} \frac{1}{\epsilon^{2}}$ by LP [Efron-Thisted '76]
- Lower bound: $n^{*}(k, \epsilon) \gtrsim \frac{k}{\log k}$

Theorem (W.-Yang '14)

$$
n^{*}(k, \epsilon) \asymp \frac{k}{\log k} \log ^{2} \frac{1}{\epsilon}
$$

Minimax risk

Theorem (W.-Yang '14)

$$
\inf _{\hat{S}} \sup _{P \in \mathcal{D}_{k}} \mathbb{E}\left[(\hat{S}-S(P))^{2}\right] \asymp k^{2} \exp \left(-\sqrt{\frac{n \log k}{k}} \vee \frac{n}{k}\right)
$$

Remainder of this talk

Objectives

- a principled way to obtain rate-optimal linear estimator
- a natural lower bound to establish optimality via duality

Best polynomial approximation

Best polynomial approximation

- $\mathcal{P}_{L}=\{$ polynomials of degree at most $L\}$.
- $I=[a, b]$: a finite interval.
- Optimal approximation error

$$
E_{L}(f, I) \triangleq \inf _{p \in \mathcal{P}_{L}} \sup _{x \in I}|f(x)-p(x)|
$$

Best polynomial approximation

- $\mathcal{P}_{L}=\{$ polynomials of degree at most $L\}$.
- $I=[a, b]$: a finite interval.
- Optimal approximation error

$$
E_{L}(f, I) \triangleq \inf _{p \in \mathcal{P}_{L}} \sup _{x \in I}|f(x)-p(x)|
$$

- Stone-Weierstrass theorem: f continuous $\Rightarrow E_{L}(f, I) \xrightarrow{L \rightarrow \infty} 0$
- Speed of convergence related to modulus of continuity.
- Finite-dim convex optimization/Infinite-dim LP
- Many fast algorithms (e.g., Remez)

Example

deg-6 approximation

Chebyshev alternation theorem

Example

deg-6 approximation
Chebyshev alternation theorem

Example

deg-6 approximation

Moment matching

$$
\begin{aligned}
& \mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right] \\
& \text { s.t. } \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j=1, \ldots, L \\
& U, U^{\prime} \in I
\end{aligned}
$$

Moment matching

$$
\begin{aligned}
\mathcal{E}_{L}(f, I) \triangleq \sup & \int f \mathrm{~d} \mu-\int f \mathrm{~d} \mu^{\prime} \\
& \text { s.t. } \\
& \int f \mathrm{~d} \mu=\int f \mathrm{~d} \mu^{\prime}, \quad j=1, \ldots, L, \\
& \mu, \mu^{\prime} \text { supported on } I
\end{aligned}
$$

Moment matching

$$
\begin{aligned}
& \mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right] \\
& \text { s.t. } \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j=1, \ldots, L, \\
& U, U^{\prime} \in I
\end{aligned}
$$

Moment matching

$$
\begin{aligned}
& \mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right] \\
& \text { s.t. } \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j=1, \ldots, L, \quad \lambda_{j} \in \mathbb{R} \\
& \\
& U, U^{\prime} \in I
\end{aligned}
$$

Infinite-dim linear programming. Dual:

$$
\inf _{\lambda_{1}^{L}} \sup _{U, U^{\prime} \in I} \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right]+\sum_{j} \lambda_{j}\left(\mathbb{E}\left[U^{j}\right]-\mathbb{E}\left[U^{\prime j}\right]\right)
$$

Moment matching

$$
\begin{aligned}
& \mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right] \\
& \text { s.t. } \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j=1, \ldots, L, \quad \lambda_{j} \in \mathbb{R} \\
& \\
& U, U^{\prime} \in I
\end{aligned}
$$

Infinite-dim linear programming. Dual:

$$
\inf _{\lambda_{1}^{L}} \sup _{U, U^{\prime} \in I} \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right]+\sum_{j} \lambda_{j}\left(\mathbb{E}\left[U^{j}\right]-\mathbb{E}\left[U^{\prime j}\right]\right)
$$

Moment matching

$$
\begin{aligned}
& \mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right] \\
& \text { s.t. } \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j=1, \ldots, L, \quad \lambda_{j} \in \mathbb{R} \\
& \\
& U, U^{\prime} \in I
\end{aligned}
$$

Infinite-dim linear programming. Dual:

$$
\begin{aligned}
& \inf _{\lambda_{1}^{L}} \sup _{U, U^{\prime} \in I} \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right]+\sum_{j} \lambda_{j}\left(\mathbb{E}\left[U^{j}\right]-\mathbb{E}\left[U^{\prime j}\right]\right) \\
= & \inf _{\lambda_{1}^{L}} \sup _{U \in I} \mathbb{E}\left[f(U)-\sum_{j} \lambda_{j} U^{j}\right]-\inf _{U^{\prime} \in I} \mathbb{E}\left[f\left(U^{\prime}\right)-\sum_{j} \lambda_{j} U^{\prime \prime}\right]
\end{aligned}
$$

Moment matching

$$
\begin{aligned}
& \mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right] \\
& \text { s.t. } \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j=1, \ldots, L, \quad \lambda_{j} \in \mathbb{R} \\
& \\
& U, U^{\prime} \in I
\end{aligned}
$$

Infinite-dim linear programming. Dual:

$$
\begin{aligned}
& \inf _{\lambda_{1}^{L}} \sup _{U, U^{\prime} \in I} \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right]+\sum_{j} \lambda_{j}\left(\mathbb{E}\left[U^{j}\right]-\mathbb{E}\left[U^{\prime j}\right]\right) \\
= & \inf _{\lambda_{1}^{L}} \sup _{U \in I} \mathbb{E}\left[f(U)-\sum_{j} \lambda_{j} U^{j}\right]-\inf _{U^{\prime} \in I} \mathbb{E}\left[f\left(U^{\prime}\right)-\sum_{j} \lambda_{j} U^{\prime j}\right] \\
= & \inf _{\lambda_{0}^{L}}\left(\sup _{u \in I} f(u)-\sum_{j} \lambda_{j} u^{j}\right)-\left(\inf _{u \in I} f\left(u^{\prime}\right)-\sum_{j} \lambda_{j} u^{j}\right)
\end{aligned}
$$

Moment matching

$$
\begin{aligned}
& \mathcal{E}_{L}(f, I) \triangleq \sup \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right] \\
& \text { s.t. } \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j=1, \ldots, L, \quad \lambda_{j} \in \mathbb{R} \\
& \\
& U, U^{\prime} \in I
\end{aligned}
$$

Infinite-dim linear programming. Dual:

$$
\begin{aligned}
& \inf _{\lambda_{1}^{L}} \sup _{U, U^{\prime} \in I} \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right]+\sum_{j} \lambda_{j}\left(\mathbb{E}\left[U^{j}\right]-\mathbb{E}\left[U^{\prime j}\right]\right) \\
= & \inf _{\lambda_{1}^{L}} \sup _{U \in I} \mathbb{E}\left[f(U)-\sum_{j} \lambda_{j} U^{j}\right]-\inf _{U^{\prime} \in I} \mathbb{E}\left[f\left(U^{\prime}\right)-\sum_{j} \lambda_{j} U^{\prime j}\right] \\
= & \inf _{\lambda_{0}^{L}}\left(\sup _{u \in I} f(u)-\sum_{j} \lambda_{j} u^{j}\right)-\left(\inf _{u \in I} f\left(u^{\prime}\right)-\sum_{j} \lambda_{j} u^{j}\right) \\
= & 2 \inf _{p \in \mathcal{P}_{L}} \sup _{u \in I}|f(u)-p(u)|
\end{aligned}
$$

Moment matching \Leftrightarrow best polynomial approximation

$$
\mathcal{E}_{L}(f, I)=2 E_{L}(f, I)
$$

Moment matching \Leftrightarrow best polynomial approximation

$$
\mathcal{E}_{L}(f, I)=2 E_{L}(f, I)
$$

Optimal estimator

- Poisson sampling model
- draw sample size $n^{\prime} \sim \operatorname{Poi}(n)$
- draw n^{\prime} i.i.d. samples from P.
- Histograms are independent: $N_{i} \stackrel{\text { ind }}{\sim} \operatorname{Poi}\left(n p_{i}\right)$
- sample complexity/minimax risks remain unchanged within constant factors

MSE

Recall
MSE $=$ bias $^{2}+$ variance
Main problem of $\hat{S}_{\text {seen }}$: huge bias.

Unbiased estimators?

Unbiased estimators?

Unbiased estimator for $f(P)$ from n samples:

- Independent sampling: $f(P)$ is polynomial of degree $\leq n$
- Poissonized sampling: $f(P)$ is real analytic.

Unbiased estimators?

Unbiased estimator for $f(P)$ from n samples:

- Independent sampling: $f(P)$ is polynomial of degree $\leq n$
- Poissonized sampling: $f(P)$ is real analytic.

Example

- Flip a coin with bias p for n times and estimate $f(p)$
- Sufficient stat: $Y \sim \operatorname{Binomial}(n, p)$.
- Unbiased estimator exists $\Leftrightarrow f(p)$ is a polynomial of degree $\leq n$

$$
\mathbb{E}[\hat{f}(Y)]=\sum_{k=0}^{n} \hat{f}(k)\binom{n}{k} p^{k}(1-p)^{k}
$$

No unbiased estimator

$$
S(P)=\sum_{i} \mathbf{1}_{\left\{p_{i}>0\right\}}
$$

No unbiased estimator

$$
S(P)=\sum_{i} \mathbf{1}_{\left\{p_{i}>0\right\}}
$$

- Approximate $\mathbf{1}_{\{x>0\}}$ by $q(x)=\sum_{m=0}^{L} a_{m} x^{m}$
- Find an unbiased estimator for the proxy

$$
\tilde{S}(P)=\sum_{i} q\left(p_{i}\right)
$$

- |bias $\mid \leq$ uniform approx error

No unbiased estimator

$$
S(P)=\sum_{i} \mathbf{1}_{\left\{p_{i}>0\right\}}
$$

- Approximate $\mathbf{1}_{\{x>0\}}$ by $q(x)=\sum_{m=0}^{L} a_{m} x^{m}$
- Find an unbiased estimator for the proxy

$$
\tilde{S}(P)=\sum_{i} q\left(p_{i}\right)
$$

- \mid bias $\mid \leq$ uniform approx error
- But the function is discontinuous...

Linear estimators

Consider estimators that are linear in the fingerprints:

$$
\hat{S}=\sum_{i} f\left(N_{i}\right)=\sum_{j \geq 1} f(j) h_{j}
$$

Guidelines:

- $f(0)=0$

Linear estimators

Consider estimators that are linear in the fingerprints:

$$
\hat{S}=\sum_{i} f\left(N_{i}\right)=\sum_{j \geq 1} f(j) h_{j}
$$

Guidelines:

- $f(0)=0$
- $f(j)=1$ for sufficiently large $j>L$

Linear estimators

Consider estimators that are linear in the fingerprints:

$$
\hat{S}=\sum_{i} f\left(N_{i}\right)=\sum_{j \geq 1} f(j) h_{j}
$$

Guidelines:

- $f(0)=0$
- $f(j)=1$ for sufficiently large $j>L$
- How to choose $f(1), \ldots, f(L)$?

Bias

Choose

- $L=c_{0} \log k$.
- $\hat{S}=\sum_{j \geq 1} f\left(N_{i}\right), \quad N_{i} \sim \operatorname{Poi}\left(n p_{i}\right)$

Bias:

$$
\mathbb{E}[\hat{S}-S]=\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right] \mathbf{1}_{\left\{p_{i}>1 / k\right\}}
$$

Bias

Choose

- $L=c_{0} \log k$.
- $\hat{S}=\sum_{j \geq 1} f\left(N_{i}\right), \quad N_{i} \sim \operatorname{Poi}\left(n p_{i}\right)$

Bias:

$$
\begin{aligned}
& \mathbb{E}[\hat{S}-S]=\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right] \\
& \approx \sum \mathbf{1}_{\left\{p_{i}>1 / k\right\}} \\
& \underbrace{\mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right]} \mathbf{1}_{\left\{2 L / n>p_{i}>1 / k\right\}}
\end{aligned}
$$

Bias

Choose

- $L=c_{0} \log k$.
- $\hat{S}=\sum_{j \geq 1} f\left(N_{i}\right), \quad N_{i} \sim \operatorname{Poi}\left(n p_{i}\right)$

Bias:

$$
\begin{aligned}
& \mathbb{E}[\hat{S}-S]=\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right] \\
& \approx \sum \mathbf{1}_{\left\{p_{i}>1 / k\right\}} \\
& \underbrace{\mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right]}_{e^{-n p_{i}} \times \text { poly of deg } L!} \boldsymbol{1}_{\left\{2 L / n>p_{i}>1 / k\right\}}
\end{aligned}
$$

- Observe

$$
\mathbb{E}\left[(f(N)-1) \mathbf{1}_{\{N \leq L\}}\right]=e^{-\lambda} \underbrace{\sum_{j \geq 0} \frac{f(j)-1}{j!} \lambda^{j}}_{q(\lambda)}
$$

- Then

$$
|\operatorname{bias}| \leq k \sup _{n / k \leq \lambda \leq c \log k}|q(\lambda)|
$$

- Choose the best deg- L polynomial q s.t. $q(0)=-1$
- Observe

$$
\mathbb{E}\left[(f(N)-1) \mathbf{1}_{\{N \leq L\}}\right]=e^{-\lambda} \underbrace{\sum_{j \geq 0}^{\frac{f(j)-1}{j!} \lambda^{j}}}_{q(\lambda)}
$$

- Then

$$
\mid \text { bias }\left|\leq k \sup _{n / k \leq \lambda \leq c \log k}\right| q(\lambda) \mid
$$

- Choose the best deg- L polynomial q s.t. $q(0)=-1$
- Solution: Chebyshev polynomial

Chebyshev polynomial

best approximation to one by polynomial passing through origin is Chebyshev polynomial

$$
p_{L}(x)=1-\frac{\cos L \arccos x}{\cos L \arccos a}
$$

Final estimator

- Chebyshev polynomial: $r \triangleq c_{1} \log k$ and $l \triangleq \frac{n}{k}$,

$$
-\frac{\cos L \arccos \left(\frac{2}{r-l} x-\frac{r+l}{r-l}\right)}{\cos L \arccos \left(-\frac{r+l}{r-l}\right)} \triangleq \sum_{j=0}^{L} a_{m} x^{m} .
$$

Final estimator

- Chebyshev polynomial: $r \triangleq c_{1} \log k$ and $l \triangleq \frac{n}{k}$,

$$
-\frac{\cos L \arccos \left(\frac{2}{r-l} x-\frac{r+l}{r-l}\right)}{\cos L \arccos \left(-\frac{r+l}{r-l}\right)} \triangleq \sum_{j=0}^{L} a_{m} x^{m} .
$$

- Choose

$$
f(j)= \begin{cases}0 & j=0 \\ 1+a_{j} j! & j=1, \ldots, L \\ 1 & j>L\end{cases}
$$

Final estimator

- Chebyshev polynomial: $r \triangleq c_{1} \log k$ and $l \triangleq \frac{n}{k}$,

$$
-\frac{\cos L \arccos \left(\frac{2}{r-l} x-\frac{r+l}{r-l}\right)}{\cos L \arccos \left(-\frac{r+l}{r-l}\right)} \triangleq \sum_{j=0}^{L} a_{m} x^{m} .
$$

- Choose

$$
f(j)= \begin{cases}0 & j=0 \\ 1+a_{j} j! & j=1, \ldots, L \\ 1 & j>L\end{cases}
$$

- Linear estimator (precomputable coefficients): no sample splitting!!

$$
\hat{S}=\sum_{j=1}^{L} f(j) h_{j}+\sum_{j>L} h_{j}
$$

Final estimator

- Chebyshev polynomial: $r \triangleq c_{1} \log k$ and $l \triangleq \frac{n}{k}$,

$$
-\frac{\cos L \arccos \left(\frac{2}{r-l} x-\frac{r+l}{r-l}\right)}{\cos L \arccos \left(-\frac{r+l}{r-l}\right)} \triangleq \sum_{j=0}^{L} a_{m} x^{m} .
$$

- Choose

$$
f(j)= \begin{cases}0 & j=0 \\ 1+a_{j} j! & j=1, \ldots, L \\ 1 & j>L\end{cases}
$$

- Linear estimator (precomputable coefficients): no sample splitting!!

$$
\hat{S}=\sum_{j=1}^{L} f(j) h_{j}+\sum_{j>L} h_{j}
$$

- Significantly faster than LP [Efron-Thisted '76, Valiant-Valiant '11]

Analysis

(1) bias \leq approximation error of Chebyshev polynomial:

$$
\frac{1}{\left|\cos M \arccos \left(-\frac{r+l}{r-l}\right)\right|} \asymp \exp \left(-c \sqrt{\frac{n \log k}{k}}\right)
$$

(2) variance $\approx \operatorname{poly}(k)$.

Optimal estimator

Plot of coefficients ($k=10^{6}$ and $n=2 \times 10^{5}$):

$$
\hat{S}=\sum_{j \geq 1} f(j) h_{j}
$$

Why oscillatory and alternating?

$$
\hat{S}=\sum_{j \geq 1} f(j) h_{j}
$$

The same oscillation also happens in:

- Good-Toulmin '56: empirical Bayes

$$
\hat{S}_{\mathrm{GT}}=t h_{1}-t^{2} h_{2}+t^{3} h_{3}-t^{4} h_{4}+\ldots
$$

- Efron-Thistle '76: Bayesian

$$
\hat{S}_{\mathrm{ET}}=\sum_{j=1}^{J}(-1)^{j+1} t^{j} b_{j} h_{j}
$$

I HAVE NO EXPLANATION!

Impossibility results

Minimax lower bound

$$
n^{*}(k, \epsilon) \gtrsim \frac{k}{\log k} \log ^{2} \frac{1}{\epsilon}
$$

- $\operatorname{TV}\left(P_{0}, P_{1}\right)=\frac{1}{2} \int\left|\mathrm{~d} P_{0}-\mathrm{d} P_{1}\right|$
- optimal error probability for testing P_{0} vs P_{1}

$$
1-\mathrm{TV}\left(P_{0}, P_{1}\right)=\min _{\psi} P_{0}[\psi=1]+P_{1}[\psi=0]
$$

Poisson mixtures

Given $U \sim \mu$,

$$
\mathbb{E}[\operatorname{Poi}(U)]=\int_{\mathbb{R}_{+}} \operatorname{Poi}(\lambda) \mu(\mathrm{d} \lambda)
$$

Two-prior argument (composite HT):

- draw random distribution $\mathrm{P} \xrightarrow{\text { Poisson }} N_{i} \stackrel{\text { ind }}{\sim} \operatorname{Poi}\left(n \mathrm{p}_{i}\right)$
- draw random distribution $\mathrm{P}^{\prime} \xrightarrow{\text { Poisson }} N_{i}^{\prime} \stackrel{\text { ind }}{\sim} \operatorname{Poi}\left(n \boldsymbol{p}_{i}^{\prime}\right)$

Two-prior argument (composite HT):

- draw random distribution $\mathrm{P} \xrightarrow{\text { Poisson }} N_{i} \stackrel{\text { ind }}{\sim} \operatorname{Poi}\left(n p_{i}\right)$
- draw random distribution $\mathrm{P}^{\prime} \xrightarrow{\text { Poisson }} N_{i}^{\prime} \stackrel{\text { ind }}{\sim} \operatorname{Poi}\left(n \mathbf{p}_{i}^{\prime}\right)$

Le Cam's lemma applies if

- $S(\mathrm{P})$ and $S\left(\mathrm{P}^{\prime}\right)$ differ with high probability
- Distributions of N and N^{\prime} are indistinguishable (k-dim Poisson mixtures)

Two-prior argument (composite HT):

- draw random distribution $\mathrm{P} \xrightarrow{\text { Poisson }} N_{i} \stackrel{\text { ind }}{\sim} \operatorname{Poi}\left(n p_{i}\right)$
- draw random distribution $\mathrm{P}^{\prime} \xrightarrow{\text { Poisson }} N_{i}^{\prime} \stackrel{\text { ind }}{\sim} \operatorname{Poi}\left(n \mathbf{p}_{i}^{\prime}\right)$

Le Cam's lemma applies if

- $S(\mathrm{P})$ and $S\left(\mathrm{P}^{\prime}\right)$ differ with high probability
- Distributions of N and N^{\prime} are indistinguishable (k-dim Poisson mixtures)

Main hurdle: difficult to work with distributions on high-dimensional probability simplex.

Key construction: reduction to one dimension

- Given U, U^{\prime} with unit mean:

$$
\mathrm{P}=\frac{1}{k}(\underbrace{U_{1}, \ldots, U_{k}}_{\substack{\text { i.i.d. } U}}), \quad \mathrm{P}^{\prime}=\frac{1}{k}(\underbrace{U_{1}^{\prime}, \ldots, U_{k}^{\prime}}_{\substack{\text { i.i.d. } U^{\prime}}})
$$

- By LLN,
- P and P^{\prime} are not, but close to, probability distributions.

Key construction: reduction to one dimension

- Given U, U^{\prime} with unit mean:

$$
\mathrm{P}=\frac{1}{k}(\underbrace{U_{1}, \ldots, U_{k}}_{\substack{\text { i.i.d. } U}}), \quad \mathrm{P}^{\prime}=\frac{1}{k}(\underbrace{U_{1}^{\prime}, \ldots, U_{k}^{\prime}}_{\substack{\text { i.i.d. } U^{\prime}}})
$$

- By LLN,
- P and P^{\prime} are not, but close to, probability distributions.
- support size concentrates on the mean:

$$
\mathbb{E}[S(\mathrm{P})]-\mathbb{E}\left[S\left(\mathrm{P}^{\prime}\right)\right]=k\left(\mathbb{P}\{U>0\}-\mathbb{P}\left\{U^{\prime}>0\right\}\right)
$$

Key construction: reduction to one dimension

- Given U, U^{\prime} with unit mean:

$$
\mathrm{P}=\frac{1}{k}(\underbrace{U_{1}, \ldots, U_{k}}_{\substack{\text { i.i.d. } U}}), \quad \mathrm{P}^{\prime}=\frac{1}{k}(\underbrace{U_{1}^{\prime}, \ldots, U^{\prime}}_{\substack{\text { i.i.d. }}})
$$

- By LLN,
- P and P^{\prime} are not, but close to, probability distributions.
- support size concentrates on the mean:

$$
\mathbb{E}[S(\mathrm{P})]-\mathbb{E}\left[S\left(\mathrm{P}^{\prime}\right)\right]=k\left(\mathbb{P}\{U>0\}-\mathbb{P}\left\{U^{\prime}>0\right\}\right)
$$

- Sufficient statistic are iid:

$$
N_{i} \stackrel{\text { i.i.d. }}{\sim} \mathbb{E}[\operatorname{Poi}(n U / k)], \quad N_{i}^{\text {i.i.d. }} \underset{\sim}{\sim}\left[\operatorname{Poi}\left(n U^{\prime} / k\right)\right] .
$$

- Suffice to show $\operatorname{TV}(\underbrace{\mathbb{E}[\operatorname{Poi}(n U / k)], \mathbb{E}\left[\operatorname{Poi}\left(n U^{\prime} / k\right)\right]}_{\text {one-dimensional Poisson mixtures }})=o(1 / k)$.

Moment matching \Rightarrow statistically close Poisson mixtures

Lemma

- $U, U^{\prime} \in\left[0, \frac{k \log k}{n}\right]$
- $\mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], j=1, \ldots, L=C \log k$
- Then

$$
\operatorname{TV}\left(\mathbb{E}[\operatorname{Poi}(n U / k)], \mathbb{E}\left[\operatorname{Poi}\left(n U^{\prime} / k\right)\right]\right)=o(1 / k)
$$

Optimize the lower bound

Let $\lambda=k \log k / n$.
Choose the best U, U^{\prime} :

$$
\begin{aligned}
& \sup \mathbb{P}\{U=0\}-\mathbb{P}\left\{U^{\prime}=0\right\} \\
& \text { s.t. } \mathbb{E}[U]=\mathbb{E}\left[U^{\prime}\right]=1 \\
& \quad \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j \in[L] \\
& \quad U, U^{\prime} \in\{0\} \cup[1, \lambda]
\end{aligned}
$$

Optimize the lower bound

Let $\lambda=k \log k / n$.
Choose the best U, U^{\prime} :

$$
\begin{aligned}
& \sup \mathbb{P}\{U=0\}-\mathbb{P}\left\{U^{\prime}=0\right\} \\
& \text { s.t. } \mathbb{E}[U]=\mathbb{E}\left[U^{\prime}\right]=1 \\
& \quad \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j \in[L] \\
& \quad U, U^{\prime} \in\{0\} \cup[1, \lambda]
\end{aligned}
$$

Optimize the lower bound

Let $\lambda=k \log k / n$.
Choose the best U, U^{\prime} :

$$
\begin{aligned}
\sup & \mathbb{P}\{U=0\}-\mathbb{P}\left\{U^{\prime}=0\right\} \\
\text { s.t. } & \mathbb{E}[U]=\mathbb{E}\left[U^{\prime}\right]=1 \\
& \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right], \quad j \in[L] \\
& U, U^{\prime} \in\{0\} \cup[1, \lambda] \\
=\sup & \mathbb{E}[1 / X]-\mathbb{E}\left[1 / X^{\prime}\right] \\
\text { s.t. } & \mathbb{E}\left[X^{j}\right]=\mathbb{E}\left[X^{\prime j}\right], \quad j \in[L] \\
& X, X^{\prime} \in[1, \lambda],
\end{aligned}
$$

Optimize the lower bound

Let $\lambda=k \log k / n$.
Choose the best U, U^{\prime} :

$$
\begin{aligned}
& \sup \mathbb{P}\{U=0\}-\mathbb{P}\left\{U^{\prime}=0\right\} \\
& \text { s.t. } \mathbb{E}[U]=\mathbb{E}\left[U^{\prime}\right]=1 \\
& \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime \prime}\right], \quad j \in[L] \\
& U, U^{\prime} \in\{0\} \cup[1, \lambda] \\
&= \sup \mathbb{E}[1 / X]-\mathbb{E}\left[1 / X^{\prime}\right] \\
& \text { s.t. } \mathbb{E}\left[X^{j}\right]=\mathbb{E}\left[X^{\prime j}\right], \quad j \in[L] \\
& X, X^{\prime} \in[1, \lambda], \\
&= 2 E_{L}(1 / x,[1, \lambda]) \gtrsim e^{-c \sqrt{\frac{n \text { log } k}{k}}}
\end{aligned}
$$

Related work in statistics

Our inspiration: earlier work on Gaussian models

- Ibragimov-Nemirovskii-Khas'minskii '87: smooth functions
- Lepski-Nemirovski-Spokoiny '99: L_{q} norm of Gaussian regression function
- Cai-Low '11: L_{1} norm of normal mean

Comparison

Lower bound in [Valiant-Valiant '11]

- Deal with fingerprints - high-dim distribution with dependent components
- Approximate distribution by quantized Gaussian
- Bound distance between mean and covariance matrices

Lower bound here: reduce to one dimension

Experiments

Uniform over 1 million elements

Uniform mixed with point mass

How many words did Shakespeare know?

- Hamlet: total words 32000 , total distinct words ~ 7700,
- deg-10 Chebyshev polynomial
- sampling with replacement
- compare with LP [Efron-Thisted '76, Valiant-Valiant '13]

How many words did Shakespeare know?

Feed the entire Shakespearean canon into the estimator:

- $\hat{S}=68944 \sim 73257$
- Efron-Thisted '76: 66534

Species problem

Formulation

Given an urn containing k balls, estimate the number of distinct colors S by sampling (e.g. with replacement).

- Special case of support size estimation: $p_{i} \in\left\{0, \frac{1}{k}, \frac{2}{k}, \ldots\right\}$.
- Same sample complexity as DISTINCT-ELEMENT problem in TCS.

Species problem

Formulation

Given an urn containing k balls, estimate the number of distinct colors S by sampling (e.g. with replacement).

- Special case of support size estimation: $p_{i} \in\left\{0, \frac{1}{k}, \frac{2}{k}, \ldots\right\}$.
- Same sample complexity as DISTINCT-ELEMENT problem in TCS.
- Use Chebyshev: $\frac{k}{\log k}$ samples can achieve achieve $0.1 k$
- Converse: $\frac{k}{\log k}$ samples are necessary to achieve $0.1 k$ [Valiant '12]

Can we do better?

Can we do better?

Use Lagrange interpolation polynomial to achieve zero bias

- Uniform approximation:

$$
\epsilon \lesssim \exp (-c \sqrt{\log k})
$$

- Interpolation:
$\epsilon \lesssim \exp (-c \log k)$.

$$
q_{L}(x)=1-\frac{\prod_{j=1}^{L}(j-x)}{L!}
$$

More generally...

$$
\operatorname{minimax} \text { risk } \gtrsim k^{2} \exp \left(-c \frac{n \log k}{k}\right)
$$

- Tight when $n=0.1 k$
- Compare to general support size:

$$
\operatorname{minimax} \text { risk } \asymp k^{2} \exp \left(-c \sqrt{\frac{n \log k}{k}}\right)
$$

Estimating entropy

$$
H(P)=\sum p_{i} \log \frac{1}{p_{i}}
$$

Theorem (W.-Yang '14)

Sample complexity to estimate within ϵ bits: $n \asymp \max \left\{\frac{k}{\epsilon \log k}, \frac{\log ^{2} k}{\epsilon^{2}}\right\}$ (upper bound also in Jiao et al. '14)

Strategy

- degree: $L \sim \log k$
- small masses: polynomial approximation
- large masses: plug-in with bias correction

- coeff's bounded by Chebyshev

Estimating Rényi entropy

- Estimating $H_{\alpha}(P)=\frac{1}{1-\alpha} \log \sum p_{i}^{\alpha}$ [Jiao et al. '14, Acharya et al. '14]

Concluding remarks

To estimate

$$
F(P)=\sum f\left(p_{i}\right)
$$

Sample complexity is roughly governed by the following convex optimization problem (over logarithmic variables):

$$
\begin{aligned}
\mathcal{F}(\lambda) \triangleq \sup & \mathbb{E}[f(U)]-\mathbb{E}\left[f\left(U^{\prime}\right)\right] \\
\text { s.t. } & \mathbb{E}\left[U^{j}\right]=\mathbb{E}\left[U^{\prime j}\right] j=1, \ldots, \log k, \\
& \mathbb{E}[U] \leq 1 / k, \\
& U, U^{\prime} \in[0, \log k / n]
\end{aligned}
$$

- Lower bound: primal program (inapproximability result)
- Upper bound: dual program (approximability result)

Concluding remarks

- Many open problems and directions
- Confidence intervals
- Adaptive estimation
- How to go beyond iid sampling
- How to incorporate structures

References

- W. \& P. Yang (2014). Minimax rates of entropy estimation on large alphabets via best polynomial approximation. arXiv:1407.0381
- W. \& P. Yang (2015). Chebyshev polynomials, moment matching, and optimal estimation of the unseen. arXiv:1503. xxxx

Bias

Choose

- $M=c \log k$.
- $\hat{S}=\sum_{j \geq 1} f\left(N_{i}\right), \quad N_{i} \sim \operatorname{Poi}\left(n p_{i}\right)$

Bias:

$$
\mathbb{E}[\hat{S}-S]=\sum \mathbb{E}\left[f\left(N_{i}\right)\right]-\mathbf{1}_{\left\{p_{i}>0\right\}}
$$

Bias

Choose

- $M=c \log k$.
- $\hat{S}=\sum_{j \geq 1} f\left(N_{i}\right), \quad N_{i} \sim \operatorname{Poi}\left(n p_{i}\right)$

Bias:

$$
\begin{aligned}
& \mathbb{E}[\hat{S}-S]=\sum \mathbb{E}\left[f\left(N_{i}\right)\right]-\mathbf{1}_{\left\{p_{i}>0\right\}} \\
& \stackrel{f(0)=0}{=} \sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right)\right] \mathbf{1}_{\left\{p_{i}>0\right\}}
\end{aligned}
$$

Bias

Choose

- $M=c \log k$.
- $\hat{S}=\sum_{j \geq 1} f\left(N_{i}\right), \quad N_{i} \sim \operatorname{Poi}\left(n p_{i}\right)$

Bias:

$$
\begin{aligned}
\mathbb{E}[\hat{S}-S] & =\sum \mathbb{E}\left[f\left(N_{i}\right)\right]-\mathbf{1}_{\left\{p_{i}>0\right\}} \\
\stackrel{f(0)=0}{=} & \sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right)\right] \mathbf{1}_{\left\{p_{i}>0\right\}} \\
& =\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right)\right] \mathbf{1}_{\left\{p_{i}>1 / k\right\}}
\end{aligned}
$$

Bias

Choose

- $M=c \log k$.
- $\hat{S}=\sum_{j \geq 1} f\left(N_{i}\right), \quad N_{i} \sim \operatorname{Poi}\left(n p_{i}\right)$

Bias:

$$
\begin{aligned}
\mathbb{E}[\hat{S}-S] & =\sum \mathbb{E}\left[f\left(N_{i}\right)\right]-\mathbf{1}_{\left\{p_{i}>0\right\}} \\
\stackrel{f(0)=0}{=} & \sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right)\right] \mathbf{1}_{\left\{p_{i}>0\right\}} \\
& =\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right)\right] \mathbf{1}_{\left\{p_{i}>1 / k\right\}} \\
& =\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right] \mathbf{1}_{\left\{p_{i}>1 / k\right\}}
\end{aligned}
$$

Bias

Choose

- $M=c \log k$.
- $\hat{S}=\sum_{j \geq 1} f\left(N_{i}\right), \quad N_{i} \sim \operatorname{Poi}\left(n p_{i}\right)$

Bias:

$$
\begin{aligned}
\mathbb{E}[\hat{S}-S] & =\sum \mathbb{E}\left[f\left(N_{i}\right)\right]-\mathbf{1}_{\left\{p_{i}>0\right\}} \\
f(0)=0 & \sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right)\right] \mathbf{1}_{\left\{p_{i}>0\right\}} \\
& =\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right)\right] \mathbf{1}_{\left\{p_{i}>1 / k\right\}} \\
& =\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right] \mathbf{1}_{\left\{p_{i}>1 / k\right\}} \\
& \stackrel{w h p}{=} \sum \underbrace{\mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right]} \mathbf{1}_{\left\{L / 2 n>p_{i}>1 / k\right\}}
\end{aligned}
$$

Bias

Choose

- $M=c \log k$.
- $\hat{S}=\sum_{j \geq 1} f\left(N_{i}\right), \quad N_{i} \sim \operatorname{Poi}\left(n p_{i}\right)$

Bias:

$$
\begin{aligned}
\mathbb{E}[\hat{S}-S]= & \sum \mathbb{E}\left[f\left(N_{i}\right)\right]-\mathbf{1}_{\left\{p_{i}>0\right\}} \\
\stackrel{f(0)=0}{=} & \sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right)\right] \mathbf{1}_{\left\{p_{i}>0\right\}} \\
& =\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right)\right] \mathbf{1}_{\left\{p_{i}>1 / k\right\}} \\
& =\sum \mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right] \mathbf{1}_{\left\{p_{i}>1 / k\right\}} \\
& \stackrel{w h p}{=} \sum \underbrace{\mathbb{E}\left[\left(f\left(N_{i}\right)-1\right) \mathbf{1}_{\left\{N_{i} \leq L\right\}}\right]} \mathbf{1}_{\left\{L / 2 n>p_{i}>1 / k\right\}}
\end{aligned}
$$

Observe: $g(\lambda) \triangleq \mathbb{E}\left[(f(N)-1) 1_{\{N \leq L\}}\right]=e^{-\lambda} \times$ poly of deg L

