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Usual approach, minimize reconstruction error:

P P
min - ) [[60 - ax0f| + ) 1x0)
A, x(iVs — -

non-linear penalty function

(encourage sparsity)

This optimization problem is NP-hard, can have many local
optima; but heuristics work well empirically...
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This network performs gradient descent by alternating between:
(1) r <= b — AXx
(2) x«— x + n(A'r —VL(x))

And A is updated a Hebbian rule

Do simple, local and Hebbian rules find globally optimal solutions?

Recent success in analyzing alternating minimization for
matrix completion [Jain, Netrapalli, Sanghavi], [Hardt],
phase retrieval [Netrapalli, Jain, Sanghavi],

robust PCA [Anandkumar et al.], ...



Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7




Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)



Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)

[Arora, Ge, Moitra ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”=¢/u



Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)

[Arora, Ge, Moitra ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”=¢/u

[Agarwal et al. ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”%/y, via alternating minimization



Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)

[Arora, Ge, Moitra ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”=¢/u

[Agarwal et al. ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”%/y, via alternating minimization

[Barak, Kelner, Steurer ‘14]: works for overcomplete A up to
sparsity roughly n'¢, but running time is exponential in accuracy
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Theorem [Arora, Ge, Ma, Moitra ‘14]: There is a neurally
plausible update rule that converges to the true dictionary
at a geometric rate, and uses a polynomial number of samples

We also give provable algorithms for initialization based on SVD

Our results are based on a new framework for analyzing
alternating minimization




OUTLINE

Are there efficient, neural algorithms for sparse
coding with provable guarantees?

Part I: The Olshausen-Field Update Rule
* A Non-convex Formulation
* Neural Implementation

* A Generative Model; Prior Work

Part Il: A New Update Rule
* Online, Local and Hebbian with Provable Guarantees
* Connections to Approximate Gradient Descent

* Further Extensions



A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) K < /A + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1



A NEW UPDATE RULE

Alternate between the following steps (size g batches):

(1) X9 = threshold(ATb®M) (zero out small entries)
q

(2) A <A +n Z(b(‘) — AX)sgn(X0)T

=1



A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) ﬁ «— A + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1



A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATb()
q

2) A« A +n Z(b(‘) — AR)sgn(R)T

=1

{The samples arrive online J




A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATb()
q

2) A <A +n Z(b(‘) — AR)sgn(R)T

=1

{The samples arrive online J

In contrast, previous (provable) algorithms might need to
compute a new estimate from scratch, when new samples arrive



A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) ﬁ «— A + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1



A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATb()
q

2) A« A +n Z(b(‘) — AR)sgn(R)T

=1

{The computation is local J




A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A<eA+n Z(b(‘) — ARD)sgn (KT

=1

{The computation is local J

In particular, the output is a thresholded, weighted sum of
activations



A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) ﬁ «— A + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1



A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A <A +n Z(b(‘) — ARD)sgn (KT

=1

{The update rule is explicitly Hebbian J




A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A <A +n Z(b(‘) — ARD)sgn (KT

=1

{The update rule is explicitly Hebbian J

(" 7,
neurons that fire together, wire together



A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A <A +n Z(b(‘) — ARD)sgn (KT

=1

{The update rule is explicitly Hebbian J




A NEW UPDATE RULE

Alternate between the following steps (size g batches):

(1) X0 = threshold(ATb()
q

2) A <A +n Z(b(‘) — AR)sgn(R)T

=1

{The update rule is explicitly Hebbian J

The update to a weight /Ai,j is the product of the activations at
the residual layer and the decoding layer
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A, coln-sparse X / \
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We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

A A 2
min E(A, X)=||B - Ax||’
A

Now the function is strongly convex, and has a global optimum
that can be reached by gradient descent!

New Goal: Prove that (with high probability) the step (2)
is weakly correlated with the gradient
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APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

[Balakrishnan, Wainwright, Yu] adopt a similar approach to
analyze EM, given a suitable initialization

Their framework is about the local geometry, and ours is about
the direction of movement
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Consider the following general setup:
optimal solution: z°
update: z5*'1=z°—ng°

Definition: g° is (a, B, €.)-correlated with z" if for all s:
2
<g5,zs-z*> > a‘ zS-z*” + B ‘

Theorem: If g is (a, B, €.)-correlated with z°, and n < 23 then

2 2 Max, €
‘ZS-Z*H < (1-2an)s zo-z*H + 2

a
This follows immediately from the usual proof...

2
- €,
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(1) X0 = threshold(ATb)

Decoding Lemma: If Ais 1/polylog(n)-close to A and IIA\— All € 2,
then decoding recovers the signs correctly (whp)

(2) A« A +n Z (b — ARM)sgn(R)T
=1

Key Lemma: Expectation of (the column-wise) update rule is

KJ&— /Aj + & (I - /AJT A+ EER[,&R/ART]A,- + error
e

A - /A\\j systemic bias

where R = supp(x)\], if decoding recovers the correct signs

Auxiliary Lemma: A - All < 2, remains true throughout
if n is small enough and q is large enough
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Adjusting an iterative alg. can have subtle effects on its behavior

[We can use our framework to synthesize new update rules }

E.g. we can remove the systemic bias, by carefully projecting
out along the direction being updated

(1) X0 = threshold(Clb))

whereC [Projat (Al) PrOJ/\L(Az) A .Projat (A )]

A A q A .
(2) A< A+ n Z (b") —ﬁjxg'))sgn&}'))T
=1



Any Questions?

Summary:

* Online, local and Hebbian algorithms for sparse
coding that find a globally optimal solution (whp)

* Introduced a framework for analyzing iterative
algorithms by thinking of them as trying to minimize
an unknown, convex function

* The key is working with a generative model

* |s computational intractability really a barrier to a
rigorous theory of neural computation?
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AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

Repeat: (1) Choose samplesb, b’

q
(2) setM,, - %Z (bTh®) (b’Tb)) bl (p)T
=1

k k
(3) If}\l(Mb,b’) > ? and }\2 << nmgm

output top eigenvector

Key Lemma: If Ax =b and Ax’ = b’, then condition (3) is satisfied
if and only if supp(x))supp(x’) = {j} in which case, the top
eigenvector is 6-close to A,
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DISCUSSION

Our initialization gets us to 6 < 1/polylog(n), can be neurally
implemented with Oja’s Rule

Earlier analyses of alternating minimization for 6 < 1/poly(n) in
[Arora, Ge, Moitra ‘14] and [Agarwal et al '14]

/\
However, in those settings A and A are so close that the objective
function is essentially convex

[We show that it converges even from mild starting conditions J

As a result, our bounds improve on existing algorithms in terms
of running time, sample complexity and sparsity (all but SOS)



