Simple, Efficient and Neural
Algorithms for Sparse Coding

Ankur Moitra (MIT)

joint work with Sanjeev Arora, Rong Ge and Tengyu Ma

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

break natural images into patches:

(collection of vectors)

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

break natural images into patches:

B %
sparse coding =ggg
=S
SHBE
s 0 A1
55 I B
25 0 N

(collection of vectors)

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

break natural images into patches:

sparse coding

(collection of vectors) Properties: localized,
bandpass and oriented

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

break natural images into patches:

(collection of vectors)

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

break natural images into patches:

singular value
decomposition

(collection of vectors)

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

break natural images into patches:

singular value

decomposition NO|Sy|
B i cult to

interpret!

(collection of vectors)

OUTLINE

Are there efficient, neural algorithms for sparse
coding with provable guarantees?

OUTLINE

Are there efficient, neural algorithms for sparse
coding with provable guarantees?

Part I: The Olshausen-Field Update Rule
* A Non-convex Formulation
* Neural Implementation

* A Generative Model; Prior Work

OUTLINE

Are there efficient, neural algorithms for sparse
coding with provable guarantees?

Part I: The Olshausen-Field Update Rule
* A Non-convex Formulation
* Neural Implementation

* A Generative Model; Prior Work

Part Il: A New Update Rule
* Online, Local and Hebbian with Provable Guarantees
* Connections to Approximate Gradient Descent

* Further Extensions

NONCONVEX FORMULATIONS

Usual approach, minimize reconstruction error:

P P
min -) [[60 - ax0f| +) 1x0)
A, x(iVs — -

non-linear penalty function

NONCONVEX FORMULATIONS

Usual approach, minimize reconstruction error:

P P
min -) [[60 - ax0f| +) 1x0)
A, x(iVs — -

non-linear penalty function

(encourage sparsity)

NONCONVEX FORMULATIONS

Usual approach, minimize reconstruction error:

P P
min -) [[60 - ax0f| +) 1x0)
A, x(iVs — -

non-linear penalty function

(encourage sparsity)

This optimization problem is NP-hard, can have many local
optima; but heuristics work well empirically...

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

® 0 0.
dictionary
stored as
synapse weights
residual

image
(stimulus) b

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

dictionary
stored as
synapse weights

residual ® © & O
mee @ @ @ @
(stimulus) b.

j

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

dictionary

stored as

synapse weights

. rj
residual *
+ + + +
image C)
bj

(stimulus)

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

® 0 0.

dictionary
stored as
synapse weights

residual

image
(stimulus) b

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

® 0 0.

dictionary
stored as
synapse weights

residual

image
(stimulus) b

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output L’(Xi)
dictionary
stored as
synapse weights

residual

e @ @ @ @

(stimulus)

This network performs gradient descent by alternating between:

(1) r«— b — Ax
(2) x€«— x + n(ATr =V L(x))

And A is updated a Hebbian rule

This network performs gradient descent by alternating between:

(1) r«— b — Ax
(2) x€«— x + n(ATr =V L(x))

And A is updated a Hebbian rule

Do simple, local and Hebbian rules find globally optimal solutions?

This network performs gradient descent by alternating between:
(1) r <= b — AXx
(2) x«— x + n(A'r —VL(x))

And A is updated a Hebbian rule

Do simple, local and Hebbian rules find globally optimal solutions?

Recent success in analyzing alternating minimization for
matrix completion [Jain, Netrapalli, Sanghavi], [Hardt],
phase retrieval [Netrapalli, Jain, Sanghavi],

robust PCA [Anandkumar et al.], ...

Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)

Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)

[Arora, Ge, Moitra ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”=¢/u

Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)

[Arora, Ge, Moitra ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”=¢/u

[Agarwal et al. ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”%/y, via alternating minimization

Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)

[Arora, Ge, Moitra ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”=¢/u

[Agarwal et al. ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”%/y, via alternating minimization

[Barak, Kelner, Steurer ‘14]: works for overcomplete A up to
sparsity roughly n'¢, but running time is exponential in accuracy

OUR RESULTS

Suppose k < Vn/u polylog(n) and||A||< Vn polylog(n)

Suppose A that is column-wise 5-close to A for & < 1/polylog(n)

OUR RESULTS

Suppose k < Vn/u polylog(n) and||A||< Vn polylog(n)
Suppose A that is column-wise 5-close to A for & < 1/polylog(n)

Theorem [Arora, Ge, Ma, Moitra ‘14]: There is a neurally
plausible update rule that converges to the true dictionary
at a geometric rate, and uses a polynomial number of samples

OUR RESULTS

Suppose k < Vn/u polylog(n) and||A||< Vn polylog(n)
Suppose A that is column-wise 5-close to A for & < 1/polylog(n)

Theorem [Arora, Ge, Ma, Moitra ‘14]: There is a neurally
plausible update rule that converges to the true dictionary
at a geometric rate, and uses a polynomial number of samples

We also give provable algorithms for initialization based on SVD

OUR RESULTS

Suppose k < Vn/u polylog(n) and||A||< Vn polylog(n)
Suppose A that is column-wise 5-close to A for & < 1/polylog(n)

Theorem [Arora, Ge, Ma, Moitra ‘14]: There is a neurally
plausible update rule that converges to the true dictionary
at a geometric rate, and uses a polynomial number of samples

We also give provable algorithms for initialization based on SVD

Our results are based on a new framework for analyzing
alternating minimization

OUTLINE

Are there efficient, neural algorithms for sparse
coding with provable guarantees?

Part I: The Olshausen-Field Update Rule
* A Non-convex Formulation
* Neural Implementation

* A Generative Model; Prior Work

Part Il: A New Update Rule
* Online, Local and Hebbian with Provable Guarantees
* Connections to Approximate Gradient Descent

* Further Extensions

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) K < /A + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1

A NEW UPDATE RULE

Alternate between the following steps (size g batches):

(1) X9 = threshold(ATb®M) (zero out small entries)
q

(2) A <A +n Z(b(‘) — AX)sgn(X0)T

=1

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) ﬁ «— A + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATb()
q

2) A« A +n Z(b(‘) — AR)sgn(R)T

=1

{The samples arrive online J

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATb()
q

2) A <A +n Z(b(‘) — AR)sgn(R)T

=1

{The samples arrive online J

In contrast, previous (provable) algorithms might need to
compute a new estimate from scratch, when new samples arrive

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) ﬁ «— A + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATb()
q

2) A« A +n Z(b(‘) — AR)sgn(R)T

=1

{The computation is local J

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A<eA+n Z(b(‘) — ARD)sgn (KT

=1

{The computation is local J

In particular, the output is a thresholded, weighted sum of
activations

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) ﬁ «— A + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A <A +n Z(b(‘) — ARD)sgn (KT

=1

{The update rule is explicitly Hebbian J

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A <A +n Z(b(‘) — ARD)sgn (KT

=1

{The update rule is explicitly Hebbian J

(" 7,
neurons that fire together, wire together

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A <A +n Z(b(‘) — ARD)sgn (KT

=1

{The update rule is explicitly Hebbian J

A NEW UPDATE RULE

Alternate between the following steps (size g batches):

(1) X0 = threshold(ATb()
q

2) A <A +n Z(b(‘) — AR)sgn(R)T

=1

{The update rule is explicitly Hebbian J

The update to a weight /Ai,j is the product of the activations at
the residual layer and the decoding layer

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

The usual approach is to think of them as trying to minimize
a non-convex function:

A A A2
min E(A,X)=HB 'AXHF

A, coln-sparse X

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

The usual approach is to think of them as trying to minimize
a non-convex function:

min E(,) ‘B :

A, coln-sparse X / \

colns are b'’s colns are X’s

2

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

A A 2
min E(A, X)=||B - Ax||’
A

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

A A 2
min E(A, X)=||B - Ax||’
A

Now the function is strongly convex, and has a global optimum
that can be reached by gradient descent!

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

A A 2
min E(A, X)=||B - Ax||’
A

Now the function is strongly convex, and has a global optimum
that can be reached by gradient descent!

New Goal: Prove that (with high probability) the step (2)
is weakly correlated with the gradient

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

[Balakrishnan, Wainwright, Yu] adopt a similar approach to
analyze EM, given a suitable initialization

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

[Balakrishnan, Wainwright, Yu] adopt a similar approach to
analyze EM, given a suitable initialization

Their framework is about the local geometry, and ours is about
the direction of movement

CONDITIONS FOR CONVERGENCE

CONDITIONS FOR CONVERGENCE

Consider the following general setup:
optimal solution: z°

update: z°*1=z5—ng°

CONDITIONS FOR CONVERGENCE

Consider the following general setup:
optimal solution: z°
update: z5*'1=z°—ng°

Definition: g° is (a, B, €.)-correlated with z" if for all s:

g2 D 2 a‘ zs—z"‘”2 + Bl

2
- €,

gS

CONDITIONS FOR CONVERGENCE

Consider the following general setup:
optimal solution: z°
update: z5*'1=z°—ng°

Definition: g° is (a, B, €.)-correlated with z" if for all s:
2
<g5,zs-z*> > a‘ zS-z*” + B ‘

Theorem: If g is (a, B, €.)-correlated with z°, and n < 23 then

2 2 max.€
‘ZS-Z*H < (1-2an)s zo—z*H + (IS S

2
- €,

gS

CONDITIONS FOR CONVERGENCE

Consider the following general setup:
optimal solution: z°
update: z5*'1=z°—ng°

Definition: g° is (a, B, €.)-correlated with z" if for all s:
2
<g5,zs-z*> > a‘ zS-z*” + B ‘

Theorem: If g is (a, B, €.)-correlated with z°, and n < 23 then

2 2 Max, €
‘ZS-Z*H < (1-2an)s zo-z*H + 2

a
This follows immediately from the usual proof...

2
- €,

gS

(1) X0 = threshold(ATb)

(1) X0 = threshold(ATb)

Decoding Lemma: If Ais 1/polylog(n)-close to A and IIA\— All € 2,
then decoding recovers the signs correctly (whp)

(1) X0 = threshold(ATb)

Decoding Lemma: If Ais 1/polylog(n)-close to A and II,/A\— All € 2,
then decoding recovers the signs correctly (whp)

(2) A< A +n (b — ARM)sgn(R)T
=1

(1) X0 = threshold(ATb)

Decoding Lemma: If Ais 1/polylog(n)-close to A and II,/A\— All € 2,
then decoding recovers the signs correctly (whp)

(2) A< A +n (b — ARM)sgn(R)T
=1

Key Lemma: Expectation of (the column-wise) update rule is

Kj‘:_ /AJ + & (I- '/A\‘J'/AJT A+ EER[A\R/A\\RT]AJ' + error

where R = supp(x)\], if decoding recovers the correct signs

(1) X0 = threshold(ATb)

Decoding Lemma: If Ais 1/polylog(n)-close to A and II,/A\— All € 2,
then decoding recovers the signs correctly (whp)

(2) A< A +n (b — ARM)sgn(R)T
i=1
Key Lemma: Expectation of (the column-wise) update rule is
A= A+ E(I-AANA + EER[KR/ART]A,- + error
Aj- A,

where R = supp(x)\], if decoding recovers the correct signs

(1) X0 = threshold(ATb)

Decoding Lemma: If Ais 1/polylog(n)-close to A and IIA\— All € 2,
then decoding recovers the signs correctly (whp)

(2) A« A +n (b — ARM)sgn(R)T
=1

Key Lemma: Expectation of (the column-wise) update rule is

KJ&— /Aj + & (I - /AJT A+ EER[,&R/ART]A,- + error
e

A - /A\\j systemic bias

where R = supp(x)\], if decoding recovers the correct signs

(1) X0 = threshold(ATb)

Decoding Lemma: If Ais 1/polylog(n)-close to A and IIA\— All € 2,
then decoding recovers the signs correctly (whp)

(2) A« A +n Z (b — ARM)sgn(R)T
=1

Key Lemma: Expectation of (the column-wise) update rule is

KJ&— /Aj + & (I - /AJT A+ EER[,&R/ART]A,- + error
e

A - /A\\j systemic bias

where R = supp(x)\], if decoding recovers the correct signs

Auxiliary Lemma: A - All < 2, remains true throughout
if n is small enough and q is large enough

FURTHER RESULTS

Adjusting an iterative alg. can have subtle effects on its behavior

FURTHER RESULTS

Adjusting an iterative alg. can have subtle effects on its behavior

{We can use our framework to synthesize new update rules }

FURTHER RESULTS

Adjusting an iterative alg. can have subtle effects on its behavior

[We can use our framework to synthesize new update rules }

E.g. we can remove the systemic bias, by carefully projecting
out along the direction being updated

FURTHER RESULTS

Adjusting an iterative alg. can have subtle effects on its behavior

[We can use our framework to synthesize new update rules }

E.g. we can remove the systemic bias, by carefully projecting
out along the direction being updated

(1) X0 = threshold(Clb))

whereC [Projat (Al) PrOJ/\L(Az) A .Projat (A)]

A A q A .
(2) A< A+ n Z (b") —ﬁjxg'))sgn&}'))T
=1

Any Questions?

Summary:

* Online, local and Hebbian algorithms for sparse
coding that find a globally optimal solution (whp)

* Introduced a framework for analyzing iterative
algorithms by thinking of them as trying to minimize
an unknown, convex function

* The key is working with a generative model

* |s computational intractability really a barrier to a
rigorous theory of neural computation?

AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

Repeat: (1) Choose samplesb, b’

AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 8-close to A for & < 1/polylog(n), [IA — All < 2

Repeat: (1) Choose samplesb, b’

q
(2) setM,, - %Z (bTh®) (b’Tb)) bl (p)T
=1

AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

Repeat: (1) Choose samplesb, b’

q
(2) setM,, - %Z (bTh®) (b’Tb)) bl (p)T
=1

k k
(3) If}\l(Mb,b’) > ? and }\2 << nmgm

output top eigenvector

AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

Repeat: (1) Choose samplesb, b’

q
(2) setM,, - %Z (bTh®) (b’Tb)) bl (p)T
=1

k k
(3) If}\l(Mb,b’) > ? and }\2 << nmgm

output top eigenvector

Key Lemma: If Ax =b and Ax’ = b’, then condition (3) is satisfied
if and only if supp(x)) supp(x’) = {j}

AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

Repeat: (1) Choose samplesb, b’

q
(2) setM,, - %Z (bTh®) (b’Tb)) bl (p)T
=1

k k
(3) If}\l(Mb,b’) > ? and }\2 << nmgm

output top eigenvector

Key Lemma: If Ax =b and Ax’ = b’, then condition (3) is satisfied
if and only if supp(x))supp(x’) = {j} in which case, the top
eigenvector is 6-close to A,

DISCUSSION

Our initialization gets us to 6 < 1/polylog(n), can be neurally
implemented with Oja’s Rule

DISCUSSION

Our initialization gets us to 6 < 1/polylog(n), can be neurally
implemented with Oja’s Rule

Earlier analyses of alternating minimization for 6 < 1/poly(n) in
[Arora, Ge, Moitra ‘14] and [Agarwal et al '14]

DISCUSSION

Our initialization gets us to 6 < 1/polylog(n), can be neurally
implemented with Oja’s Rule

Earlier analyses of alternating minimization for 6 < 1/poly(n) in
[Arora, Ge, Moitra ‘14] and [Agarwal et al '14]

/\
However, in those settings A and A are so close that the objective
function is essentially convex

DISCUSSION

Our initialization gets us to 6 < 1/polylog(n), can be neurally
implemented with Oja’s Rule

Earlier analyses of alternating minimization for 6 < 1/poly(n) in
[Arora, Ge, Moitra ‘14] and [Agarwal et al '14]

/\
However, in those settings A and A are so close that the objective
function is essentially convex

[We show that it converges even from mild starting conditions J

DISCUSSION

Our initialization gets us to 6 < 1/polylog(n), can be neurally
implemented with Oja’s Rule

Earlier analyses of alternating minimization for 6 < 1/poly(n) in
[Arora, Ge, Moitra ‘14] and [Agarwal et al '14]

/\
However, in those settings A and A are so close that the objective
function is essentially convex

[We show that it converges even from mild starting conditions J

As a result, our bounds improve on existing algorithms in terms
of running time, sample complexity and sparsity (all but SOS)

