Polar Coding Tutorial

Erdal Arıkan
Electrical-Electronics Engineering Department
Bilkent University
Ankara, Turkey
Jan. 15, 2015
Simons Institute
UC Berkeley

The channel

Let $W: X \rightarrow Y$ be a binary-input discrete memoryless channel

The channel

Let $W: X \rightarrow Y$ be a binary-input discrete memoryless channel

- input alphabet: $\mathcal{X}=\{0,1\}$,
- output alphabet: \mathcal{Y},
- transition probabilities:

The channel

Let $W: X \rightarrow Y$ be a binary-input discrete memoryless channel

- input alphabet: $\mathcal{X}=\{0,1\}$,
- output alphabet: \mathcal{Y},
- transition probabilities:

The channel

Let $W: X \rightarrow Y$ be a binary-input discrete memoryless channel

- input alphabet: $\mathcal{X}=\{0,1\}$,
- output alphabet: \mathcal{Y},
- transition probabilities:

$$
W(y \mid x), \quad x \in \mathcal{X}, y \in \mathcal{Y}
$$

Symmetry assumption

Assume that the channel has "input-output symmetry."

Symmetry assumption

Assume that the channel has "input-output symmetry."

Examples:

Symmetry assumption

Assume that the channel has "input-output symmetry."

Examples:

Capacity

For channels with input-output symmetry, the capacity is given by

$$
C(W) \triangleq I(X ; Y), \quad \text { with } X \sim \text { unif. }\{0,1\}
$$

Capacity

For channels with input-output symmetry, the capacity is given by

$$
C(W) \triangleq I(X ; Y), \quad \text { with } X \sim \text { unif. }\{0,1\}
$$

Use base-2 logarithms:

$$
0 \leq C(W) \leq 1
$$

The main idea

- Channel coding problem trivial for two types of channels
- Perfect: $C(W)=1$
- Useless: $C(W)=0$
- Transform ordinary W into such extreme channels

The main idea

- Channel coding problem trivial for two types of channels
- Perfect: $C(W)=1$
- Useless: $C(W)=0$
- Transform ordinary W into such extreme channels

The main idea

- Channel coding problem trivial for two types of channels
- Perfect: $C(W)=1$
- Useless: $C(W)=0$
- Transform ordinary W into such extreme channels

The main idea

- Channel coding problem trivial for two types of channels
- Perfect: $C(W)=1$
- Useless: $C(W)=0$
- Transform ordinary W into such extreme channels

The method: aggregate and redistribute capacity

Original channels
(uniform)

The method: aggregate and redistribute capacity

Original channels

\longrightarrow Combine \longrightarrow

The method: aggregate and redistribute capacity

\longrightarrow Combine \longrightarrow - Split \longrightarrow

Combining

- Begin with N copies of W, - use a 1-1 mapping

$$
G_{N}:\{0,1\}^{N} \rightarrow\{0,1\}^{N}
$$

- to create a vector channel

Combining

- Begin with N copies of W,
- use a 1-1 mapping

$$
G_{N}:\{0,1\}^{N} \rightarrow\{0,1\}^{N}
$$

Combining

- Begin with N copies of W,
- use a 1-1 mapping

$$
G_{N}:\{0,1\}^{N} \rightarrow\{0,1\}^{N}
$$

- to create a vector channel

$$
W_{\text {vec }}: U^{N} \rightarrow Y^{N}
$$

Conservation of capacity

Combining operation is lossless:

- Take U_{1}, \ldots, U_{N} i.i.d. unif. $\{0,1\}$

Conservation of capacity

Combining operation is lossless:

- Take U_{1}, \ldots, U_{N} i.i.d. unif. $\{0,1\}$
- then, X_{1}, \ldots, X_{N} i.i.d. unif. $\{0,1\}$

Conservation of capacity

Combining operation is lossless:

- Take U_{1}, \ldots, U_{N} i.i.d. unif. $\{0,1\}$
- then, X_{1}, \ldots, X_{N} i.i.d. unif. $\{0,1\}$
- and

$$
\begin{aligned}
C\left(W_{\text {vec }}\right) & =I\left(U^{N} ; Y^{N}\right) \\
& =I\left(X^{N} ; Y^{N}\right) \\
& =N C(W)
\end{aligned}
$$

Splitting

$$
C\left(W_{\text {vec }}\right)=I\left(U^{N} ; Y^{N}\right)
$$

Splitting

$$
\begin{aligned}
C\left(W_{\mathrm{vec}}\right) & =I\left(U^{N} ; Y^{N}\right) \\
& =\sum_{i=1}^{N} I\left(U_{i} ; Y^{N}, U^{i-1}\right)
\end{aligned}
$$

Splitting

$$
\begin{aligned}
C\left(W_{\text {vec }}\right) & =I\left(U^{N} ; Y^{N}\right) \\
& =\sum_{i=1}^{N} I\left(U_{i} ; Y^{N}, U^{i-1}\right)
\end{aligned}
$$

Define bit-channels

$$
W_{i}: U_{i} \rightarrow\left(Y^{N}, U^{i-1}\right)
$$

Splitting

$$
\begin{aligned}
C\left(W_{\text {vec }}\right) & =I\left(U^{N} ; Y^{N}\right) \\
& =\sum_{i=1}^{N} I\left(U_{i} ; Y^{N}, U^{i-1}\right) \\
& =\sum_{i=1}^{N} C\left(W_{i}\right)
\end{aligned}
$$

Define bit-channels

$$
W_{i}: U_{i} \rightarrow\left(Y^{N}, U^{i-1}\right)
$$

W_{i}

Polarization is commonplace

- Polarization is the rule not the exception
- A random permutation

- Equivalent to Shannon's random coding approach

Polarization is commonplace

- Polarization is the rule not the exception
- A random permutation

$$
G_{N}:\{0,1\}^{N} \rightarrow\{0,1\}^{N}
$$

is a good polarizer with high probability

- Equivalent to Shannon's random coding approach

Polarization is commonplace

- Polarization is the rule not the exception
- A random permutation

$$
G_{N}:\{0,1\}^{N} \rightarrow\{0,1\}^{N}
$$

is a good polarizer with high probability

- Equivalent to Shannon's random coding approach

Random polarizers: stepwise, isotropic

Random polarizers: stepwise, isotropic

Isotropy: any redistribution order is as good as any other.

The complexity issue

- Random polarizers lack structure, too complex to implement
- Need a low-complexity polarizer
- May sacrifice stepwise, isotropic properties of random polarizers in return for less complexity

The complexity issue

- Random polarizers lack structure, too complex to implement
- Need a low-complexity polarizer
- May sacrifice stepwise, isotropic properties of random polarizers in return for less complexity

The complexity issue

- Random polarizers lack structure, too complex to implement
- Need a low-complexity polarizer
- May sacrifice stepwise, isotropic properties of random polarizers in return for less complexity

Basic module for a low-complexity scheme

Combine two copies of W

Basic module for a low-complexity scheme

Combine two copies of W

Basic module for a low-complexity scheme

Combine two copies of W

and split to create two bit-channels

$$
\begin{aligned}
& W_{1}: U_{1} \rightarrow\left(Y_{1}, Y_{2}\right) \\
& W_{2}: U_{2} \rightarrow\left(Y_{1}, Y_{2}, U_{1}\right)
\end{aligned}
$$

The first bit-channel W_{1}

$$
W_{1}: U_{1} \rightarrow\left(Y_{1}, Y_{2}\right)
$$

The first bit-channel W_{1}

$$
W_{1}: U_{1} \rightarrow\left(Y_{1}, Y_{2}\right)
$$

$$
C\left(W_{1}\right)=I\left(U_{1} ; Y_{1}, Y_{2}\right)
$$

The second bit-channel W_{2}

$$
W_{2}: U_{2} \rightarrow\left(Y_{1}, Y_{2}, U_{1}\right)
$$

The second bit-channel W_{2}

$$
W_{2}: U_{2} \rightarrow\left(Y_{1}, Y_{2}, U_{1}\right)
$$

$$
C\left(W_{2}\right)=I\left(U_{2} ; Y_{1}, Y_{2}, U_{1}\right)
$$

Capacity conserved but redistributed unevenly

- Conservation:

$$
C\left(W_{1}\right)+C\left(W_{2}\right)=2 C(W)
$$

- Extremization:

$$
C\left(W_{1}\right) \leq C(W) \leq C\left(W_{2}\right)
$$

Capacity conserved but redistributed unevenly

- Conservation:

$$
C\left(W_{1}\right)+C\left(W_{2}\right)=2 C(W)
$$

- Extremization:

$$
C\left(W_{1}\right) \leq C(W) \leq C\left(W_{2}\right)
$$

with equality iff $C(W)$ equals 0 or 1 .

Notation

The two channels created by the basic transform

$$
(W, W) \rightarrow\left(W_{1}, W_{2}\right)
$$

will be denoted also as

$$
W^{-}=W_{1} \quad \text { and } \quad W^{+}=W_{2}
$$

Notation

The two channels created by the basic transform

$$
(W, W) \rightarrow\left(W_{1}, W_{2}\right)
$$

will be denoted also as

$$
W^{-}=W_{1} \quad \text { and } \quad W^{+}=W_{2}
$$

Likewise, we write W^{--}, W^{-+}for descendants of W^{-}; and W^{+-}, W^{++}for descendants of W^{+}.

For the size-4 construction

... duplicate the basic transform

... obtain a pair of W^{-}and W^{+}each

... apply basic transform on each pair

... decode in the indicated order

... obtain the four new bit-channels

Overall size-4 construction

"Rewire" for standard-form size-4 construction

Size 8 construction

Demonstration of polarization

Polarization is easy to analyze when W is a BEC.

If W is a $\operatorname{BEC}(\epsilon)$, then so are W^{-} and W^{+}, with erasure probabilities

$$
\epsilon^{-} \triangleq 2 \epsilon-\epsilon^{2}
$$

and

$$
\epsilon^{+} \triangleq \epsilon^{2}
$$

respectively.

Demonstration of polarization

Polarization is easy to analyze when W is a BEC.

If W is a $\operatorname{BEC}(\epsilon)$, then so are W^{-} and W^{+}, with erasure probabilities

$$
\epsilon^{-} \triangleq 2 \epsilon-\epsilon^{2}
$$

and

$$
\epsilon^{+} \triangleq \epsilon^{2}
$$

respectively.

Demonstration of polarization

Polarization is easy to analyze when W is a BEC.

If W is a $\operatorname{BEC}(\epsilon)$, then so are W^{-} and W^{+}, with erasure probabilities

$$
\epsilon^{-} \triangleq 2 \epsilon-\epsilon^{2}
$$

and

$$
\epsilon^{+} \triangleq \epsilon^{2}
$$

respectively.

Polarization for $\operatorname{BEC}\left(\frac{1}{2}\right): N=16$

Capacity of bit channels

Polarization for $\operatorname{BEC}\left(\frac{1}{2}\right): N=32$

Capacity of bit channels

Polarization for $\operatorname{BEC}\left(\frac{1}{2}\right): N=64$

Capacity of bit channels

Polarization for $\operatorname{BEC}\left(\frac{1}{2}\right): N=128$

Capacity of bit channels

Polarization for $\operatorname{BEC}\left(\frac{1}{2}\right): N=256$

Capacity of bit channels

Polarization for $\operatorname{BEC}\left(\frac{1}{2}\right): N=512$

Capacity of bit channels

Polarization for $\operatorname{BEC}\left(\frac{1}{2}\right): N=1024$

Polarization martingale

1
$C(W)$

Polarization martingale

$0 \quad 1$

Polarization martingale

Theorem (Polarization, A. 2007)
The bit-channel capacities $\left\{C\left(W_{i}\right)\right\}$ polarize: for any $\delta \in(0,1)$, as the construction size N grows

$$
\left[\frac{\text { no. channels with } C\left(W_{i}\right)>1-\delta}{N}\right] \rightarrow C(W)
$$

and

$$
\left[\frac{\text { no. channels with } C\left(W_{i}\right)<\delta}{N}\right] \longrightarrow 1-C(W)
$$

Theorem (Polarization, A. 2007)
The bit-channel capacities $\left\{C\left(W_{i}\right)\right\}$ polarize: for any $\delta \in(0,1)$, as the construction size N grows

$$
\left[\frac{\text { no. channels with } C\left(W_{i}\right)>1-\delta}{N}\right] \rightarrow C(W)
$$

and

$$
\left[\frac{\text { no. channels with } C\left(W_{i}\right)<\delta}{N}\right] \longrightarrow 1-C(W)
$$

Theorem (Rate of polarization, A. and Telatar (2008)) Above theorem holds with $\delta \approx 2^{-\sqrt{N}}$.

Polar code example: $W=\operatorname{BEC}\left(\frac{1}{2}\right), N=8$, rate $1 / 2$

Polar code example: $W=\operatorname{BEC}\left(\frac{1}{2}\right), N=8$, rate $1 / 2$

Polar code example: $W=\operatorname{BEC}\left(\frac{1}{2}\right), N=8$, rate $1 / 2$

Polar code example: $W=\operatorname{BEC}\left(\frac{1}{2}\right), N=8$, rate $1 / 2$

Polar code example: $W=\operatorname{BEC}\left(\frac{1}{2}\right), N=8$, rate $1 / 2$

Polar code example: $W=\operatorname{BEC}\left(\frac{1}{2}\right), N=8$, rate $1 / 2$

Polar code example: $W=\operatorname{BEC}\left(\frac{1}{2}\right), N=8$, rate $1 / 2$

Polar code example: $W=\operatorname{BEC}\left(\frac{1}{2}\right), N=8$, rate $1 / 2$

Encoding complexity

Theorem

Encoding complexity for polar coding is $\mathcal{O}(N \log N)$.

Proof:

- Polar coding transform can be represented as a graph with $N[1+\log (N)]$ variables.
- The graph has $(1+\log (N))$ levels with N variables at each level.
- Computation begins at the source level and can be carried out level by level.
- Space complexity $O(N)$, time complexity $O(N \log N)$.

Encoding complexity

Theorem

Encoding complexity for polar coding is $\mathcal{O}(N \log N)$.

Proof:

- Polar coding transform can be represented as a graph with $N[1+\log (N)]$ variables.
- The graph has $(1+\log (N))$ levels with N variables at each level.
- Computation begins at the source level and can be carried out level by level.
- Space complexity $O(N)$, time complexity $O(N \log N)$.

Encoding complexity

Theorem

Encoding complexity for polar coding is $\mathcal{O}(N \log N)$.

Proof:

- Polar coding transform can be represented as a graph with $N[1+\log (N)]$ variables.
- The graph has $(1+\log (N))$ levels with N variables at each level.
- Computation begins at the source level and can be carried out level by level.
- Space complexity $O(N)$, time complexity $O(N \log N)$.

Encoding complexity

Theorem

Encoding complexity for polar coding is $\mathcal{O}(N \log N)$.

Proof:

- Polar coding transform can be represented as a graph with $N[1+\log (N)]$ variables.
- The graph has $(1+\log (N))$ levels with N variables at each level.
- Computation begins at the source level and can be carried out level by level.
- Space complexity $O(N)$, time complexity $O(N \log N)$.

Encoding: an example

Encoding: an example

Encoding: an example

Encoding: an example

Successive Cancellation Decoding (SCD)

Theorem

The complexity of successive cancellation decoding for polar codes is $\mathcal{O}(N \log N)$.

Proof: Given below.

SCD: Exploit the $\mathbf{x}=|\mathbf{a}| \mathbf{a}+\mathbf{b} \mid$ structure

First phase: treat a as noise, decode $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$

End of first phase

Second phase: Treat $\hat{\mathbf{b}}$ as known, decode $\left(u_{5}, u_{6}, u_{7}, u_{8}\right)$

First phase in detail

Equivalent channel model

First copy of W^{-}

Second copy of W^{-}

Third copy of W^{-}

Fourth copy of W^{-}

Decoding on W^{-}

$\mathbf{b}=|\mathbf{t}| \mathbf{t}+\mathbf{w} \mid$

Decoding on W^{--}

Decoding on W^{---}

Decoding on W^{---}

Compute

$$
L^{---} \triangleq \frac{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=0\right)}{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=1\right)}
$$

Decoding on W^{---}

Compute

$$
L^{---} \triangleq \frac{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=0\right)}{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=1\right)}
$$

Set

$$
\hat{u}_{1}= \begin{cases}u_{1} & \text { if } u_{1} \text { is frozen } \\ 0 & \text { else if } L^{--->}>0 \\ 1 & \text { else }\end{cases}
$$

Decoding on W^{---}

Compute

$$
L^{---} \triangleq \frac{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=0\right)}{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=1\right)}
$$

Set

$$
\hat{u}_{1}= \begin{cases}u_{1} & \text { if } u_{1} \text { is frozen } \\ 0 & \text { else if } L^{---}>0 \\ 1 & \text { else }\end{cases}
$$

Decoding on W^{---}

Compute

$$
L^{---} \triangleq \frac{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=0\right)}{W^{---}\left(y_{1}, \ldots, y_{8} \mid u_{1}=1\right)}
$$

Set

$$
\hat{u}_{1}= \begin{cases}u_{1} & \text { if } u_{1} \text { is frozen } \\ 0 & \text { else if } L^{--->}>0 \\ 1 & \text { else }\end{cases}
$$

Decoding on W^{--+}

Decoding on W^{--+}

Decoding on W^{--+}

Compute

$$
L^{--+} \triangleq \frac{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=0\right)}{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=1\right)}
$$

Decoding on W^{--+}

Compute

$$
L^{--+} \triangleq \frac{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=0\right)}{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=1\right)}
$$

Set

$$
\hat{u}_{2}= \begin{cases}u_{2} & \text { if } u_{2} \text { is frozen } \\ 0 & \text { else if } L^{--+}>0 \\ 1 & \text { else }\end{cases}
$$

Decoding on W^{--+}

Compute

$$
L^{--+} \triangleq \frac{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=0\right)}{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=1\right)}
$$

Set

$$
\hat{u}_{2}= \begin{cases}u_{2} & \text { if } u_{2} \text { is frozen } \\ 0 & \text { else if } L^{--+}>0 \\ 1 & \text { else }\end{cases}
$$

Decoding on W^{--+}

Compute

$$
L^{--+} \triangleq \frac{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=0\right)}{W^{--+}\left(y_{1}, \ldots, y_{8}, \hat{u}_{1} \mid u_{2}=1\right)}
$$

Set

$$
\hat{u}_{2}= \begin{cases}u_{2} & \text { if } u_{2} \text { is frozen } \\ 0 & \text { else if } L^{--+}>0 \\ 1 & \text { else }\end{cases}
$$

Complexity for successive cancelation decoding

- Let C_{N} be the complexity of decoding a code of length N
- Decoding problem of size N for W reduced to two decoding problems of size $N / 2$ for W^{-}and W^{+}
- So

$$
C_{N}=2 C_{N / 2}+k N
$$

for some constant k

- This gives $C_{N I}=\mathcal{O}(N \log N)$

Complexity for successive cancelation decoding

- Let C_{N} be the complexity of decoding a code of length N
- Decoding problem of size N for W reduced to two decoding problems of size $N / 2$ for W^{-}and W^{+}
- So

$$
C_{N}=2 C_{N / 2}+k N
$$

for some constant k

- This gives $C_{N \prime}=\mathcal{O}(N \log N)$

Complexity for successive cancelation decoding

- Let C_{N} be the complexity of decoding a code of length N
- Decoding problem of size N for W reduced to two decoding problems of size $N / 2$ for W^{-}and W^{+}
- So

$$
C_{N}=2 C_{N / 2}+k N
$$

for some constant k

- This gives $C_{N}=\mathcal{O}(N \log N)$

Complexity for successive cancelation decoding

- Let C_{N} be the complexity of decoding a code of length N
- Decoding problem of size N for W reduced to two decoding problems of size $N / 2$ for W^{-}and W^{+}
- So

$$
C_{N}=2 C_{N / 2}+k N
$$

for some constant k

- This gives $C_{N}=\mathcal{O}(N \log N)$

Performance of polar codes

Theorem

For any rate $R<I(W)$ and block-length N, the probability of frame error for polar codes under successive cancelation decoding is bounded as

$$
P_{e}(N, R)=o\left(2^{-\sqrt{N}+o(\sqrt{N})}\right)
$$

Proof: Given in the next presentation.

Construction complexity

Theorem

Given W and a rate $R<I(W)$, a polar code can be constructed in $\mathcal{O}(N$ poly $(\log (N)))$ time that achieves under SCD the performance

$$
P_{e}=o\left(2^{-\sqrt{N}+o(\sqrt{N})}\right)
$$

Proof: Given in the next presentation.

Polar coding summary

Summary

Given $W, N=2^{n}$, and $R<I(W)$, a polar code can be constructed such that it has

- construction complexity $\mathcal{O}(N$ poly $(\log (N)))$,
- encoding complexity $\approx N \log N$,
- successive-cancellation decoding complexity $\approx N \log N$,
- frame error probability $P_{c}(N, R)=0(2-\sqrt{N}+o(\sqrt{N}))$

Polar coding summary

Summary

Given $W, N=2^{n}$, and $R<I(W)$, a polar code can be constructed such that it has

- construction complexity $\mathcal{O}(N$ poly $(\log (N)))$,
- encoding complexity $\approx N \log N$,
- successive-cancellation decoding complexity $\approx N \log N$,
- frame error probability $P_{e}(N, R)=0\left(2^{-\sqrt{N}+o(\sqrt{N})}\right)$

Polar coding summary

Summary

Given $W, N=2^{n}$, and $R<I(W)$, a polar code can be constructed such that it has

- construction complexity $\mathcal{O}(N$ poly $(\log (N)))$,
- encoding complexity $\approx N \log N$,
- successive-cancellation decoding complexity $\approx N \log N$,

Polar coding summary

Summary

Given $W, N=2^{n}$, and $R<I(W)$, a polar code can be constructed such that it has

- construction complexity $\mathcal{O}(N$ poly $(\log (N)))$,
- encoding complexity $\approx N \log N$,
- successive-cancellation decoding complexity $\approx N \log N$,
- frame error probability $P_{e}(N, R)=o\left(2^{-\sqrt{N}+o(\sqrt{N})}\right)$.

List decoder for polar codes

Developed by Tal and Vardy (2011); similar to Dumer's list decoder for Reed-Muller codes.

- First produce L candidate decisions
- Pick the most likely word from the list
- Complexity $\mathcal{O}(L N \log N)$

List decoder for polar codes

Developed by Tal and Vardy (2011); similar to Dumer's list decoder for Reed-Muller codes.

- First produce L candidate decisions
- Pick the most likely word from the list
- Complexity $\mathcal{O}(L N \log N)$

List decoder for polar codes

Developed by Tal and Vardy (2011); similar to Dumer's list decoder for Reed-Muller codes.

- First produce L candidate decisions
- Pick the most likely word from the list
- Complexity $\mathcal{O}(L N \log N)$

Tal-Vardy list decoder performance

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

Tal-Vardy list decoder performance

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

$$
\begin{aligned}
& \square L=1 \\
& \square L=2 \\
& \square L=4
\end{aligned}
$$

Tal-Vardy list decoder performance

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

Tal-Vardy list decoder performance

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

Tal-Vardy list decoder performance

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

$$
\begin{aligned}
& \because L=1 \\
& \square L=2 \\
& \square L=4 \\
& \square L=8 \\
& \square L=16 \\
& \square L=32
\end{aligned}
$$

Tal-Vardy list decoder performance

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

$$
\begin{aligned}
& -L=1 \\
& \triangle-L=2 \\
& \text { - } L=4 \\
& \longrightarrow L=8 \\
& \longrightarrow L=16 \\
& \square L=32 \\
& \rightarrow-\text { ML bound }
\end{aligned}
$$

Tal-Vardy list decoder performance

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

$$
\begin{aligned}
& -L=1 \\
& \triangle L=2 \\
& -\quad-L=4 \\
& -L=8 \\
& \longrightarrow L=16 \\
& \because L=32 \\
& \rightarrow-\text { ML bound }
\end{aligned}
$$

List-of- L performance quickly approaches ML performance!

List decoder with CRC

- Same decoder as before but data contains a built-in CRC
- Selection made by CRC and relative likelihood

List decoder with CRC

- Same decoder as before but data contains a built-in CRC
- Selection made by CRC and relative likelihood

Tal-Vardy list decoder with CRC

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

- Successive cancellation
\rightarrow List-decoding ($L=32$)
\rightarrow Polar ML bound

Tal-Vardy list decoder with CRC

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

- Successive cancellation
\longrightarrow List-decoding ($L=32$)
\rightarrow Polar ML bound
\rightarrow WiMax turbo $(n=960)$
--- WiMax LDPC $(n=2304)$

Tal-Vardy list decoder with CRC

Length $n=2048$, rate $R=0.5$, BPSK-AWGN channel, list-size L.

- Successive cancellation
\rightarrow List-decoding ($L=32$)
\rightarrow Polar ML bound
-- WiMax turbo $(n=960)$
--- WiMax LDPC $(n=2304)$
-*- List + CRC-16 $(n=2048)$

Polar codes (+CRC) achieve state-of-the-art performance!

Summary

- Polarization is a commonplace phenomenon - almost unavoidable
- Polar codes are low-complexity methods designed to exploit polarization for achieving Shannon limits
- Polar codes with some help from other methods perform competitively with the state-of-the-art codes in terms of complexity and performance

Summary

- Polarization is a commonplace phenomenon - almost unavoidable
- Polar codes are low-complexity methods designed to exploit polarization for achieving Shannon limits
- Polar codes with some help from other methods perform competitively with the state-of-the-art codes in terms of complexity and performance

Summary

- Polarization is a commonplace phenomenon - almost unavoidable
- Polar codes are low-complexity methods designed to exploit polarization for achieving Shannon limits
- Polar codes with some help from other methods perform competitively with the state-of-the-art codes in terms of complexity and performance

