
Big Data Reunion Workshop, Berkeley, Dec 16th

Communication-Efficient
Distributed Optimization

Martin Jaggi 
ETH Zurich

Virginia Smith, UC Berkeley  
Martin Takáč , Lehigh Univ.
Jonathan Terhorst, UC Berkeley  
Sanjay Krishnan, UC Berkeley
Thomas Hofmann, ETH Zurich
Michael I. Jordan, UC Berkeley

(COCOA)

Training data

Training Linear Classifiers

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ℓ test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ℓ test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ℓ test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ℓ test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ℓ test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ℓ test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:

2

xi 2 Rd

Stochastic Optimization / Online Learning

xi 2 Rd

w := w + �xi
SGD

iteration cost: O(d)

Supervised Machine Learning

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

framework is novel in that it allows one to freely steer the trade-off between the amount of commu-
nication and local computation for primal-dual methods. Therefore, it can adapt well to the diverse
spectrum of available large-scale computing systems, ranging from the high-latency commodity
clusters with communication-constraints described above to the very low-latency communication
supercomputers or the multi-core setting.

Our method builds on the very related recent line of work of [1, 2, 7, 8]. We generalize the algo-
rithm of [1, 2] by allowing the use of arbitrary (dual) optimizers as the local subroutine within our
framework. In the special case when using coordinate ascent as the local optimizer, the resulting
algorithm is very similar, though with a different computation of the coordinate updates. Moreover,
we provide the first theoretical convergence rate analysis for such methods. Our theory shows that in
the general framework on arbitrary data, the outer distributed algorithm will inherit the convergence
rate of the used internal local optimization method. When using SDCA (randomized dual coordinate
ascent) as the local optimizer, this convergence rate is geometric.

Our proposed COCOA framework in its basic variant is entirely free of tuning parameters or learn-
ing rates, in contrast with SGD-based methods. The only choices to make are the selection of the
internal local optimization procedure, and the desired trade-off between communication and compu-
tation. At a high level, the framework consists of T outer iterations that iteratively apply map-reduce
updates to the distributed data. In the map step, we perform H local iterations of an online method
for dual optimization on each machine, in parallel. Using a primal-dual mapping, we then take a
(possibly weighted) average of the resulting primal vectors. The amount of data communication
compared to local data access in this framework is therefore smaller by a factor of 1/H , which is
a dramatic saving. Our theoretical analysis in Section 4 shows that this reduction in communica-
tion comes with only a very moderate increase in the total number of total iterations, in order to
reach the same optimization accuracy. In practice, we suggest to use H local iterations of standard
randomized dual coordinate ascent (SDCA) [9] as the internal optimizer. For such primal-dual op-
timizers, the available duality gap gives a fair stopping criterion and efficient accuracy certificates
during optimization.

Our experiments with the method implemented on the fault-tolerant Spark platform2 [10] confirm
both the clock time performance and huge communication savings of the proposed methods on
a variety distributed datasets. Our experiments consistently show order of magnitude gains over
traditional mini-batch methods of both SGD and SDCA, and significant gains over the faster but
theoretically less justified local SGD methods.

Paper Outline. The rest of the paper is organized as follows. In Section 2 we describe the problem
setting of interest. Section 3 outlines the proposed method, COCOA, and the convergence analysis
of this method is presented in Section 4. We discuss related work in Section 5, and compare against
several other state-of-the-art methods in Section 6.

2 Setup

A large class of methods in machine learning and signal processing can be posed as the minimization
of a convex loss function of linear predictors with a convex regularization term:

min

w2Rd

"
P (w) :=

�

2

kwk2 + 1

n

nX

i=1

`i(w
T
xi)

#
, (1)

Here the data training examples are real-valued vectors xi 2 Rd; the loss functions `i, i = 1, . . . , n
are convex and depend possibly on labels yi 2 R; and � > 0 is the regularization parameter. Using
the setup of [9], we assume the regularizer is the `2-norm for convenience. Examples of this class
of problems include support vector machines, as well as regularized linear and logistic regression,
ordinal regression, and others.

The most popular method to solve problems of the form (1) is the stochastic subgradient method
(SGD) [11, 12, 13], which in this setting becomes an online method, where every iteration only
requires access to a single data example (xi, yi), and the convergence rate is well-understood.

2 We plan to contribute our code to the open-source machine-learning library of Spark, called MLlib.

2

SVM, Logistic Regression
Ridge Regression, Lasso / Least Squares

Convergence Rate: (single machine case)

 smooth SAG, SDCA, SVRG, S2GD, SAGA

P (w(T))� P (w⇤)  C�T [P (w(0))� P (w⇤)]

`i

Distributed Stochastic Optimization
xi 2 Rd

Naive Distributed SGD

repeat  
many  
times

w := w +
P

k �w(k)Reduce

machine 1 machine 5machine 4machine 3machine 2

�w

(1) := �xi �w

(5) := �xi

v 2 R100

The Cost of Communication

✤ Reading from Memory (RAM)

100 ns

v

✤ One Typical Map-Reduce Iteration (Hadoop)

10’000’000’000 ns

v✤ Sending to another Machine

500’000 ns

Distributed Stochastic Optimization

Naive Distributed SGD

#local datapoints read: T
#communications: T
convergence: ✓

w := w +
P

k �w(k)Reduce

machine 1 machine 5machine 4machine 3machine 2

�w

(1) := �xi �w

(5) := �xi

repeat  
T times

“always communicate”

Naive Distributed SGD

#local datapoints read: T
#communications: T
convergence: ✓

w := w +
P

k �w(k)Reduce

machine 1 machine 5machine 4machine 3machine 2

Communication: Always / Never

�w

(1) := �xi �w

(5) := �xi

repeat  
T times

machine 1 machine 5machine 4machine 3machine 2

w(1) := w(1)⇤ w(5) := w(5)⇤

Reduce w := 1
K

P
k w

(k)

do  
once

“always communicate”

One-Shot Averaged 
Distributed Optimization

#local datapoints read: T
#communications: 1
convergence: ✗

“never communicate”

One-Shot Averaging Does Not Work

Reduce

machine 1 machine 5machine 4machine 3machine 2

w(1) := w(1)⇤ w(5) := w(5)⇤

w := 1
K

P
k w

(k)

do  
once

One-Shot Averaged 
Distributed Optimization

#local datapoints read: T
#communications: 1
convergence: ✗

Mini-Batch SGD / CD

#local datapoints read: TH
#communications: T
convergence: ✓

Reduce

machine 1 machine 5machine 4machine 3machine 2

The Middle Ground

repeat  
T times

�w(5)�w(1)

w := w + 1
HK

P
k �w(k)

Primal-Dual Structure

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

framework is novel in that it allows one to freely steer the trade-off between the amount of commu-
nication and local computation for primal-dual methods. Therefore, it can adapt well to the diverse
spectrum of available large-scale computing systems, ranging from the high-latency commodity
clusters with communication-constraints described above to the very low-latency communication
supercomputers or the multi-core setting.

Our method builds on the very related recent line of work of [1, 2, 7, 8]. We generalize the algo-
rithm of [1, 2] by allowing the use of arbitrary (dual) optimizers as the local subroutine within our
framework. In the special case when using coordinate ascent as the local optimizer, the resulting
algorithm is very similar, though with a different computation of the coordinate updates. Moreover,
we provide the first theoretical convergence rate analysis for such methods. Our theory shows that in
the general framework on arbitrary data, the outer distributed algorithm will inherit the convergence
rate of the used internal local optimization method. When using SDCA (randomized dual coordinate
ascent) as the local optimizer, this convergence rate is geometric.

Our proposed COCOA framework in its basic variant is entirely free of tuning parameters or learn-
ing rates, in contrast with SGD-based methods. The only choices to make are the selection of the
internal local optimization procedure, and the desired trade-off between communication and compu-
tation. At a high level, the framework consists of T outer iterations that iteratively apply map-reduce
updates to the distributed data. In the map step, we perform H local iterations of an online method
for dual optimization on each machine, in parallel. Using a primal-dual mapping, we then take a
(possibly weighted) average of the resulting primal vectors. The amount of data communication
compared to local data access in this framework is therefore smaller by a factor of 1/H , which is
a dramatic saving. Our theoretical analysis in Section 4 shows that this reduction in communica-
tion comes with only a very moderate increase in the total number of total iterations, in order to
reach the same optimization accuracy. In practice, we suggest to use H local iterations of standard
randomized dual coordinate ascent (SDCA) [9] as the internal optimizer. For such primal-dual op-
timizers, the available duality gap gives a fair stopping criterion and efficient accuracy certificates
during optimization.

Our experiments with the method implemented on the fault-tolerant Spark platform2 [10] confirm
both the clock time performance and huge communication savings of the proposed methods on
a variety distributed datasets. Our experiments consistently show order of magnitude gains over
traditional mini-batch methods of both SGD and SDCA, and significant gains over the faster but
theoretically less justified local SGD methods.

Paper Outline. The rest of the paper is organized as follows. In Section 2 we describe the problem
setting of interest. Section 3 outlines the proposed method, COCOA, and the convergence analysis
of this method is presented in Section 4. We discuss related work in Section 5, and compare against
several other state-of-the-art methods in Section 6.

2 Setup

A large class of methods in machine learning and signal processing can be posed as the minimization
of a convex loss function of linear predictors with a convex regularization term:

min

w2Rd

"
P (w) :=

�

2

kwk2 + 1

n

nX

i=1

`i(w
T
xi)

#
, (1)

Here the data training examples are real-valued vectors xi 2 Rd; the loss functions `i, i = 1, . . . , n
are convex and depend possibly on labels yi 2 R; and � > 0 is the regularization parameter. Using
the setup of [9], we assume the regularizer is the `2-norm for convenience. Examples of this class
of problems include support vector machines, as well as regularized linear and logistic regression,
ordinal regression, and others.

The most popular method to solve problems of the form (1) is the stochastic subgradient method
(SGD) [11, 12, 13], which in this setting becomes an online method, where every iteration only
requires access to a single data example (xi, yi), and the convergence rate is well-understood.

2 We plan to contribute our code to the open-source machine-learning library of Spark, called MLlib.

2

Primal

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

The associated conjugate dual problem of (1) takes the following form, and is defined over one dual
variable per each example in the training set.

max

↵2Rn

"
D(↵) := ��

2

kA↵k2 � 1

n

nX

i=1

`⇤i (�↵i)

#
, (2)

where `⇤i is the conjugate (Fenchel dual) of the loss function `i, and the data matrix A 2 Rd⇥n col-
lects the (normalized) data examples Ai :=

1
�nxi in its columns. The duality comes with the conve-

nient mapping from dual to primal variables w(↵) := A↵ as given by the optimality conditions [9].
For any configuration of the dual variables ↵, we have the duality gap defined as P (w(↵))�D(↵).
This gap is a computable certificate of the approximation quality to the unknown true optimum
P (w

⇤
) = D(↵

⇤
), and therefore a very useful stopping criteria for algorithms.

For problems of the form (2), coordinate descent methods have proven to be very efficient, and come
with several benefits over primal methods. In randomized dual coordinate ascent (SDCA), updates
are made to the dual objective (2) by solving for one coordinate completely while keeping all others
fixed. This algorithm has been implemented in a number of software packages (e.g. LibLinear [14]),
and has proven very suitable for use in large-scale problems, while giving stronger convergence
results than the primal-only methods (such as SGD), at the same iteration cost [9]. In addition
to superior performance, this method also benefits from requiring no stepsize, and having a well-
defined stopping criterion given by the duality gap.

3 Method Description

The COCOA framework, as presented in Algorithm 1, assumes that the data {(xi, yi)}ni=1 is dis-
tributed over K worker machines. We associate with each datapoint its corresponding dual variable
{↵i}ni=1, which the algorithm iteratively chooses in order to maximize the dual formulation (2) of
regularized loss minimization as described in (1). The idea is to use these dual variables to efficiency
merge parallel updates from the different workers without much conflict, by exploiting the fact that
they all work on disjoint sets of the dual variables.

In each round, the K workers in parallel perform steps of some arbitrary optimization method for
the dual variables corresponding to the data examples which are local on each worker machine. We
call this internal procedure LOCALDUALMETHOD, as specified in the template Procedure A. We
suggest to use randomized dual coordinate ascent (SDCA) [9] as the internal optimizer in practice,
as implemented in Procedure B, and also used in our experiments.

Algorithm 1: COCOA: Communication-Efficient Distributed Dual Coordinate Ascent
Input: T � 1, scaling parameter 1  �K  K (default: �K := 1).
Data: {(xi, yi)}ni=1 distributed over K machines
Initialize: w(0) 0, and ↵

(0)
[k] 0 for all machines k

for t = 1, 2, . . . , T
for all machines k = 1, 2, . . . ,K in parallel

(�w(k),�↵[k]) LOCALDUALMETHOD(w(t�1),↵
(t�1)
[k])

↵

(t)
[k] ↵

(t�1)
[k] +

�K

K �↵[k]

end
reduce w

(t) w

(t�1)
+

�K

K

PK
k=1 �w(k)

end

Procedure A: LOCALDUALMETHOD: Dual algorithm for prob. (2) on a single coordinate block k

Input: w 2 Rd and local ↵[k] 2 Rnk , consistent with other coordinate blocks of ↵ s.t. w = A↵

Data: Local {(xi, yi)}nk
i=1

Output: �↵[k] and �w := A[k]�↵[k]

Allowing the subroutine to process more than one local data examples per round allows for a dra-
matic reduction of the amount of communication between the workers. By definition, COCOA

3

Dual
w(↵) := A↵

correspondence

Coordinate Descent

SGD

SVM dual: LibLinear ’08
structSVM dual: BCFW ’13
Lasso primal: GLMnet ‘10

Theory: SDCA ‘13

Optimization Algorithms:

Communication Efficient
Distributed Dual Coordinate Ascent

repeat  
T times

machine 1 machine 5machine 4machine 3machine 2

Reduce w := w + 1
K

P
k �w(k)

�w(5)�w(1)

↵1...↵1M ↵1M ...↵2M ↵4M ...↵5M

w(↵) := A↵

#local datapoints read: TH
#communications: T
convergence: ✓

Primal-Dual Structure

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

framework is novel in that it allows one to freely steer the trade-off between the amount of commu-
nication and local computation for primal-dual methods. Therefore, it can adapt well to the diverse
spectrum of available large-scale computing systems, ranging from the high-latency commodity
clusters with communication-constraints described above to the very low-latency communication
supercomputers or the multi-core setting.

Our method builds on the very related recent line of work of [1, 2, 7, 8]. We generalize the algo-
rithm of [1, 2] by allowing the use of arbitrary (dual) optimizers as the local subroutine within our
framework. In the special case when using coordinate ascent as the local optimizer, the resulting
algorithm is very similar, though with a different computation of the coordinate updates. Moreover,
we provide the first theoretical convergence rate analysis for such methods. Our theory shows that in
the general framework on arbitrary data, the outer distributed algorithm will inherit the convergence
rate of the used internal local optimization method. When using SDCA (randomized dual coordinate
ascent) as the local optimizer, this convergence rate is geometric.

Our proposed COCOA framework in its basic variant is entirely free of tuning parameters or learn-
ing rates, in contrast with SGD-based methods. The only choices to make are the selection of the
internal local optimization procedure, and the desired trade-off between communication and compu-
tation. At a high level, the framework consists of T outer iterations that iteratively apply map-reduce
updates to the distributed data. In the map step, we perform H local iterations of an online method
for dual optimization on each machine, in parallel. Using a primal-dual mapping, we then take a
(possibly weighted) average of the resulting primal vectors. The amount of data communication
compared to local data access in this framework is therefore smaller by a factor of 1/H , which is
a dramatic saving. Our theoretical analysis in Section 4 shows that this reduction in communica-
tion comes with only a very moderate increase in the total number of total iterations, in order to
reach the same optimization accuracy. In practice, we suggest to use H local iterations of standard
randomized dual coordinate ascent (SDCA) [9] as the internal optimizer. For such primal-dual op-
timizers, the available duality gap gives a fair stopping criterion and efficient accuracy certificates
during optimization.

Our experiments with the method implemented on the fault-tolerant Spark platform2 [10] confirm
both the clock time performance and huge communication savings of the proposed methods on
a variety distributed datasets. Our experiments consistently show order of magnitude gains over
traditional mini-batch methods of both SGD and SDCA, and significant gains over the faster but
theoretically less justified local SGD methods.

Paper Outline. The rest of the paper is organized as follows. In Section 2 we describe the problem
setting of interest. Section 3 outlines the proposed method, COCOA, and the convergence analysis
of this method is presented in Section 4. We discuss related work in Section 5, and compare against
several other state-of-the-art methods in Section 6.

2 Setup

A large class of methods in machine learning and signal processing can be posed as the minimization
of a convex loss function of linear predictors with a convex regularization term:

min

w2Rd

"
P (w) :=

�

2

kwk2 + 1

n

nX

i=1

`i(w
T
xi)

#
, (1)

Here the data training examples are real-valued vectors xi 2 Rd; the loss functions `i, i = 1, . . . , n
are convex and depend possibly on labels yi 2 R; and � > 0 is the regularization parameter. Using
the setup of [9], we assume the regularizer is the `2-norm for convenience. Examples of this class
of problems include support vector machines, as well as regularized linear and logistic regression,
ordinal regression, and others.

The most popular method to solve problems of the form (1) is the stochastic subgradient method
(SGD) [11, 12, 13], which in this setting becomes an online method, where every iteration only
requires access to a single data example (xi, yi), and the convergence rate is well-understood.

2 We plan to contribute our code to the open-source machine-learning library of Spark, called MLlib.

2

Primal

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

The associated conjugate dual problem of (1) takes the following form, and is defined over one dual
variable per each example in the training set.

max

↵2Rn

"
D(↵) := ��

2

kA↵k2 � 1

n

nX

i=1

`⇤i (�↵i)

#
, (2)

where `⇤i is the conjugate (Fenchel dual) of the loss function `i, and the data matrix A 2 Rd⇥n col-
lects the (normalized) data examples Ai :=

1
�nxi in its columns. The duality comes with the conve-

nient mapping from dual to primal variables w(↵) := A↵ as given by the optimality conditions [9].
For any configuration of the dual variables ↵, we have the duality gap defined as P (w(↵))�D(↵).
This gap is a computable certificate of the approximation quality to the unknown true optimum
P (w

⇤
) = D(↵

⇤
), and therefore a very useful stopping criteria for algorithms.

For problems of the form (2), coordinate descent methods have proven to be very efficient, and come
with several benefits over primal methods. In randomized dual coordinate ascent (SDCA), updates
are made to the dual objective (2) by solving for one coordinate completely while keeping all others
fixed. This algorithm has been implemented in a number of software packages (e.g. LibLinear [14]),
and has proven very suitable for use in large-scale problems, while giving stronger convergence
results than the primal-only methods (such as SGD), at the same iteration cost [9]. In addition
to superior performance, this method also benefits from requiring no stepsize, and having a well-
defined stopping criterion given by the duality gap.

3 Method Description

The COCOA framework, as presented in Algorithm 1, assumes that the data {(xi, yi)}ni=1 is dis-
tributed over K worker machines. We associate with each datapoint its corresponding dual variable
{↵i}ni=1, which the algorithm iteratively chooses in order to maximize the dual formulation (2) of
regularized loss minimization as described in (1). The idea is to use these dual variables to efficiency
merge parallel updates from the different workers without much conflict, by exploiting the fact that
they all work on disjoint sets of the dual variables.

In each round, the K workers in parallel perform steps of some arbitrary optimization method for
the dual variables corresponding to the data examples which are local on each worker machine. We
call this internal procedure LOCALDUALMETHOD, as specified in the template Procedure A. We
suggest to use randomized dual coordinate ascent (SDCA) [9] as the internal optimizer in practice,
as implemented in Procedure B, and also used in our experiments.

Algorithm 1: COCOA: Communication-Efficient Distributed Dual Coordinate Ascent
Input: T � 1, scaling parameter 1  �K  K (default: �K := 1).
Data: {(xi, yi)}ni=1 distributed over K machines
Initialize: w(0) 0, and ↵

(0)
[k] 0 for all machines k

for t = 1, 2, . . . , T
for all machines k = 1, 2, . . . ,K in parallel

(�w(k),�↵[k]) LOCALDUALMETHOD(w(t�1),↵
(t�1)
[k])

↵

(t)
[k] ↵

(t�1)
[k] +

�K

K �↵[k]

end
reduce w

(t) w

(t�1)
+

�K

K

PK
k=1 �w(k)

end

Procedure A: LOCALDUALMETHOD: Dual algorithm for prob. (2) on a single coordinate block k

Input: w 2 Rd and local ↵[k] 2 Rnk , consistent with other coordinate blocks of ↵ s.t. w = A↵

Data: Local {(xi, yi)}nk
i=1

Output: �↵[k] and �w := A[k]�↵[k]

Allowing the subroutine to process more than one local data examples per round allows for a dra-
matic reduction of the amount of communication between the workers. By definition, COCOA

3

Dual
w(↵) := A↵

correspondence

Coordinate Descent

SGD

SVM dual: LibLinear ’08
structSVM dual: BCFW ’13
Lasso primal: GLMnet ‘10

Theory: SDCA ‘13

Optimization Algorithms:

A
loc

↵0
loc

+w

T outer iterations `i(.) are smooth

Θ local improvement  
in inner step

and also for duality gap

Convergence Rate

Theorem

Proof Idea:  
Distributing the proof of [SDCA 2013]
using some block-coordinate descent ideas

From here on, we assume that the input data is scaled such that kxik  1 for all datapoints.
Proposition 1. Assume the loss functions `i are (1/�)-smooth. Then for using LOCALSDCA,
Assumption 1 holds with

⇥ =

✓

1� �n�

1 + �n�

1

ñ

◆H

. (5)

where ñ := maxk nk is the size of the largest block of coordinates.
Theorem 2. Assume that Algorithm 1 is run for T outer iterations on K worker machines, with
the procedure LOCALDUALMETHOD having local geometric improvement ⇥, and let �K := 1.
Further, assume the loss functions `i are (1/�)-smooth. Then the following geometric convergence
rate holds for the global (dual) objective:

E[D(↵

⇤
)�D(↵

(T)
)] 

✓

1� (1�⇥)

1

K

�n�

� + �n�

◆T
⇣

D(↵

⇤
)�D(↵

(0)
)

⌘

. (6)

Here � is any real number satisfying

� � �min := max

↵2Rn
�2n2

PK
k=1kA[k]↵[k]k2 � kA↵k2

k↵k2 � 0. (7)

Lemma 3. If K = 1 then �min = 0. For any K � 1, when assuming kxik  1 8i, we have

0  �min  ñ.

Moreover, if datapoints between different workers are orthogonal, i.e. (ATA)i,j = 0 8i, j such that
i and j do not belong to the same part, then �min = 0.

If we choose K = 1 then, Theorem 2 together with Lemma 3 implies that

E[D(↵

⇤
)�D(↵

(T)
)]  ⇥

T
⇣

D(↵

⇤
)�D(↵

(0)
)

⌘

,

as expected, showing that the analysis is tight in the special case K = 1. More interestingly, we
observe that for any K, in the extreme case when the subproblems are solved to optimality (i.e.
letting H ! 1 in LOCALSDCA), then the algorithm as well as the convergence rate match that of
serial/parallel block-coordinate descent [RT14, RT12].

Note: If choosing the starting point as ↵(0)
:= 0 as in the main algorithm, then it is known that

D(↵

⇤
)�D(↵

(0)
)  1 (see e.g. Lemma 20 in [SSZ13]).

5 Related Work

Distributed Primal-Dual Methods. Our approach is most closely related to recent work
by [Yan13, YZJL13], which generalizes the distributed optimization method for linear SVMs as
in [YHCL10] to the primal-dual setting considered here (which was introduced by [SSZ13]). The
difference between our approach and the ‘practical’ method of [Yan13] is that our internal steps di-
rectly correspond to coordinate descent iterations on the global dual objective (2), for coordinates in
the current block, while in [YZJL13, Equation 8] and [Yan13], the inner iterations apply to a slightly
different notion of the sub-dual problem defined on the local data. In terms of convergence results,
the analysis of [Yan13] only addresses the mini-batch case without local updates, while the more
recent paper [YZJL13] shows a convergence rate for a variant of COCOA with inner coordinate
steps, but under the unrealistic assumption that the data is orthogonal between the different workers.
In this case, the optimization problems become independent, so that an even simpler single-round
communication scheme summing the individual resulting models w would give an exact solution.
Instead, we show a linear convergence rate for the full problem class of smooth losses, without any
assumptions on the data, in the same generality as the non-distributed setting of [SSZ13].

While the experimental results in all papers [YHCL10, Yan13, YZJL13] are encouraging for this
type of method, they do not yet provide a quantitative comparison of the gains in communication
efficiency, or compare to the analogous SGD schemes that use the same distribution and communi-
cation patterns, which is the main goal or our experiments in Section 6. For the special case of linear

5

From here on, we assume that the input data is scaled such that kxik  1 for all datapoints.
Proposition 1. Assume the loss functions `i are (1/�)-smooth. Then for using LOCALSDCA,
Assumption 1 holds with

⇥ =

✓

1� �n�

1 + �n�

1

ñ

◆H

. (5)

where ñ := maxk nk is the size of the largest block of coordinates.
Theorem 2. Assume that Algorithm 1 is run for T outer iterations on K worker machines, with
the procedure LOCALDUALMETHOD having local geometric improvement ⇥, and let �K := 1.
Further, assume the loss functions `i are (1/�)-smooth. Then the following geometric convergence
rate holds for the global (dual) objective:

E[D(↵

⇤
)�D(↵

(T)
)] 

✓

1� (1�⇥)

1

K

�n�

� + �n�

◆T
⇣

D(↵

⇤
)�D(↵

(0)
)

⌘

. (6)

Here � is any real number satisfying

� � �min := max

↵2Rn
�2n2

PK
k=1kA[k]↵[k]k2 � kA↵k2

k↵k2 � 0. (7)

Lemma 3. If K = 1 then �min = 0. For any K � 1, when assuming kxik  1 8i, we have

0  �min  ñ.

Moreover, if datapoints between different workers are orthogonal, i.e. (ATA)i,j = 0 8i, j such that
i and j do not belong to the same part, then �min = 0.

If we choose K = 1 then, Theorem 2 together with Lemma 3 implies that

E[D(↵

⇤
)�D(↵

(T)
)]  ⇥

T
⇣

D(↵

⇤
)�D(↵

(0)
)

⌘

,

as expected, showing that the analysis is tight in the special case K = 1. More interestingly, we
observe that for any K, in the extreme case when the subproblems are solved to optimality (i.e.
letting H ! 1 in LOCALSDCA), then the algorithm as well as the convergence rate match that of
serial/parallel block-coordinate descent [RT14, RT12].

Note: If choosing the starting point as ↵(0)
:= 0 as in the main algorithm, then it is known that

D(↵

⇤
)�D(↵

(0)
)  1 (see e.g. Lemma 20 in [SSZ13]).

5 Related Work

Distributed Primal-Dual Methods. Our approach is most closely related to recent work
by [Yan13, YZJL13], which generalizes the distributed optimization method for linear SVMs as
in [YHCL10] to the primal-dual setting considered here (which was introduced by [SSZ13]). The
difference between our approach and the ‘practical’ method of [Yan13] is that our internal steps di-
rectly correspond to coordinate descent iterations on the global dual objective (2), for coordinates in
the current block, while in [YZJL13, Equation 8] and [Yan13], the inner iterations apply to a slightly
different notion of the sub-dual problem defined on the local data. In terms of convergence results,
the analysis of [Yan13] only addresses the mini-batch case without local updates, while the more
recent paper [YZJL13] shows a convergence rate for a variant of COCOA with inner coordinate
steps, but under the unrealistic assumption that the data is orthogonal between the different workers.
In this case, the optimization problems become independent, so that an even simpler single-round
communication scheme summing the individual resulting models w would give an exact solution.
Instead, we show a linear convergence rate for the full problem class of smooth losses, without any
assumptions on the data, in the same generality as the non-distributed setting of [SSZ13].

While the experimental results in all papers [YHCL10, Yan13, YZJL13] are encouraging for this
type of method, they do not yet provide a quantitative comparison of the gains in communication
efficiency, or compare to the analogous SGD schemes that use the same distribution and communi-
cation patterns, which is the main goal or our experiments in Section 6. For the special case of linear

5

e.g. for localSDCA:

1/�

0  �  n/K

measure

of difficulty of the
data partition

Experiments

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

6 Experiments

In this section, we compare COCOA to traditional mini-batch versions of stochastic dual coordinate
ascent and stochastic gradient descent, as well as the locally-updating version of stochastic gradient
descent. We implement mini-batch SDCA (denoted mini-batch-CD) as described in [3, 1]. The
SGD-based methods are mini-batch and locally-updating versions of Pegasos [13], differing only in
whether the primal vector is updated locally on each inner iteration or not, and whether the resulting
combination/communication of the updates is by an average over the total size KH of the mini-
batch (mini-batch-SGD) or just over the number of machines K (local-SGD). For each algorithm,
we additionally study the effect of scaling of the average by a parameter �K , as first described in [3],
while noting that it is a benefit to avoid having to tune this data-dependent parameter.

We apply these algorithms to standard hinge loss `2-regularized support vector machines, using
implementations written in Spark on m1.large Amazon EC2 instances [10]. Though this non-smooth
case is not yet covered in our theoretical analysis, we still see remarkable empirical performance.
Our results indicate that COCOA is able to converge to .001-accurate solutions nearly 25⇥ as fast
compared the other algorithms, when all use �K = 1. The datasets used in these analyses are
summarized in Table 1, and were distributed among K = 4, 8, and 32 nodes, respectively. We use
the same regularization parameters as specified in [13, 14].

Table 1: Datasets for Empirical Study

Dataset Training n Features d Sparsity � Workers K
cov 522,911 54 22.22% 1e-6 4
rcv1 677,399 47,236 0.16% 1e-6 8
imagenet 32,751 160,000 100% 1e-5 32

In comparing each algorithm and dataset, we analyze the progress in primal objective value as a
function of both time (Figure 1) and communication (Figure 2). For all competing methods, we
present the result for the batch size (H) yielding the best performance in terms of reduction in
objective value over time. For the locally-updating methods (COCOA and local-SGD), these tend
to be larger batch sizes corresponding to processing almost all of the local data at each outer step.
For the non-locally updating mini-batch methods, (mini-batch SDCA [3] and mini-batch SGD [13]),
these typically perform best for smaller values of H , as averaging the solutions to guarantee safe
convergence becomes less of an impediment.

First, we note that there is a clear correlation between the wall-time spent processing each dataset
and the number of vectors communicated, indicating that communication has a significant effect on
convergence speed. We see clearly that COCOA is able to converge to a more accurate solution in all
datasets much faster than the other methods. On average, COCOA reaches a .001-accurate solution
for these datasets 25x faster than the best competitor. This is a testament to the algorithm’s ability
to avoid communication while still making significant global progress by efficiently combining the
local updates of each iteration. The improvements are robust for both regimes n � d and n ⌧ d.

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

Cov

Time (s)

L
o
g
 P

ri
m

a
l S

u
b
o
p
tim

a
lit

y

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

Cov

COCOA (H=1e6)
mini−batch−CD (H=100)
local−SGD (H=1e6)
mini−batch−SGD (H=1)

0 100 200 300 400
10

−6

10
−4

10
−2

10
0

10
2

RCV1

Time (s)

L
o
g
 P

ri
m

a
l S

u
b
o
p
tim

a
lit

y

0 100 200 300 400
10

−6

10
−4

10
−2

10
0

10
2

COCOA (H=1e6)
mini−batch−CD (H=100)
local−SGD (H=1e5)
mini−batch−SGD (H=100)

0 200 400 600 800
10

−6

10
−4

10
−2

10
0

10
2

Imagenet

Time (s)

L
o
g
 P

ri
m

a
l S

u
b
o
p
tim

a
lit

y

0 200 400 600 800
10

−6

10
−4

10
−2

10
0

10
2

Imagenet

COCOA (H=1e3)
mini−batch−CD (H=1)
local−SGD (H=1e3)
mini−batch−SGD (H=10)

Figure 1: Primal Suboptimality vs. Time for Best Mini-Batch Sizes (H): For �K = 1, COCOA converges
more quickly than all other algorithms, even when accounting for different batch sizes.

In Figure 3 we explore the effect of H on the convergence of COCOA for the cov dataset on a
cluster of 4 nodes. As described above, increasing H decreases communication but also affects the
convergence properties of the algorithm. In Figure 4, we attempt to scale the averaging step of each
algorithm by using various �K values, for two different batch sizes on the Cov dataset (H = 1e5

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

6 Experiments

In this section, we compare COCOA to traditional mini-batch versions of stochastic dual coordinate
ascent and stochastic gradient descent, as well as the locally-updating version of stochastic gradient
descent. We implement mini-batch SDCA (denoted mini-batch-CD) as described in [3, 1]. The
SGD-based methods are mini-batch and locally-updating versions of Pegasos [13], differing only in
whether the primal vector is updated locally on each inner iteration or not, and whether the resulting
combination/communication of the updates is by an average over the total size KH of the mini-
batch (mini-batch-SGD) or just over the number of machines K (local-SGD). For each algorithm,
we additionally study the effect of scaling of the average by a parameter �K , as first described in [3],
while noting that it is a benefit to avoid having to tune this data-dependent parameter.

We apply these algorithms to standard hinge loss `2-regularized support vector machines, using
implementations written in Spark on m1.large Amazon EC2 instances [10]. Though this non-smooth
case is not yet covered in our theoretical analysis, we still see remarkable empirical performance.
Our results indicate that COCOA is able to converge to .001-accurate solutions nearly 25⇥ as fast
compared the other algorithms, when all use �K = 1. The datasets used in these analyses are
summarized in Table 1, and were distributed among K = 4, 8, and 32 nodes, respectively. We use
the same regularization parameters as specified in [13, 14].

Table 1: Datasets for Empirical Study

Dataset Training n Features d Sparsity � Workers K
cov 522,911 54 22.22% 1e-6 4
rcv1 677,399 47,236 0.16% 1e-6 8
imagenet 32,751 160,000 100% 1e-5 32

In comparing each algorithm and dataset, we analyze the progress in primal objective value as a
function of both time (Figure 1) and communication (Figure 2). For all competing methods, we
present the result for the batch size (H) yielding the best performance in terms of reduction in
objective value over time. For the locally-updating methods (COCOA and local-SGD), these tend
to be larger batch sizes corresponding to processing almost all of the local data at each outer step.
For the non-locally updating mini-batch methods, (mini-batch SDCA [3] and mini-batch SGD [13]),
these typically perform best for smaller values of H , as averaging the solutions to guarantee safe
convergence becomes less of an impediment.

First, we note that there is a clear correlation between the wall-time spent processing each dataset
and the number of vectors communicated, indicating that communication has a significant effect on
convergence speed. We see clearly that COCOA is able to converge to a more accurate solution in all
datasets much faster than the other methods. On average, COCOA reaches a .001-accurate solution
for these datasets 25x faster than the best competitor. This is a testament to the algorithm’s ability
to avoid communication while still making significant global progress by efficiently combining the
local updates of each iteration. The improvements are robust for both regimes n � d and n ⌧ d.

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

Cov

Time (s)

L
o

g
 P

ri
m

a
l S

u
b

o
p

tim
a

lit
y

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

Cov

COCOA (H=1e6)
mini−batch−CD (H=100)
local−SGD (H=1e6)
mini−batch−SGD (H=1)

0 100 200 300 400
10

−6

10
−4

10
−2

10
0

10
2

RCV1

Time (s)

L
o

g
 P

ri
m

a
l S

u
b

o
p

tim
a

lit
y

0 100 200 300 400
10

−6

10
−4

10
−2

10
0

10
2

COCOA (H=1e6)
mini−batch−CD (H=100)
local−SGD (H=1e5)
mini−batch−SGD (H=100)

0 200 400 600 800
10

−6

10
−4

10
−2

10
0

10
2

Imagenet

Time (s)

L
o

g
 P

ri
m

a
l S

u
b

o
p

tim
a

lit
y

0 200 400 600 800
10

−6

10
−4

10
−2

10
0

10
2

Imagenet

COCOA (H=1e3)
mini−batch−CD (H=1)
local−SGD (H=1e3)
mini−batch−SGD (H=10)

Figure 1: Primal Suboptimality vs. Time for Best Mini-Batch Sizes (H): For �K = 1, COCOA converges
more quickly than all other algorithms, even when accounting for different batch sizes.

In Figure 3 we explore the effect of H on the convergence of COCOA for the cov dataset on a
cluster of 4 nodes. As described above, increasing H decreases communication but also affects the
convergence properties of the algorithm. In Figure 4, we attempt to scale the averaging step of each
algorithm by using various �K values, for two different batch sizes on the Cov dataset (H = 1e5

7

Conclusion

✤ slight generalizations to non-smooth losses, Lasso

✤ purely primal algorithm?

✤ balancing between adding and averaging

✤ rates on test error instead of training error?

Open Research

✤ full adaptivity to the communication cost

✤ theoretical and practical efficiency

Thanks

“CoCoA - Communication-Efficient Distributed Dual Coordinate Ascent”  

NIPS 2014 paper arxiv.org/abs/1409.1458

 code is available on github

http://arxiv.org/abs/1409.1458
http://www.github.com/gingsmith/cocoa

