
The Effectiveness of Convex Programming
in the Information and Physical Sciences

Emmanuel Candès

Simons Institute Open Lecture, UC Berkeley, October 2013



Three stories

Today I want to tell you three stories from my life.
That’s it. No big deal. Just three stories

Steve Jobs

Often have missing information:

(1) Missing phase (phase retrieval)

(2) Missing and/or corrupted entries in data matrix (robust PCA)

(3) Missing high-frequency spectrum (super-resolution)

Makes signal/data recovery difficult

This lecture

Convex programming usually (but not always) returns the right answer!
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Story # 1: Phase Retrieval

Collaborators: Y. Eldar, X. Li, T. Strohmer, V. Voroninski



X-ray crystallography

Method for determining atomic structure within a crystal

principle typical setup

10 Nobel Prizes in X-ray crystallography, and counting...



Importance

principle Franklin’s photograph



Missing phase problem

Detectors only record intensities of diffracted rays
→ magnitude measurements only!

Fraunhofer diffraction −→ intensity of electrical field

|x̂(f1, f2)|2 =

∣∣∣∣∫ x(t1, t2)e−i2π(f1t1+f2t2) dt1dt2

∣∣∣∣2

Phase retrieval problem (inversion)

How can we recover the phase (or equivalently signal x(t1, t2)) from |x̂(f1, f2)|?
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X-ray imaging: now and then

Röntgen (1895) Dierolf (2010)



Ultrashort X-ray pulses

Imaging single large protein complexes



Discrete mathematical model

Phaseless measurements about x0 ∈ Cn

bk = |〈ak, x0〉|2 k ∈ {1, . . . ,m} = [m]

Phase retrieval is feasibility problem

find x
subject to |〈ak, x〉|2 = bk k ∈ [m]

Solving quadratic equations is NP hard in general

Nobel Prize for Hauptman and Karle (’85): make use of very specific prior
knowledge

Standard approach: Gerchberg Saxton (or Fienup) iterative algorithm

Sometimes works well

Sometimes does not
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Quadratic equations: geometric view II



PhaseLift

|〈ak, x〉|2 = bk k ∈ [m]

Lifting: X = xx∗

|〈ak, x〉|2 = Tr(x∗aka
∗
kx) = Tr(aka

∗
kxx

∗) := Tr(AkX) aka
∗
k = Ak

Turns quadratic measurements into linear measurements about xx∗
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kx) = Tr(aka
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Turns quadratic measurements into linear measurements about xx∗

Phase retrieval: equivalent formulation

find X
s. t. Tr(AkX) = bk k ∈ [m]

X � 0, rank(X) = 1
⇐⇒

min rank(X)
s. t. Tr(AkX) = bk k ∈ [m]

X � 0

Combinatorially hard



PhaseLift

|〈ak, x〉|2 = bk k ∈ [m]

Lifting: X = xx∗

|〈ak, x〉|2 = Tr(x∗aka
∗
kx) = Tr(aka

∗
kxx

∗) := Tr(AkX) aka
∗
k = Ak

Turns quadratic measurements into linear measurements about xx∗

PhaseLift: tractable semidefinite relaxation

minimize Tr(X)
subject to Tr(AkX) = bk k ∈ [m]

X � 0

This is a semidefinite program (SDP)

Trace is convex proxy for rank



Semidefinite programming (SDP)

Special class of convex optimization problems

Relatively natural extension of linear programming (LP)

‘Efficient’ numerical solvers (interior point methods)

LP (std. form): x ∈ Rn

minimize 〈c, x〉
subject to aTk x = bk k = 1, . . .

x ≥ 0

SDP (std. form): X ∈ Rn×n

minimize 〈C,X〉
subject to 〈Ak, X〉 = bk k = 1, . . .

X � 0

Standard inner product: 〈C,X〉 = Tr(C∗X)



From overdetermined to highly underdetermined

Quadratic equations

bk = |〈ak, x〉|2
k ∈ [m]

b = A(xx∗)

Lift

minimize Tr(X)
subject to A(X) = b

X � 0

Have we made things worse?

overdetermined (m > n) → highly underdetermined (m� n2)



This is not really new...

Relaxation of quadratically constrained QP’s

Shor (87) [Lower bounds on nonconvex quadratic optimization problems]

Goemans and Williamson (95) [MAX-CUT]

Ben-Tal and Nemirovskii (01) [Monograph]

...

Similar approach for array imaging: Chai, Moscoso, Papanicolaou (11)



Exact phase retrieval via SDP

Quadratic equations

bk = |〈ak, x〉|2 k ∈ [m] b = A(xx∗)

Simplest model: ak independently and uniformly sampled on unit sphere

of Cn if x ∈ Cn (complex-valued problem)

of Rn if x ∈ Rn (real-valued problem)

Theorem (C. and Li (’12); C., Strohmer and Voroninski (’11))

Assume m & n. With prob. 1−O(e−γm), for all x ∈ Cn, only point in feasible set

{X : A(X) = b and X � 0} is xx∗

Injectivity if m ≥ 4n− 2 (Balan, Bodmann, Casazza, Edidin ’09)
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How is this possible?

How can feasible set {X � 0} ∩ {A(X) = b} have a unique point?

Intersection of

[
x y
y z

]
� 0 with affine space



Correct representation

Rank-1 matrices are on the boundary (extreme rays) of PSD cone



My mental representation
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Extensions to physical setups

Random masking + diffraction

Similar theory: C. , Li and Soltanolkotabi (’13)



Numerical results: noiseless recovery

(a) Smooth signal (real part) (b) Random signal (real part)

Figure: Recovery (with reweighting) of n-dimensional complex signal (2n unknowns)
from 4n quadratic measurements (random binary masks)



With noise

bk ≈ |〈x, ak〉|2 k ∈ [m]

Noise aware recovery (SDP)

minimize ‖A(X)− b‖1 =
∑
k |Tr(aka

∗
kX)− bk|

subject to X � 0

Signal x̂ obtained by extracting first eigenvector (PC) of solution matrix

In same setup as before and for realistic noise models, no method whatsoever can
possibly yield a fundamentally smaller recovery error [C. and Li (2012)]
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Numerical results: noisy recovery

Figure: SNR versus relative MSE on a dB-scale for different numbers of illuminations
with binary masks



Numerical results: noiseless 2D images

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

original image 3 Gaussian masks

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

8 binary masks error with 8 binary masks

Courtesy
S. Marchesini (LBL)



Story #2: Robust Principal Component Analysis

Collaborators: X. Li, Y. Ma, J. Wright



The separation problem (Chandrasekahran et al.)

M = L+ S

M : data matrix (observed)

L: low-rank (unobserved)

S: sparse (unobserved)

Problem: can we recover L and S accurately?

Again, missing information
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Motivation: robust principal component analysis (RPCA)
PCA sensitive to outliers: breaks down with one (badly) corrupted data point

x11 x12 . . . x1n

x21 x22 . . . x2n

...
...
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Robust PCA

Data increasingly high dimensional

Gross errors frequently occur in many applications

Image processing

Web data analysis

Bioinformatics

...

Occlusions

Malicious tampering

Sensor failures

...

Important to make PCA robust



Gross errors

Movies

Users



× ×
A A

× A
× ×

×
A ×


Observe corrupted entries

Yij = Lij + Sij (i, j) ∈ Ωobs

L low-rank matrix

S entries that have been tampered with (impulsive noise)

Problem
Recover L from missing and corrupted samples



The L+S model

(Partial) information y = A(M) about

M︸︷︷︸
object

= L︸︷︷︸
low rank

+ S︸︷︷︸
sparse



× A ? ? × ?

? ? × A ? ?
× ? ? × ? ?

? ? × ? ? A
× ? A ? ? ?

? ? × A ? ?


RPCA

data = low-dimensional structure + corruption

Dynamic MR

video seq. = static background + sparse innovation

Graphical modeling with hidden variables: Chandrasekaran, Sanghavi, Parrilo,
Willsky (’09, ’11)

marginal inverse covariance of observed variables = low-rank + sparse



When does separation make sense?

M = L+ S

Low-rank component cannot be sparse: L =


∗ ∗ ∗ ∗ · · · ∗ ∗
0 0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 0



Sparse component cannot be low rank: S =
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Low-rank component cannot be sparse

L =



∗ ∗ ∗ ∗ · · · ∗ ∗
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Incoherent condition [C. and Recht (’08)]: column and row spaces not aligned
with coordinate axes (singular vectors are not sparse)



Low-rank component cannot be sparse

M =



∗ ∗ A ∗ · · · ∗ ∗
∗ ∗ A ∗ · · · ∗ A
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Sparse component cannot be low-rank

L =


x1 x2 · · · xn−1 xn
x1 x2 · · · xn−1 xn
...

...
...

...
...

x1 x2 · · · xn−1 xn


︸ ︷︷ ︸

1x∗

⇒ L+ S =


A x2 · · · xn−1 xn
A x2 · · · xn−1 xn
...

...
...

...
...

A x2 · · · xn−1 xn



Sparsity pattern will be assumed (uniform) random



Demixing by convex programming

M = L+ S

L unknown (rank unknown)

S unknown (# of entries 6= 0, locations, magnitudes all unknown)

Recovery via SDP

minimize ‖L̂‖∗ + λ‖Ŝ‖1
subject to L̂+ Ŝ = M

See also Chandrasekaran, Sanghavi, Parrilo, Willsky (’09)

nuclear norm: ‖L‖∗ =
∑
i σi(L) (sum of sing. values)

`1 norm: ‖S‖1 =
∑
ij |Sij | (sum of abs. values)
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Exact recovery via SDP

min ‖L̂‖∗ + λ‖Ŝ‖1 s. t. L̂+ Ŝ = M

Theorem

L is n× n of rank(L) ≤ ρrn (log n)−2 and incoherent

S is n× n, random sparsity pattern of cardinality at most ρsn
2

Then with probability 1−O(n−10), SDP with λ = 1/
√
n is exact:

L̂ = L, Ŝ = S

Same conclusion for rectangular matrices with λ = 1/
√

max dim

No tuning parameter!

Whatever the magnitudes of L and S
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Phase transitions in probability of success

(a) PCP, Random Signs (b) PCP, Coherent Signs

(c) Matrix Completion

L = XY T is a product of independent n× r i.i.d. N (0, 1/n) matrices



Missing and corrupted

RPCA

min ‖L̂‖∗ + λ‖Ŝ‖1
s. t. L̂ij + Ŝij = Lij + Sij (i, j) ∈ Ωobs
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Theorem
L as before

Ωobs random set of size 0.1n2 (missing frac. is arbitrary)

Each observed entry corrupted with prob. τ ≤ τ0
Then with prob. 1−O(n−10), PCP with λ = 1/

√
0.1n is exact:

L̂ = L

Same conclusion for rectangular matrices with λ = 1/
√

0.1max dim
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Background subtraction



With noise
With Li, Ma, Wright & Zhou (’10)

Z stochastic or deterministic perturbation

Yij = Lij + Sij + Zij (i, j) ∈ Ω

minimize ‖L̂‖∗ + λ‖Ŝ‖1
subject to

∑
(i,j)∈Ω(Mij − L̂ij − Ŝij)2 ≤ δ2

When perfect (noiseless) separation occurs =⇒ noisy variant is stable



Story #3: Super-resolution

Collaborator: C. Fernandez-Granda



Limits of resolution

In any optical imaging system, diffraction imposes fundamental limit on resolution

The physical phenomenon called diffraction is of the utmost importance in
the theory of optical imaging systems (Joseph Goodman)



Bandlimited imaging systems (Fourier optics)

fobs(t) = (h ∗ f)(t)

f̂obs(ω) = ĥ(ω)f̂(ω)

h : point spread function (PSF)

ĥ : transfer function (TF)

Bandlimited system

|ω| > Ω ⇒ |ĥ(ω)| = 0

f̂obs(ω) = ĥ(ω) f̂(ω)→ suppresses all high-frequency components

Example: coherent imaging

ĥ(ω) = 1P (ω) indicator of pupil element

TF PSF cross-section (PSF)
Pupil Airy disk
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Rayleigh resolution limit

Lord Rayleigh



The super-resolution problem

⇐
objective data

Retrieve fine scale information from low-pass data

⇐

Equivalent description: extrapolate spectrum (ill posed)



Random vs. low-frequency sampling

Random sampling (CS) Low-frequency sampling (SR)

Compressive sensing: spectrum interpolation
Super-resolution: spectrum extrapolation



Super-resolving point sources

Signal of interest is superposition of point sources

Celestial bodies in astronomy

Line spectra in speech analysis

Fluorescent molecules in single-molecule microscopy

Many applications

Radar

Spectroscopy

Medical imaging

Astronomy

Geophysics

...



Single molecule imaging (with WE Moerner’s Lab)

Microscope receives light from fluorescent molecules

Problem

Resolution is much coarser than size of individual molecules (low-pass data)

Can we ‘beat’ the diffraction limit and super-resolve those molecules?

Higher molecule density −→ faster imaging



Mathematical model

Signal

x =
∑
j ajδτj

aj ∈ C, τj ∈ T ⊂ [0, 1]

Data y = Fnx: n = 2flo + 1 low-frequency coefficients (Nyquist sampling)

y(k) =

∫ 1

0

e−i2πktx(dt) =
∑
j

aje
−i2πkτj k ∈ Z, |k| ≤ flo

Resolution limit: (λlo/2 is Rayleigh distance)

1/flo = λlo

Question
Can we resolve the signal beyond this limit?

Swap time and frequency −→ spectral estimation
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Can you find the spikes?

Low-frequency data about spike train
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Low-frequency data about spike train



Recovery by minimum total-variation

Recovery by cvx prog.

min ‖x̃‖TV subject to Fn x̃ = y

‖x‖TV =
∫
|x(dt)| is continuous analog of `1 norm

x =
∑
j

ajδτj =⇒ ‖x‖TV =
∑
j

|aj |

With noise

min
1

2
‖y −Fn x̃‖2`2 + λ‖x̃‖TV



Recovery by convex programming

y(k) =

∫ 1

0

e−i2πktx(dt) |k| ≤ flo

Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least

2 /flo := 2λlo

then min TV solution is exact! For real-valued x, a min dist. of 1.87λlo suffices

Infinite precision!

Whatever the amplitudes

Can recover (2λlo)
−1 = flo/2 = n/4 spikes from n low-freq. samples

Cannot go below λlo

Essentially same result in higher dimensions
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−1 = flo/2 = n/4 spikes from n low-freq. samples

Cannot go below λlo
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About separation: sparsity is not enough!

CS: sparse signals are ‘away’ from null space of sampling operator

Super-res: this is not the case
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Analysis via prolate spheroidal functions

David Slepian

If distance between spikes less than λlo/2 (Rayleigh), problem hopelessly ill posed



Formulation as a finite-dimensional problem

Primal problem

min ‖x‖TV s. t. Fnx = y

Infinite-dimensional variable x

Finitely many constraints

Dual problem

max Re〈y, c〉 s. t. ‖F∗nc‖∞ ≤ 1

Finite-dimensional variable c

Infinitely many constraints

(F∗n c)(t) =
∑
|k|≤flo

cke
i2πkt

Semidefinite representability

|(F∗n c)(t)| ≤ 1 for all t ∈ [0, 1] equivalent to

(1) there is Q Hermitian s. t. [
Q c
c∗ 1

]
� 0

(2) Tr(Q) = 1

(3) sums along superdiagonals vanish:
∑n−j
i=1 Qi,i+j = 0 for 1 ≤ j ≤ n− 1
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SDP formulation

Dual as an SDP

maximize Re〈y, c〉 subject to

[
Q c
c∗ 1

]
� 0∑n−j

i=1 Qi,i+j = δj 0 ≤ j ≤ n− 1

Dual solution c: coeffs. of low-pass trig. polynomial
∑
k cke

i2πkt interpolating the
sign of the primal solution

To recover spike locations

(1) Solve dual

(2) Check when polynomial takes
on magnitude 1
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With noise

y = Fnx+ noise

min
1

2
‖y −Fnx̃‖2`2 + λ‖x̃‖TV

Also an SDP

Theory: C. and Fernandez Granda (’12)
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Noisy example

Average localization error: 6.54× 10−4

 

 

High−res Signal
Estimate



Summary

Three important problems with missing data

Phase retrieval
Matrix completion/RPCA
Super-resolution

Three simple and model-free recovery procedures via convex programming

Three near-perfect solutions



Apologies: things I have not talked about

Algorithms

Applications

Avalanche of related works



A small sample of papers I have greatly enjoyed

Phase retrieval

Netrapalli, Jain, Sanghavi, Phase retrieval using alternating minimization (’13)

Waldspurger, d’Aspremont, Mallat, Phase recovery, MaxCut and complex
semidefinite programming (’12)

Robust PCA

Gross, Recovering low-rank matrices from few coefficients in any basis (’09)

Chandrasekaran, Parrilo and Willsky, Latent variable graphical model selection
via convex optimization (’11)

Hsu, Kakade and Zhang, Robust matrix decomposition with outliers (’11)

Super-resolution

Kahane, Analyse et synthèse harmoniques (’11)

Slepian, Prolate spheroidal wave functions, Fourier analysis, and uncertainty.
V - The discrete case (’78)



General SDP formulation

Nuclear norm and spectral norms are dual: ‖X‖∗ = val(P )

(P )
maximize 〈U,X〉
subject to ‖U‖ ≤ 1

⇔
maximize 〈U,X〉

subject to

[
I U
U∗ I

]
� 0

Duality: ‖X‖∗ = val(D)

(D)
minimize .5(Tr(W1) + Tr(W2))

subject to

[
W1 X
X∗ W2

]
� 0

Optimization variables: W1 ∈ Rn1×n1 , W2 ∈ Rn2×n2

Nuclear norm heuristics: Fazel (2002), Hindi, Boyd & Fazel (2001)
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The super-resolution factor

Have data at resolution λlo Wish resolution λhi

Super-resolution factor

SRF =
λlo
λhi



The super-resolution factor (SRF): frequency viewpoint

Observe spectrum up to flo
Wish to extrapolate up to fhi

Super-resolution factor

SRF =
fhi
flo



With noise

y = Fnx+ noise
Fnx =

∫ 1

0
e−i2πkt x(dt)

|k| ≤ flo

At ‘native’ resolution

‖(x̂− x) ∗ ϕλlo
‖TV . noise level
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With noise

y = Fnx+ noise
Fnx =

∫ 1

0
e−i2πkt x(dt)

|k| ≤ flo

At ‘finer’ resolution λhi = λlo/SRF, convex programming achieves

‖(x̂− x) ∗ ϕλhi
‖TV . SRF2 × noise level

Modulus of continuity studies for super-resolution: Donoho (’92)


