The Effectiveness of Convex Programming in the Information and Physical Sciences

Emmanuel Candès

Simons Institute Open Lecture, UC Berkeley, October 2013

Three stories

Three stories

Today I want to tell you three stories from my life.
That's it. No big deal. Just three stories
Steve Jobs

Three stories

Today I want to tell you three stories from my life.
 That's it. No big deal. Just three stories

Steve Jobs

Often have missing information:
(1) Missing phase (phase retrieval)
(2) Missing and/or corrupted entries in data matrix (robust PCA)
(3) Missing high-frequency spectrum (super-resolution)

Makes signal/data recovery difficult

This lecture

Convex programming usually (but not always) returns the right answer!

Story \# 1: Phase Retrieval

Collaborators: Y. Eldar, X. Li, T. Strohmer, V. Voroninski

X-ray crystallography

Method for determining atomic structure within a crystal

typical setup

10 Nobel Prizes in X-ray crystallography, and counting...

Importance

Missing phase problem

Detectors only record intensities of diffracted rays
\rightarrow magnitude measurements only!

Fraunhofer diffraction \longrightarrow intensity of electrical field

$$
\left|\hat{x}\left(f_{1}, f_{2}\right)\right|^{2}=\left|\int x\left(t_{1}, t_{2}\right) e^{-i 2 \pi\left(f_{1} t_{1}+f_{2} t_{2}\right)} d t_{1} d t_{2}\right|^{2}
$$

Missing phase problem

Detectors only record intensities of diffracted rays
\rightarrow magnitude measurements only!

Fraunhofer diffraction \longrightarrow intensity of electrical field

$$
\left|\hat{x}\left(f_{1}, f_{2}\right)\right|^{2}=\left|\int x\left(t_{1}, t_{2}\right) e^{-i 2 \pi\left(f_{1} t_{1}+f_{2} t_{2}\right)} d t_{1} d t_{2}\right|^{2}
$$

Phase retrieval problem (inversion)

How can we recover the phase (or equivalently signal $x\left(t_{1}, t_{2}\right)$) from $\left|\hat{x}\left(f_{1}, f_{2}\right)\right|$?

About the importance of phase...

About the importance of phase...

About the importance of phase...

keep magnitude swap phase

About the importance of phase...

keep magnitude swap phase

X-ray imaging: now and then

Röntgen (1895)

Dierolf (2010)

Ultrashort X-ray pulses

Imaging single large protein complexes

Discrete mathematical model

- Phaseless measurements about $x_{0} \in \mathbb{C}^{n}$

$$
b_{k}=\left|\left\langle a_{k}, x_{0}\right\rangle\right|^{2} \quad k \in\{1, \ldots, m\}=[m]
$$

- Phase retrieval is feasibility problem

find	x
subject to	$\left\|\left\langle a_{k}, x\right\rangle\right\|^{2}=b_{k} \quad k \in[m]$

- Solving quadratic equations is NP hard in general

Discrete mathematical model

- Phaseless measurements about $x_{0} \in \mathbb{C}^{n}$

$$
b_{k}=\left|\left\langle a_{k}, x_{0}\right\rangle\right|^{2} \quad k \in\{1, \ldots, m\}=[m]
$$

- Phase retrieval is feasibility problem

$$
\begin{array}{ll}
\text { find } & x \\
\text { subject to } & \left|\left\langle a_{k}, x\right\rangle\right|^{2}=b_{k} \quad k \in[m]
\end{array}
$$

- Solving quadratic equations is NP hard in general

Nobel Prize for Hauptman and Karle ('85): make use of very specific prior knowledge

Discrete mathematical model

- Phaseless measurements about $x_{0} \in \mathbb{C}^{n}$

$$
b_{k}=\left|\left\langle a_{k}, x_{0}\right\rangle\right|^{2} \quad k \in\{1, \ldots, m\}=[m]
$$

- Phase retrieval is feasibility problem

$$
\begin{array}{ll}
\text { find } & x \\
\text { subject to } & \left|\left\langle a_{k}, x\right\rangle\right|^{2}=b_{k} \quad k \in[m]
\end{array}
$$

- Solving quadratic equations is NP hard in general

Nobel Prize for Hauptman and Karle ('85): make use of very specific prior knowledge

Standard approach: Gerchberg Saxton (or Fienup) iterative algorithm

- Sometimes works well
- Sometimes does not

Quadratic equations: geometric view I

Quadratic equations: geometric view I

Quadratic equations: geometric view I

Quadratic equations: geometric view I

Quadratic equations: geometric view I

Quadratic equations: geometric view I

Quadratic equations: geometric view II

PhaseLift

$$
\left|\left\langle a_{k}, x\right\rangle\right|^{2}=b_{k} \quad k \in[m]
$$

PhaseLift

$$
\left|\left\langle a_{k}, x\right\rangle\right|^{2}=b_{k} \quad k \in[m]
$$

Lifting: $X=x x^{*}$

$$
\left|\left\langle a_{k}, x\right\rangle\right|^{2}=\operatorname{Tr}\left(x^{*} a_{k} a_{k}^{*} x\right)=\operatorname{Tr}\left(a_{k} a_{k}^{*} x x^{*}\right):=\operatorname{Tr}\left(A_{k} X\right) \quad a_{k} a_{k}^{*}=A_{k}
$$

Turns quadratic measurements into linear measurements about $x x^{*}$

PhaseLift

$$
\left|\left\langle a_{k}, x\right\rangle\right|^{2}=b_{k} \quad k \in[m]
$$

Lifting: $X=x x^{*}$

$$
\left|\left\langle a_{k}, x\right\rangle\right|^{2}=\operatorname{Tr}\left(x^{*} a_{k} a_{k}^{*} x\right)=\operatorname{Tr}\left(a_{k} a_{k}^{*} x x^{*}\right):=\operatorname{Tr}\left(A_{k} X\right) \quad a_{k} a_{k}^{*}=A_{k}
$$

Turns quadratic measurements into linear measurements about $x x^{*}$

Phase retrieval: equivalent formulation

find	X	\min	$\operatorname{rank}(X)$
s. t.	$\operatorname{Tr}\left(A_{k} X\right)=b_{k} \quad k \in[m] \Longleftrightarrow$ s. t.	$\operatorname{Tr}\left(A_{k} X\right)=b_{k} \quad k \in[m]$	
	$X \succeq 0, \operatorname{rank}(X)=1$	$X \succeq 0$	

Combinatorially hard

PhaseLift

$$
\left|\left\langle a_{k}, x\right\rangle\right|^{2}=b_{k} \quad k \in[m]
$$

Lifting: $X=x x^{*}$

$$
\left|\left\langle a_{k}, x\right\rangle\right|^{2}=\operatorname{Tr}\left(x^{*} a_{k} a_{k}^{*} x\right)=\operatorname{Tr}\left(a_{k} a_{k}^{*} x x^{*}\right):=\operatorname{Tr}\left(A_{k} X\right) \quad a_{k} a_{k}^{*}=A_{k}
$$

Turns quadratic measurements into linear measurements about $x x^{*}$

PhaseLift: tractable semidefinite relaxation

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}(X) \\
\text { subject to } & \operatorname{Tr}\left(A_{k} X\right)=b_{k} \quad k \in[m] \\
& X \succeq 0
\end{array}
$$

- This is a semidefinite program (SDP)
- Trace is convex proxy for rank

Semidefinite programming (SDP)

- Special class of convex optimization problems
- Relatively natural extension of linear programming (LP)
- 'Efficient' numerical solvers (interior point methods)

Standard inner product: $\langle C, X\rangle=\operatorname{Tr}\left(C^{*} X\right)$

From overdetermined to highly underdetermined

Quadratic equations

$$
\begin{aligned}
& b_{k}=\left|\left\langle a_{k}, x\right\rangle\right|^{2} \\
& k \in[m]
\end{aligned}
$$

minimize	$\operatorname{Tr}(X)$
subject to	$\mathcal{A}(X)=b$
	$X \succeq 0$

Have we made things worse?
overdetermined $(m>n) \quad \rightarrow \quad$ highly underdetermined $\left(m \ll n^{2}\right)$

This is not really new...

Relaxation of quadratically constrained QP's

- Shor (87) [Lower bounds on nonconvex quadratic optimization problems]
- Goemans and Williamson (95) [MAX-CUT]
- Ben-Tal and Nemirovskii (01) [Monograph]
- ...

Similar approach for array imaging: Chai, Moscoso, Papanicolaou (11)

Exact phase retrieval via SDP

Quadratic equations

$$
b_{k}=\left|\left\langle a_{k}, x\right\rangle\right|^{2} \quad k \in[m] \quad b=\mathcal{A}\left(x x^{*}\right)
$$

Simplest model: a_{k} independently and uniformly sampled on unit sphere

- of \mathbb{C}^{n} if $x \in \mathbb{C}^{n}$ (complex-valued problem)
- of \mathbb{R}^{n} if $x \in \mathbb{R}^{n}$ (real-valued problem)

Exact phase retrieval via SDP

Quadratic equations

$$
b_{k}=\left|\left\langle a_{k}, x\right\rangle\right|^{2} \quad k \in[m] \quad b=\mathcal{A}\left(x x^{*}\right)
$$

Simplest model: a_{k} independently and uniformly sampled on unit sphere

- of \mathbb{C}^{n} if $x \in \mathbb{C}^{n}$ (complex-valued problem)
- of \mathbb{R}^{n} if $x \in \mathbb{R}^{n}$ (real-valued problem)

Theorem (C. and Li ('12); C., Strohmer and Voroninski ('11))

Assume $m \gtrsim n$. With prob. $1-O\left(e^{-\gamma m}\right)$, for all $x \in \mathbb{C}^{n}$, only point in feasible set

$$
\{X: \mathcal{A}(X)=b \quad \text { and } \quad X \succeq 0\} \quad \text { is } x x^{*}
$$

Exact phase retrieval via SDP

Quadratic equations

$$
b_{k}=\left|\left\langle a_{k}, x\right\rangle\right|^{2} \quad k \in[m] \quad b=\mathcal{A}\left(x x^{*}\right)
$$

Simplest model: a_{k} independently and uniformly sampled on unit sphere

- of \mathbb{C}^{n} if $x \in \mathbb{C}^{n}$ (complex-valued problem)
- of \mathbb{R}^{n} if $x \in \mathbb{R}^{n}$ (real-valued problem)

Theorem (C. and Li ('12); C., Strohmer and Voroninski ('11))

Assume $m \gtrsim n$. With prob. $1-O\left(e^{-\gamma m}\right)$, for all $x \in \mathbb{C}^{n}$, only point in feasible set

$$
\{X: \mathcal{A}(X)=b \quad \text { and } \quad X \succeq 0\} \quad \text { is } x x^{*}
$$

Injectivity if $m \geq 4 n-2$ (Balan, Bodmann, Casazza, Edidin '09)

How is this possible?

How can feasible set $\{X \succeq 0\} \cap\{\mathcal{A}(X)=b\}$ have a unique point?

Intersection of $\left[\begin{array}{ll}x & y \\ y & z\end{array}\right] \succeq 0$ with affine space

Correct representation

Rank-1 matrices are on the boundary (extreme rays) of PSD cone

My mental representation

My mental representation

My mental representation

My mental representation

My mental representation

Extensions to physical setups

Random masking + diffraction

Similar theory: C. , Li and Soltanolkotabi ('13)

Numerical results: noiseless recovery

(a) Smooth signal (real part)

(b) Random signal (real part)

Figure: Recovery (with reweighting) of n-dimensional complex signal ($2 n$ unknowns) from $4 n$ quadratic measurements (random binary masks)

With noise

$$
b_{k} \approx\left|\left\langle x, a_{k}\right\rangle\right|^{2} \quad k \in[m]
$$

Noise aware recovery (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & \|\mathcal{A}(X)-b\|_{1}=\sum_{k}\left|\operatorname{Tr}\left(a_{k} a_{k}^{*} X\right)-b_{k}\right| \\
\text { subject to } & X \succeq 0
\end{array}
$$

Signal \hat{x} obtained by extracting first eigenvector (PC) of solution matrix

With noise

$$
b_{k} \approx\left|\left\langle x, a_{k}\right\rangle\right|^{2} \quad k \in[m]
$$

Noise aware recovery (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & \|\mathcal{A}(X)-b\|_{1}=\sum_{k}\left|\operatorname{Tr}\left(a_{k} a_{k}^{*} X\right)-b_{k}\right| \\
\text { subject to } & X \succeq 0
\end{array}
$$

Signal \hat{x} obtained by extracting first eigenvector (PC) of solution matrix

In same setup as before and for realistic noise models, no method whatsoever can possibly yield a fundamentally smaller recovery error [C. and Li (2012)]

Numerical results: noisy recovery

Figure: SNR versus relative MSE on a dB-scale for different numbers of illuminations with binary masks

Numerical results: noiseless 2D images

original image

8 binary masks

3 Gaussian masks

error with 8 binary masks

Courtesy
S. Marchesini (LBL)

Story \#2: Robust Principal Component Analysis
 Collaborators: X. Li, Y. Ma, J. Wright

The separation problem (Chandrasekahran et al.)

$$
M=L+S
$$

- M: data matrix (observed)
- L : low-rank (unobserved)
- S : sparse (unobserved)

The separation problem (Chandrasekahran et al.)

$$
M=L+S
$$

- M: data matrix (observed)
- L : low-rank (unobserved)
- S : sparse (unobserved)

Problem: can we recover L and S accurately?

Again, missing information

Motivation: robust principal component analysis (RPCA) PCA sensitive to outliers: breaks down with one (badly) corrupted data point

$$
\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{d 1} & x_{d 2} & \ldots & x_{d n}
\end{array}\right]
$$

Motivation: robust principal component analysis (RPCA) PCA sensitive to outliers: breaks down with one (badly) corrupted data point

$$
\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{d 1} & x_{d 2} & \ldots & x_{d n}
\end{array}\right] \Longrightarrow\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{d 1} & \ldots & \ldots & x_{d n}
\end{array}\right]
$$

Robust PCA

- Data increasingly high dimensional
- Gross errors frequently occur in many applications
- Image processing
- Web data analysis
- Bioinformatics
- ...
- Occlusions
- Malicious tampering
- Sensor failures
- ...

Gross errors

Observe corrupted entries

$$
Y_{i j}=L_{i j}+S_{i j} \quad(i, j) \in \Omega_{\mathrm{obs}}
$$

- L low-rank matrix
- S entries that have been tampered with (impulsive noise)

Problem

Recover L from missing and corrupted samples

The $L+S$ model

(Partial) information $y=\mathcal{A}(M)$ about

$$
\underbrace{M}_{\text {object }}=\underbrace{L}_{\text {low rank }}+\underbrace{S}_{\text {sparse }}
$$

$$
\left[\begin{array}{cccccc}
\times & 0 & ? & ? & \times & ? \\
? & ? & \times & \text { Q } & ? & ? \\
\times & ? & ? & \times & ? & ? \\
? & ? & \times & ? & ? & 0 \\
\times & ? & Q & ? & ? & ? \\
? & ? & \times & \text { Q } & ? & ?
\end{array}\right]
$$

- RPCA

$$
\text { data }=\text { low-dimensional structure }+ \text { corruption }
$$

- Dynamic MR
video seq. $=$ static background + sparse innovation
- Graphical modeling with hidden variables: Chandrasekaran, Sanghavi, Parrilo, Willsky ('09, '11)
marginal inverse covariance of observed variables $=$ low-rank + sparse

When does separation make sense?

$$
M=L+S
$$

Low-rank component cannot be sparse: $\quad L=\left[\begin{array}{ccccccc}* & * & * & * & \cdots & * & * \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0\end{array}\right]$

When does separation make sense?

$$
M=L+S
$$

Low-rank component cannot be sparse: $\quad L=\left[\begin{array}{ccccccc}* & * & * & * & \cdots & * & * \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0\end{array}\right]$

Sparse component cannot be low rank: $S=\left[\begin{array}{ccccccc}* & 0 & 0 & 0 & \cdots & 0 & 0 \\ * & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ * & 0 & 0 & 0 & \cdots & 0 & 0\end{array}\right]$

Low-rank component cannot be sparse

$$
L=\left[\begin{array}{ccccccc}
* & * & * & * & \cdots & * & * \\
* & * & * & * & \cdots & * & * \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Incoherent condition [C. and Recht ('08)]: column and row spaces not aligned with coordinate axes (singular vectors are not sparse)

Low-rank component cannot be sparse

$$
M=\left[\right]
$$

Incoherent condition [C. and Recht ('08)]: column and row spaces not aligned with coordinate axes (singular vectors are not sparse)

Sparse component cannot be low-rank

Sparsity pattern will be assumed (uniform) random

Demixing by convex programming

$$
M=L+S
$$

- L unknown (rank unknown)
- S unknown (\# of entries $\neq 0$, locations, magnitudes all unknown)

Demixing by convex programming

$$
M=L+S
$$

- L unknown (rank unknown)
- S unknown (\# of entries $\neq 0$, locations, magnitudes all unknown)

Recovery via SDP

$$
\begin{array}{ll}
\operatorname{minimize} & \|\hat{L}\|_{*}+\lambda\|\hat{S}\|_{1} \\
\text { subject to } & \hat{L}+\hat{S}=M
\end{array}
$$

See also Chandrasekaran, Sanghavi, Parrilo, Willsky ('09)

- nuclear norm: $\|L\|_{*}=\sum_{i} \sigma_{i}(L)$ (sum of sing. values)
- ℓ_{1} norm: $\|S\|_{1}=\sum_{i j}\left|S_{i j}\right|$ (sum of abs. values)

Exact recovery via SDP

$$
\min \|\hat{L}\|_{*}+\lambda\|\hat{S}\|_{1} \quad \text { s. t. } \quad \hat{L}+\hat{S}=M
$$

Exact recovery via SDP

$$
\min \|\hat{L}\|_{*}+\lambda\|\hat{S}\|_{1} \quad \text { s. t. } \quad \hat{L}+\hat{S}=M
$$

Theorem

- L is $n \times n$ of $\operatorname{rank}(L) \leq \rho_{r} n(\log n)^{-2}$ and incoherent
- S is $n \times n$, random sparsity pattern of cardinality at most $\rho_{s} n^{2}$

Then with probability $1-O\left(n^{-10}\right)$, SDP with $\lambda=1 / \sqrt{n}$ is exact:

$$
\hat{L}=L, \quad \hat{S}=S
$$

Same conclusion for rectangular matrices with $\lambda=1 / \sqrt{\operatorname{max~dim}}$

Exact recovery via SDP

$$
\min \|\hat{L}\|_{*}+\lambda\|\hat{S}\|_{1} \quad \text { s. t. } \quad \hat{L}+\hat{S}=M
$$

Theorem

－L is $n \times n$ of $\operatorname{rank}(L) \leq \rho_{r} n(\log n)^{-2}$ and incoherent
－S is $n \times n$ ，random sparsity pattern of cardinality at most $\rho_{s} n^{2}$
Then with probability $1-O\left(n^{-10}\right)$ ，SDP with $\lambda=1 / \sqrt{n}$ is exact：

$$
\hat{L}=L, \quad \hat{S}=S
$$

Same conclusion for rectangular matrices with $\lambda=1 / \sqrt{\operatorname{max~dim}}$
－No tuning parameter！
－Whatever the magnitudes of L and S

	曷	易	易	\times	怱
易	曷	\times	\times	易	\％
	䘩	怱	\times	易	考
易	\％	\times	\％	晈	
\times	怱	考	景	曷	易
易	易	－		曷	易

Phase transitions in probability of success

$L=X Y^{T}$ is a product of independent $n \times r$ i.i.d. $\mathcal{N}(0,1 / n)$ matrices

Missing and corrupted

RPCA

$$
\left[\begin{array}{cccccc}
\times & \text { Q } & ? & ? & \times & ? \\
? & ? & \times & \mathbb{Q} & ? & ? \\
\times & ? & ? & \times & ? & ? \\
? & ? & \times & ? & ? & 0 \\
\times & ? & Q & ? & ? & ? \\
? & ? & \times & \text { Q } & ? & ?
\end{array}\right]
$$

Missing and corrupted

RPCA

min

$$
\begin{array}{ll}
\text { min } & \|\hat{L}\|_{*}+\lambda\|\hat{S}\|_{1} \\
\text { s. t. } & \hat{L}_{i j}+\hat{S}_{i j}=L_{i j}+S_{i j}(i, j) \in \Omega_{\text {obs }}
\end{array}
$$

	8	?	?	\times		
?	?	\times	易	?	?	
\times	?	?	\times	?	?	
?	?	\times	?	?	\%	
\times	?	\%	?	?		
?	?	\times	穴	?		

Theorem

- L as before
- $\Omega_{\text {obs }}$ random set of size $0.1 n^{2}$ (missing frac. is arbitrary)
- Each observed entry corrupted with prob. $\tau \leq \tau_{0}$

Then with prob. $1-O\left(n^{-10}\right), P C P$ with $\lambda=1 / \sqrt{0.1 n}$ is exact:

$$
\hat{L}=L
$$

Same conclusion for rectangular matrices with $\lambda=1 / \sqrt{0.1 \text { max dim }}$

Background subtraction

With noise

With Li, Ma, Wright \& Zhou ('10)
Z stochastic or deterministic perturbation

$$
Y_{i j}=L_{i j}+S_{i j}+Z_{i j} \quad(i, j) \in \Omega
$$

When perfect (noiseless) separation occurs \Longrightarrow noisy variant is stable

Story \#3: Super-resolution
Collaborator: C. Fernandez-Granda

Limits of resolution

In any optical imaging system, diffraction imposes fundamental limit on resolution

The physical phenomenon called diffraction is of the utmost importance in the theory of optical imaging systems (Joseph Goodman)

Bandlimited imaging systems (Fourier optics)

$$
\begin{array}{lll}
f_{\text {obs }}(t)=(h * f)(t) & h: & \text { point spread function (PSF) } \\
\hat{f}_{\text {obs }}(\omega)=\hat{h}(\omega) \hat{f}(\omega) & \hat{h}: & \text { transfer function (TF) }
\end{array}
$$

Bandlimited system

$$
|\omega|>\Omega \quad \Rightarrow \quad|\hat{h}(\omega)|=0
$$

$\hat{f}_{\text {obs }}(\omega)=\hat{h}(\omega) \hat{f}(\omega) \rightarrow$ suppresses all high-frequency components

Bandlimited imaging systems (Fourier optics)

$$
\begin{array}{ll}
f_{\text {obs }}(t)=(h * f)(t) & h: \\
\hat{f}_{\text {obs }}(\omega)=\hat{h}(\omega) \hat{f}(\omega) & \hat{h}: \\
\text { point spread function (PSF) } \\
\text { transer function (TF) }
\end{array}
$$

Bandlimited system

$$
|\omega|>\Omega \Rightarrow|\hat{h}(\omega)|=0
$$

$\hat{f}_{\text {obs }}(\omega)=\hat{h}(\omega) \hat{f}(\omega) \rightarrow$ suppresses all high-frequency components
Example: coherent imaging

$$
\hat{h}(\omega)=1_{P}(\omega) \quad \text { indicator of pupil element }
$$

TF
Pupil

PSF Airy disk

cross-section (PSF)

Rayleigh resolution limit

Lord Rayleigh

The super-resolution problem

Retrieve fine scale information from low-pass data

Equivalent description: extrapolate spectrum (ill posed)

Random vs. low-frequency sampling

Random sampling (CS)

Low-frequency sampling (SR)

Compressive sensing: spectrum interpolation Super-resolution: spectrum extrapolation

Super-resolving point sources

Signal of interest is superposition of point sources

- Celestial bodies in astronomy
- Line spectra in speech analysis
- Fluorescent molecules in single-molecule microscopy

Many applications

- Radar
- Spectroscopy
- Medical imaging
- Astronomy
- Geophysics
- ...

Single molecule imaging (with WE Moerner's Lab)

Microscope receives light from fluorescent molecules

Problem

Resolution is much coarser than size of individual molecules (low-pass data) Can we 'beat' the diffraction limit and super-resolve those molecules?

Mathematical model

- Signal

$$
\begin{gathered}
x=\sum_{j} a_{j} \delta_{\tau_{j}} \\
a_{j} \in \mathbb{C}, \tau_{j} \in T \subset[0,1]
\end{gathered}
$$

- Data $y=\mathcal{F}_{n} x: n=2 f_{\text {lo }}+1$ low-frequency coefficients (Nyquist sampling)

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t)=\sum_{j} a_{j} e^{-i 2 \pi k \tau_{j}} \quad k \in \mathbb{Z},|k| \leq f_{\mathrm{l}}
$$

- Resolution limit: ($\lambda_{\mathrm{I}} / 2$ is Rayleigh distance)

$$
1 / f_{10}=\lambda_{10}
$$

Mathematical model

- Signal

$$
\begin{gathered}
x=\sum_{j} a_{j} \delta_{\tau_{j}} \\
a_{j} \in \mathbb{C}, \tau_{j} \in T \subset[0,1]
\end{gathered}
$$

- Data $y=\mathcal{F}_{n} x: n=2 f_{\text {lo }}+1$ low-frequency coefficients (Nyquist sampling)

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t)=\sum_{j} a_{j} e^{-i 2 \pi k \tau_{j}} \quad k \in \mathbb{Z},|k| \leq f_{\mathrm{l}}
$$

- Resolution limit: ($\lambda_{\mathrm{I}} / 2$ is Rayleigh distance)

$$
1 / f_{10}=\lambda_{10}
$$

Question

Can we resolve the signal beyond this limit?
Swap time and frequency \longrightarrow spectral estimation

Can you find the spikes?

Low-frequency data about spike train

Can you find the spikes?

Low-frequency data about spike train

Recovery by minimum total-variation

Recovery by cvx prog.

```
\(\min \|\tilde{x}\|_{\mathrm{TV}} \quad\) subject to \(\quad \mathcal{F}_{n} \tilde{x}=y\)
```

$\|x\|_{\mathrm{TV}}=\int|x(\mathrm{~d} t)|$ is continuous analog of ℓ_{1} norm

$$
x=\sum_{j} a_{j} \delta_{\tau_{j}} \quad \Longrightarrow \quad\|x\|_{\mathrm{TV}}=\sum_{j}\left|a_{j}\right|
$$

With noise

$$
\min \frac{1}{2}\left\|y-\mathcal{F}_{n} \tilde{x}\right\|_{\ell_{2}}^{2}+\lambda\|\tilde{x}\|_{\mathrm{TV}}
$$

Recovery by convex programming

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{\mathrm{l}}
$$

Recovery by convex programming

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{\mathrm{lo}}
$$

Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least

$$
2 / f_{10}:=2 \lambda_{10}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{10}$ suffices

Recovery by convex programming

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{\mathrm{lo}}
$$

Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least

$$
2 / f_{10}:=2 \lambda_{10}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{10}$ suffices

- Infinite precision!

Recovery by convex programming

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{\mathrm{lo}}
$$

Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least

$$
2 / f_{10}:=2 \lambda_{10}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{10}$ suffices

- Infinite precision!
- Whatever the amplitudes

Recovery by convex programming

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{\mathrm{lo}}
$$

Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least

$$
2 / f_{10}:=2 \lambda_{10}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{10}$ suffices

- Infinite precision!
- Whatever the amplitudes
- Can recover $\left(2 \lambda_{\mathrm{lo}}\right)^{-1}=f_{\mathrm{lo}} / 2=n / 4$ spikes from n low-freq. samples

Recovery by convex programming

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{\mathrm{l}}
$$

Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least

$$
2 / f_{10}:=2 \lambda_{10}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{10}$ suffices

- Infinite precision!
- Whatever the amplitudes
- Can recover $\left(2 \lambda_{\mathrm{lo}}\right)^{-1}=f_{\mathrm{lo}} / 2=n / 4$ spikes from n low-freq. samples
- Cannot go below $\lambda_{\text {l }}$

Recovery by convex programming

$$
y(k)=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \quad|k| \leq f_{\mathrm{l}}
$$

Theorem (C. and Fernandez Granda (2012))

If spikes are separated by at least

$$
2 / f_{10}:=2 \lambda_{10}
$$

then min TV solution is exact! For real-valued x, a min dist. of $1.87 \lambda_{10}$ suffices

- Infinite precision!
- Whatever the amplitudes
- Can recover $\left(2 \lambda_{\mathrm{lo}}\right)^{-1}=f_{\mathrm{lo}} / 2=n / 4$ spikes from n low-freq. samples
- Cannot go below $\lambda_{\text {o }}$
- Essentially same result in higher dimensions

About separation: sparsity is not enough!

- CS: sparse signals are 'away' from null space of sampling operator
- Super-res: this is not the case

About separation: sparsity is not enough!

- CS: sparse signals are 'away' from null space of sampling operator
- Super-res: this is not the case

Signal

Spectrum

x

Analysis via prolate spheroidal functions

David Slepian

If distance between spikes less than $\lambda_{\text {lo }} / 2$ (Rayleigh), problem hopelessly ill posed

Formulation as a finite-dimensional problem

Primal problem

$$
\min \|x\|_{\text {TV }} \text { s. t. } \mathcal{F}_{n} x=y
$$

- Infinite-dimensional variable x
- Finitely many constraints

Dual problem

$\max \operatorname{Re}\langle y, c\rangle$ s. t. $\left\|\mathcal{F}_{n}^{*} c\right\|_{\infty} \leq 1$

- Finite-dimensional variable c
- Infinitely many constraints

$$
\left(\mathcal{F}_{n}^{*} c\right)(t)=\sum_{|k| \leq f_{\mathrm{o}}} c_{k} e^{i 2 \pi k t}
$$

Formulation as a finite-dimensional problem

Primal problem

$$
\min \|x\|_{\mathrm{TV}} \text { s. t. } \mathcal{F}_{n} x=y
$$

- Infinite-dimensional variable x
- Finitely many constraints

Dual problem

$$
\max \operatorname{Re}\langle y, c\rangle \text { s. t. }\left\|\mathcal{F}_{n}^{*} c\right\|_{\infty} \leq 1
$$

- Finite-dimensional variable c
- Infinitely many constraints

$$
\left(\mathcal{F}_{n}^{*} c\right)(t)=\sum_{|k| \leq f_{\mathrm{lo}}} c_{k} e^{i 2 \pi k t}
$$

Semidefinite representability

$\left|\left(\mathcal{F}_{n}^{*} c\right)(t)\right| \leq 1$ for all $t \in[0,1]$ equivalent to
(1) there is Q Hermitian s. t.

$$
\left[\begin{array}{cc}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0
$$

(2) $\operatorname{Tr}(Q)=1$
(3) sums along superdiagonals vanish: $\sum_{i=1}^{n-j} Q_{i, i+j}=0$ for $1 \leq j \leq n-1$

SDP formulation

Dual as an SDP

$$
\begin{aligned}
\text { maximize } \quad \operatorname{Re}\langle y, c\rangle \quad \text { subject to } \quad & {\left[\begin{array}{cc}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 } \\
& \sum_{i=1}^{n-j} Q_{i, i+j}=\delta_{j} \quad 0 \leq j \leq n-1
\end{aligned}
$$

Dual solution c: coeffs. of low-pass trig. polynomial $\sum_{k} c_{k} e^{i 2 \pi k t}$ interpolating the sign of the primal solution

SDP formulation

Dual as an SDP

$$
\begin{aligned}
\text { maximize } \quad \operatorname{Re}\langle y, c\rangle \quad \text { subject to } \quad & {\left[\begin{array}{cc}
Q & c \\
c^{*} & 1
\end{array}\right] \succeq 0 } \\
& \sum_{i=1}^{n-j} Q_{i, i+j}=\delta_{j} \quad 0 \leq j \leq n-1
\end{aligned}
$$

Dual solution c : coeffs. of low-pass trig. polynomial $\sum_{k} c_{k} e^{i 2 \pi k t}$ interpolating the sign of the primal solution

To recover spike locations
(1) Solve dual
(2) Check when polynomial takes on magnitude 1

With noise

$$
\begin{gathered}
y=\mathcal{F}_{n} x+\text { noise } \\
\min \frac{1}{2}\left\|y-\mathcal{F}_{n} \tilde{x}\right\|_{\ell_{2}}^{2}+\lambda\|\tilde{x}\|_{\mathrm{TV}}
\end{gathered}
$$

- Also an SDP
- Theory: C. and Fernandez Granda ('12)

Noisy example

SNR: 14 dB

Noisy example

SNR: 14 dB

Noisy example

SNR: 14 dB

— Measurements
— High-res signal

Noisy example

Average localization error: 6.54×10^{-4}

Summary

- Three important problems with missing data
- Phase retrieval
- Matrix completion/RPCA
- Super-resolution
- Three simple and model-free recovery procedures via convex programming
- Three near-perfect solutions

Apologies: things I have not talked about

- Algorithms
- Applications
- Avalanche of related works

A small sample of papers I have greatly enjoyed

- Phase retrieval
- Netrapalli, Jain, Sanghavi, Phase retrieval using alternating minimization ('13)
- Waldspurger, d'Aspremont, Mallat, Phase recovery, MaxCut and complex semidefinite programming ('12)
- Robust PCA
- Gross, Recovering low-rank matrices from few coefficients in any basis ('09)
- Chandrasekaran, Parrilo and Willsky, Latent variable graphical model selection via convex optimization ('11)
- Hsu, Kakade and Zhang, Robust matrix decomposition with outliers ('11)
- Super-resolution
- Kahane, Analyse et synthèse harmoniques ('11)
- Slepian, Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - The discrete case ('78)

General SDP formulation

Nuclear norm and spectral norms are dual: $\|X\|_{*}=\operatorname{val}(P)$
$\begin{array}{lll} & \text { maximize } & \langle U, X\rangle \\ \text { subject to }\end{array}\|U\| \leq 1 \quad \Leftrightarrow \quad \begin{aligned} & \text { maximize }\end{aligned} \quad \begin{aligned} & \langle U, X\rangle \\ & \text { subject to }\end{aligned} \quad\left[\begin{array}{cc}I & U \\ U^{*} & I\end{array}\right] \succeq 0$

General SDP formulation

Nuclear norm and spectral norms are dual: $\|X\|_{*}=\operatorname{val}(P)$

Duality: $\|X\|_{*}=\operatorname{val}(D)$

$$
\begin{array}{lll}
& \text { minimize } & .5\left(\operatorname{Tr}\left(W_{1}\right)+\operatorname{Tr}\left(W_{2}\right)\right) \\
(D) & \text { subject to } & {\left[\begin{array}{cc}
W_{1} & X \\
X^{*} & W_{2}
\end{array}\right] \succeq 0}
\end{array}
$$

Optimization variables: $W_{1} \in \mathbb{R}^{n_{1} \times n_{1}}, W_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$

Nuclear norm heuristics: Fazel (2002), Hindi, Boyd \& Fazel (2001)

The super-resolution factor

- Have data at resolution $\lambda_{\text {lo }}$
- Wish resolution $\lambda_{h i}$

Super-resolution factor

$$
\mathrm{SRF}=\frac{\lambda_{\mathrm{lo}}}{\lambda_{\mathrm{hi}}}
$$

The super-resolution factor (SRF): frequency viewpoint

- Observe spectrum up to f_{l}
- Wish to extrapolate up to $f_{\text {hi }}$

Super-resolution factor

$$
\mathrm{SRF}=\frac{f_{\mathrm{hi}}}{f_{\mathrm{lo}}}
$$

With noise

$$
\begin{array}{ll}
y=\mathcal{F}_{n} x+\text { noise } & \mathcal{F}_{n} x=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \\
|k| \leq f_{\text {lo }}
\end{array}
$$

$$
\left\|(\hat{x}-x) * \varphi_{\lambda_{10}}\right\|_{\mathrm{TV}} \lesssim \text { noise level }
$$

With noise

$$
\begin{array}{ll}
y=\mathcal{F}_{n} x+\text { noise } & \mathcal{F}_{n} x=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \\
& |k| \leq f_{\mathrm{lo}}
\end{array}
$$

At 'finer' resolution $\lambda_{h i}=\lambda_{\text {lo }} / S R F$, convex programming achieves

$$
\left\|(\hat{x}-x) * \varphi_{\lambda_{\mathrm{hi}}}\right\|_{\mathrm{TV}} \lesssim \mathrm{SRF}^{2} \times \text { noise level }
$$

With noise

$$
\begin{array}{ll}
y=\mathcal{F}_{n} x+\text { noise } & \mathcal{F}_{n} x=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t) \\
|k| \leq f_{\mathrm{l}}
\end{array}
$$

At 'finer' resolution $\lambda_{h i}=\lambda_{10} /$ SRF, convex programming achieves

$$
\left\|(\hat{x}-x) * \varphi_{\lambda_{\mathrm{hi}}}\right\|_{\mathrm{TV}} \lesssim \mathrm{SRF}^{2} \times \text { noise level }
$$

Modulus of continuity studies for super-resolution: Donoho ('92)

