
Kernels, Random Embeddings and Deep Learning

Vikas Sindhwani
IBM Research, NY

October 28, 2014

Acknowledgements

I At IBM: Haim Avron, Tara Sainath, B. Ramabhadran, Q. Fan

I Summer Interns: Jiyan Yang (Stanford), Po-sen Huang (UIUC)

I Michael Mahoney (UC Berkeley), Ha Quang Minh (IIT Genova)

I IBM DARPA XDATA project led by Ken Clarkson (IBM Almaden)

2 34

Setting

I Given labeled data in the form of input-output pairs,

{xi,yi}ni=1, xi ∈ X ⊂ Rd, yi ∈ Y ⊂ Rm,

estimate the unknown dependency f : X 7→ Y.

I Regularized Risk Minimization in a suitable hypothesis space H,

arg min
f∈H

n∑
i=1

V (f(xi),yi) + Ω(f)

I Large n =⇒ Big models: H “rich” /non-parametric/nonlinear.
I Two great ML traditions around choosing H:

– Deep Neural Networks: f(x) = sn(. . . s2(W2s1(W1x)) . . .)
– Kernel Methods: general nonlinear function space generated by a

kernel function k(x, z) on X × X .

I This talk: Thrust towards scalable kernel methods, motivated by the
recent successes of deep learning.

3 34

Setting

I Given labeled data in the form of input-output pairs,

{xi,yi}ni=1, xi ∈ X ⊂ Rd, yi ∈ Y ⊂ Rm,

estimate the unknown dependency f : X 7→ Y.
I Regularized Risk Minimization in a suitable hypothesis space H,

arg min
f∈H

n∑
i=1

V (f(xi),yi) + Ω(f)

I Large n =⇒ Big models: H “rich” /non-parametric/nonlinear.
I Two great ML traditions around choosing H:

– Deep Neural Networks: f(x) = sn(. . . s2(W2s1(W1x)) . . .)
– Kernel Methods: general nonlinear function space generated by a

kernel function k(x, z) on X × X .

I This talk: Thrust towards scalable kernel methods, motivated by the
recent successes of deep learning.

3 34

Setting

I Given labeled data in the form of input-output pairs,

{xi,yi}ni=1, xi ∈ X ⊂ Rd, yi ∈ Y ⊂ Rm,

estimate the unknown dependency f : X 7→ Y.
I Regularized Risk Minimization in a suitable hypothesis space H,

arg min
f∈H

n∑
i=1

V (f(xi),yi) + Ω(f)

I Large n =⇒ Big models: H “rich” /non-parametric/nonlinear.

I Two great ML traditions around choosing H:
– Deep Neural Networks: f(x) = sn(. . . s2(W2s1(W1x)) . . .)
– Kernel Methods: general nonlinear function space generated by a

kernel function k(x, z) on X × X .

I This talk: Thrust towards scalable kernel methods, motivated by the
recent successes of deep learning.

3 34

Setting

I Given labeled data in the form of input-output pairs,

{xi,yi}ni=1, xi ∈ X ⊂ Rd, yi ∈ Y ⊂ Rm,

estimate the unknown dependency f : X 7→ Y.
I Regularized Risk Minimization in a suitable hypothesis space H,

arg min
f∈H

n∑
i=1

V (f(xi),yi) + Ω(f)

I Large n =⇒ Big models: H “rich” /non-parametric/nonlinear.
I Two great ML traditions around choosing H:

– Deep Neural Networks: f(x) = sn(. . . s2(W2s1(W1x)) . . .)
– Kernel Methods: general nonlinear function space generated by a

kernel function k(x, z) on X × X .

I This talk: Thrust towards scalable kernel methods, motivated by the
recent successes of deep learning.

3 34

Setting

I Given labeled data in the form of input-output pairs,

{xi,yi}ni=1, xi ∈ X ⊂ Rd, yi ∈ Y ⊂ Rm,

estimate the unknown dependency f : X 7→ Y.
I Regularized Risk Minimization in a suitable hypothesis space H,

arg min
f∈H

n∑
i=1

V (f(xi),yi) + Ω(f)

I Large n =⇒ Big models: H “rich” /non-parametric/nonlinear.
I Two great ML traditions around choosing H:

– Deep Neural Networks: f(x) = sn(. . . s2(W2s1(W1x)) . . .)

– Kernel Methods: general nonlinear function space generated by a
kernel function k(x, z) on X × X .

I This talk: Thrust towards scalable kernel methods, motivated by the
recent successes of deep learning.

3 34

Setting

I Given labeled data in the form of input-output pairs,

{xi,yi}ni=1, xi ∈ X ⊂ Rd, yi ∈ Y ⊂ Rm,

estimate the unknown dependency f : X 7→ Y.
I Regularized Risk Minimization in a suitable hypothesis space H,

arg min
f∈H

n∑
i=1

V (f(xi),yi) + Ω(f)

I Large n =⇒ Big models: H “rich” /non-parametric/nonlinear.
I Two great ML traditions around choosing H:

– Deep Neural Networks: f(x) = sn(. . . s2(W2s1(W1x)) . . .)
– Kernel Methods: general nonlinear function space generated by a

kernel function k(x, z) on X × X .

I This talk: Thrust towards scalable kernel methods, motivated by the
recent successes of deep learning.

3 34

Outline

Motivation and Background

Scalable Kernel Methods
Random Embeddings+Distributed Computation (ICASSP, JSM 2014)
libSkylark: An open source software stack
Quasi-Monte Carlo Embeddings (ICML 2014)

Synergies?

Motivation and Background 4 34

Deep Learning is “Supercharging” Machine Learning

Krizhevsky et.al. won the 2012 ImageNet challenge (ILSVRC-2012) with
top-5 error rate of 15.3% compared to 26.2% of the second best entry.

I Many statistical and computational ingredients:

– Large datasets (ILSVRC since 2010)

– Large statistical capacity (1.2M images, 60M params)
– Distributed computation
– Depth, Invariant feature learning (transferrable to other tasks)
– Engineering: Dropout, ReLU . . .

I Very active area in Speech and Natural Language Processing.

Motivation and Background 5 34

Deep Learning is “Supercharging” Machine Learning

Krizhevsky et.al. won the 2012 ImageNet challenge (ILSVRC-2012) with
top-5 error rate of 15.3% compared to 26.2% of the second best entry.

I Many statistical and computational ingredients:

– Large datasets (ILSVRC since 2010)
– Large statistical capacity (1.2M images, 60M params)

– Distributed computation
– Depth, Invariant feature learning (transferrable to other tasks)
– Engineering: Dropout, ReLU . . .

I Very active area in Speech and Natural Language Processing.

Motivation and Background 5 34

Deep Learning is “Supercharging” Machine Learning

Krizhevsky et.al. won the 2012 ImageNet challenge (ILSVRC-2012) with
top-5 error rate of 15.3% compared to 26.2% of the second best entry.

I Many statistical and computational ingredients:

– Large datasets (ILSVRC since 2010)
– Large statistical capacity (1.2M images, 60M params)
– Distributed computation

– Depth, Invariant feature learning (transferrable to other tasks)
– Engineering: Dropout, ReLU . . .

I Very active area in Speech and Natural Language Processing.

Motivation and Background 5 34

Deep Learning is “Supercharging” Machine Learning

Krizhevsky et.al. won the 2012 ImageNet challenge (ILSVRC-2012) with
top-5 error rate of 15.3% compared to 26.2% of the second best entry.

I Many statistical and computational ingredients:

– Large datasets (ILSVRC since 2010)
– Large statistical capacity (1.2M images, 60M params)
– Distributed computation
– Depth, Invariant feature learning (transferrable to other tasks)

– Engineering: Dropout, ReLU . . .

I Very active area in Speech and Natural Language Processing.

Motivation and Background 5 34

Deep Learning is “Supercharging” Machine Learning

Krizhevsky et.al. won the 2012 ImageNet challenge (ILSVRC-2012) with
top-5 error rate of 15.3% compared to 26.2% of the second best entry.

I Many statistical and computational ingredients:

– Large datasets (ILSVRC since 2010)
– Large statistical capacity (1.2M images, 60M params)
– Distributed computation
– Depth, Invariant feature learning (transferrable to other tasks)
– Engineering: Dropout, ReLU . . .

I Very active area in Speech and Natural Language Processing.

Motivation and Background 5 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.

– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!

– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.
Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.

– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing

– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.

– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Machine Learning in 1990s

I Convolutional Neural Networks (Fukushima 1980; Lecun et al 1989)

– 3 days to train on USPS (n = 7291; digit recognition) on Sun
Sparcstation 1 (33MHz clock speed, 64MB RAM)

I Personal history:

– 1998: First ML experiment - train DNN on UCI Wine dataset.
– 1999: Introduced to Kernel Methods - by DNN researchers!
– 2003-4: NN paper at JMLR rejected; accepted in IEEE Trans.

Neural Nets with a kernel methods section!

I Why Kernel Methods?

– Local Minima free - stronger role of Convex Optimization.
– Theoretically appealing
– Handle non-vectorial data; high-dimensional data
– Easier model selection via continuous optimization.
– Matched NN in many cases, although didnt scale wrt n as well.

I So what changed?

– More data, parallel algorithms, hardware? Better DNN training? . . .

Motivation and Background 6 34

Kernel Methods and Neural Networks (Pre-Google)

Motivation and Background 7 34

Kernel Methods and Neural Networks

Geoff Hinton facts meme maintained at
http://yann.lecun.com/ex/fun/

I All kernels that ever dared approaching Geoff Hinton woke up
convolved.

I The only kernel Geoff Hinton has ever used is a kernel of truth.

I If you defy Geoff Hinton, he will maximize your entropy in no time.
Your free energy will be gone even before you reach equilibrium.

Are there synergies between these fields towards design of even better
(faster and more accurate) algorithms?

Motivation and Background 8 34

http://yann.lecun.com/ex/fun/

Kernel Methods and Neural Networks

Geoff Hinton facts meme maintained at
http://yann.lecun.com/ex/fun/

I All kernels that ever dared approaching Geoff Hinton woke up
convolved.

I The only kernel Geoff Hinton has ever used is a kernel of truth.

I If you defy Geoff Hinton, he will maximize your entropy in no time.
Your free energy will be gone even before you reach equilibrium.

Are there synergies between these fields towards design of even better
(faster and more accurate) algorithms?

Motivation and Background 8 34

http://yann.lecun.com/ex/fun/

Kernel Methods and Neural Networks

Geoff Hinton facts meme maintained at
http://yann.lecun.com/ex/fun/

I All kernels that ever dared approaching Geoff Hinton woke up
convolved.

I The only kernel Geoff Hinton has ever used is a kernel of truth.

I If you defy Geoff Hinton, he will maximize your entropy in no time.
Your free energy will be gone even before you reach equilibrium.

Are there synergies between these fields towards design of even better
(faster and more accurate) algorithms?

Motivation and Background 8 34

http://yann.lecun.com/ex/fun/

The Mathematical Naturalness of Kernel Methods

I Data X ∈ Rd, Models ∈ H : X 7→ R

I Geometry in H: inner product 〈·, ·〉H, norm ‖ · ‖H (Hilbert Spaces)

I Theorem All nice Hilbert spaces are generated by a symmetric
positive definite function (the kernel) k(x,x′) on X × X

– if f, g ∈ H close i.e. ‖f − g‖H small, then f(x), g(x) close ∀x ∈ X .
– Reproducing Kernel Hilbert Spaces (RKHSs)

I Functional Analysis (Aronszajn, Bergman (1950s)); Statistics
(Parzen (1960s)); PDEs; Numerical Analysis. . .

– ML: Nonlinear classification, regression, clustering, time-series
analysis, dynamical systems, hypothesis testing, causal modeling, . . .

I In principle, possible to compose Deep Learning pipelines using more
general nonlinear functions drawn from RKHSs.

Motivation and Background 9 34

The Mathematical Naturalness of Kernel Methods

I Data X ∈ Rd, Models ∈ H : X 7→ R
I Geometry in H: inner product 〈·, ·〉H, norm ‖ · ‖H (Hilbert Spaces)

I Theorem All nice Hilbert spaces are generated by a symmetric
positive definite function (the kernel) k(x,x′) on X × X

– if f, g ∈ H close i.e. ‖f − g‖H small, then f(x), g(x) close ∀x ∈ X .
– Reproducing Kernel Hilbert Spaces (RKHSs)

I Functional Analysis (Aronszajn, Bergman (1950s)); Statistics
(Parzen (1960s)); PDEs; Numerical Analysis. . .

– ML: Nonlinear classification, regression, clustering, time-series
analysis, dynamical systems, hypothesis testing, causal modeling, . . .

I In principle, possible to compose Deep Learning pipelines using more
general nonlinear functions drawn from RKHSs.

Motivation and Background 9 34

The Mathematical Naturalness of Kernel Methods

I Data X ∈ Rd, Models ∈ H : X 7→ R
I Geometry in H: inner product 〈·, ·〉H, norm ‖ · ‖H (Hilbert Spaces)

I Theorem All nice Hilbert spaces are generated by a symmetric
positive definite function (the kernel) k(x,x′) on X × X

– if f, g ∈ H close i.e. ‖f − g‖H small, then f(x), g(x) close ∀x ∈ X .
– Reproducing Kernel Hilbert Spaces (RKHSs)

I Functional Analysis (Aronszajn, Bergman (1950s)); Statistics
(Parzen (1960s)); PDEs; Numerical Analysis. . .

– ML: Nonlinear classification, regression, clustering, time-series
analysis, dynamical systems, hypothesis testing, causal modeling, . . .

I In principle, possible to compose Deep Learning pipelines using more
general nonlinear functions drawn from RKHSs.

Motivation and Background 9 34

The Mathematical Naturalness of Kernel Methods

I Data X ∈ Rd, Models ∈ H : X 7→ R
I Geometry in H: inner product 〈·, ·〉H, norm ‖ · ‖H (Hilbert Spaces)

I Theorem All nice Hilbert spaces are generated by a symmetric
positive definite function (the kernel) k(x,x′) on X × X

– if f, g ∈ H close i.e. ‖f − g‖H small, then f(x), g(x) close ∀x ∈ X .
– Reproducing Kernel Hilbert Spaces (RKHSs)

I Functional Analysis (Aronszajn, Bergman (1950s)); Statistics
(Parzen (1960s)); PDEs; Numerical Analysis. . .

– ML: Nonlinear classification, regression, clustering, time-series
analysis, dynamical systems, hypothesis testing, causal modeling, . . .

I In principle, possible to compose Deep Learning pipelines using more
general nonlinear functions drawn from RKHSs.

Motivation and Background 9 34

The Mathematical Naturalness of Kernel Methods

I Data X ∈ Rd, Models ∈ H : X 7→ R
I Geometry in H: inner product 〈·, ·〉H, norm ‖ · ‖H (Hilbert Spaces)

I Theorem All nice Hilbert spaces are generated by a symmetric
positive definite function (the kernel) k(x,x′) on X × X

– if f, g ∈ H close i.e. ‖f − g‖H small, then f(x), g(x) close ∀x ∈ X .
– Reproducing Kernel Hilbert Spaces (RKHSs)

I Functional Analysis (Aronszajn, Bergman (1950s)); Statistics
(Parzen (1960s)); PDEs; Numerical Analysis. . .

– ML: Nonlinear classification, regression, clustering, time-series
analysis, dynamical systems, hypothesis testing, causal modeling, . . .

I In principle, possible to compose Deep Learning pipelines using more
general nonlinear functions drawn from RKHSs.

Motivation and Background 9 34

Outline

Motivation and Background

Scalable Kernel Methods
Random Embeddings+Distributed Computation (ICASSP, JSM 2014)
libSkylark: An open source software stack
Quasi-Monte Carlo Embeddings (ICML 2014)

Synergies?

Scalable Kernel Methods 10 34

Scalability Challenges for Kernel Methods

f? = arg min
f∈Hk

1

n

n∑
i=1

V (yi, f(xi)) + λ‖f‖2Hk , xi ∈ Rd

I Representer Theorem: f?(x) =
∑n
i=1 αik(x,xi)

I Regularized Least Squares

(K + λI)α = Y
O(n2) storage

O(n3 + n2d) training
O(nd) test speed

I Hard to parallelize when working directly with Kij = k(xi,xj)

Scalable Kernel Methods 11 34

Randomized Algorithms

I Explicit approximate feature map: Ψ : Rd 7→ Cs such that,

k(x, z) ≈ 〈Ψ̂(x), Ψ̂(z)〉Cs

⇒
(
Z(X)

T
Z(X) + λI

)
w = Z(X)

T
Y,

O(ns) storage
O(ns2) training
O(s) test speed

I Interested in Data-oblivious maps that depend only on the kernel
function, and not on the data.

– Should be very cheap to apply and parallelizable.

Scalable Kernel Methods 12 34

Random Fourier Features (Rahimi & Recht, 2007)

I Theorem [Bochner 1930,33] One-to-one Fourier-pair
correspondence between any (normalized) shift-invariant kernel k
and density p such that,

k(x, z) = ψ(x− z) =

∫
Rd
e−i(x−z)Twp(w)dw

– Gaussian kernel: k(x, z) = e
−
‖x−z‖22

2σ2 ⇐⇒ p = N (0, σ−2Id)

I Monte-Carlo approximation to Integral representation:

k(x, z) ≈ 1

s

s∑
j=1

e−i(x−z)Twj = 〈Ψ̂S(x), Ψ̂S(z)〉Cs

Ψ̂S(x) =
1√
s

[
e−ix

Tw1 . . . e−ix
Tws

]
∈ Cs, S = [w1 . . .ws] ∼ p

Scalable Kernel Methods 13 34

Random Fourier Features (Rahimi & Recht, 2007)

I Theorem [Bochner 1930,33] One-to-one Fourier-pair
correspondence between any (normalized) shift-invariant kernel k
and density p such that,

k(x, z) = ψ(x− z) =

∫
Rd
e−i(x−z)Twp(w)dw

– Gaussian kernel: k(x, z) = e
−
‖x−z‖22

2σ2 ⇐⇒ p = N (0, σ−2Id)

I Monte-Carlo approximation to Integral representation:

k(x, z) ≈ 1

s

s∑
j=1

e−i(x−z)Twj = 〈Ψ̂S(x), Ψ̂S(z)〉Cs

Ψ̂S(x) =
1√
s

[
e−ix

Tw1 . . . e−ix
Tws

]
∈ Cs, S = [w1 . . .ws] ∼ p

Scalable Kernel Methods 13 34

DNNs vs Kernel Methods on TIMIT (Speech)

Joint work with IBM Speech Group, P. Huang:
Can “shallow”, convex randomized kernel methods “match” DNNs?
(predicting HMM states given short window of coefficients representing acoustic input)

G = randn(size(X,1), s);
Z = exp(i*X*G);
I = eye(size(X,2));
C = Z’*Z;
alpha = (C + lambda*I)\(Z’*y(:));
ztest = exp(i*xtest*G)*alpha;

I Z(X): 1.2TB

I Stream on blocks
C+ = Z′BZB

I But C also big (47GB).

I Need: Distributed solvers to
handle big n, s; Z(X)
implicitly.

1 2 3 4 5 6 7 8
Number of Random Features (s) / 10000

33

34

35

36

37

38

39

40

41

C
la

ss
ifi

ca
ti

on
E

rr
or

(%
)

TIMIT: n = 2M,d = 440, k = 147

DNN (440-4k-4k-147)
RandomFourier
Exact Kernel (n=100k, 75GB)

Scalable Kernel Methods 14 34

DNNs vs Kernel Methods on TIMIT (Speech)

Joint work with IBM Speech Group, P. Huang:
Can “shallow”, convex randomized kernel methods “match” DNNs?
(predicting HMM states given short window of coefficients representing acoustic input)

G = randn(size(X,1), s);
Z = exp(i*X*G);
I = eye(size(X,2));
C = Z’*Z;
alpha = (C + lambda*I)\(Z’*y(:));
ztest = exp(i*xtest*G)*alpha;

I Z(X): 1.2TB

I Stream on blocks
C+ = Z′BZB

I But C also big (47GB).

I Need: Distributed solvers to
handle big n, s; Z(X)
implicitly.

1 2 3 4 5 6 7 8
Number of Random Features (s) / 10000

33

34

35

36

37

38

39

40

41

C
la

ss
ifi

ca
ti

on
E

rr
or

(%
)

TIMIT: n = 2M,d = 440, k = 147

DNN (440-4k-4k-147)
RandomFourier
Exact Kernel (n=100k, 75GB)

Scalable Kernel Methods 14 34

DNNs vs Kernel Methods on TIMIT (Speech)

Kernel Methods match DNNs on TIMIT, ICASSP 2014, with P. Huang and IBM Speech group

High-performance Kernel Machines with Implicit Distributed Optimization and Randomization, JSM 2014, with H. Avron.

I ∼ 2 hours on 256 IBM Bluegene/Q
nodes.

I Phone error rate of 21.3% - best

reported for Kernel methods.

– Competitive with
HMM/DNN systems.

– New record: 16.7% with
CNNs (ICASSP 2014).

I Only two hyperparameters: σ, s (early
stopping regularizer).

I Z ≈ 6.4TB, C ≈ 1.2TB.

I Materialized in blocks/used/discarded
on-the-fly, in parallel.

0 5 10 15 20 25 30 35 40
Number of Random Features (s) / 10000

33

34

35

36

37

38

39

40

41

C
la

ss
ifi

ca
ti

on
E

rr
or

(%
)

PER: 21.3% < 22.3% (DNN)

TIMIT: n = 2M,d = 440, k = 147

DNN (440-4k-4k-147)
RandomFourier
Exact Kernel (n=100k, 75GB)

Scalable Kernel Methods 15 34

DNNs vs Kernel Methods on TIMIT (Speech)

Kernel Methods match DNNs on TIMIT, ICASSP 2014, with P. Huang and IBM Speech group

High-performance Kernel Machines with Implicit Distributed Optimization and Randomization, JSM 2014, with H. Avron.

I ∼ 2 hours on 256 IBM Bluegene/Q
nodes.

I Phone error rate of 21.3% - best

reported for Kernel methods.

– Competitive with
HMM/DNN systems.

– New record: 16.7% with
CNNs (ICASSP 2014).

I Only two hyperparameters: σ, s (early
stopping regularizer).

I Z ≈ 6.4TB, C ≈ 1.2TB.

I Materialized in blocks/used/discarded
on-the-fly, in parallel.

0 5 10 15 20 25 30 35 40
Number of Random Features (s) / 10000

33

34

35

36

37

38

39

40

41

C
la

ss
ifi

ca
ti

on
E

rr
or

(%
)

PER: 21.3% < 22.3% (DNN)

TIMIT: n = 2M,d = 440, k = 147

DNN (440-4k-4k-147)
RandomFourier
Exact Kernel (n=100k, 75GB)

Scalable Kernel Methods 15 34

Distributed Convex Optimization

I Alternating Direction Method of Multipliers (50s; Boyd et al, 2013)

arg min
x∈Rn,z∈Rm

f(x) + g(z) subject to Ax+Bz = c

I Row/Column Splitting; Block splitting (Parikh & Boyd, 2013)

arg min
x∈Rd

R∑
i=1

fi(x) + g(x) ⇒
R∑
i=1

fi(xi) + g(z) s.t xi = z (1)

x
(k+1)
i = arg min

x
fi(x) +

ρ

2
‖x− zk + νki ‖22 (2)

z = proxg/(Rρ)[x̄
k+1 + ν̄k] (comm.) (3)

νk+1
i = νki + xk+1

i − zk+1 (4)

where proxf [x] = arg min
y

1

2
‖x− y‖22 + f(y)

I Note: extra consensus and dual variables need to be managed.

I Closed-form updates, Extensibility, Code-reuse, Parallelism.

Scalable Kernel Methods 16 34

Distributed Block-splitting ADMM

https://github.com/xdata-skylark/libskylark/tree/master/ml

Y1, X1

Y2, X2

Y3, X3

node 1

node 2

node 3

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

T[X1, 2]

T[X3, 2]

T-cores/OpenMP-threads

MPI (rank 1)

proxl

T-cores/OpenMP-threads

MPI (rank 3)

W11 W12 W13

W31 W32 W33

projZij

W̄

W

node 0

node 0

reduce

reduce

proxr

broadcast

broadcast

U = [ZTijZij + λI]−1︸ ︷︷ ︸
cached

(X + ZTijY︸ ︷︷ ︸
gemm

), V = ZijU︸ ︷︷ ︸
gemm

(5)

Scalable Kernel Methods 17 34

Distributed Block-splitting ADMM

https://github.com/xdata-skylark/libskylark/tree/master/ml

Y1, X1

Y2, X2

Y3, X3

node 1

node 2

node 3

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

T[X1, 2]

T[X3, 2]

T-cores/OpenMP-threads

MPI (rank 1)

proxl

T-cores/OpenMP-threads

MPI (rank 3)

W11 W12 W13

W31 W32 W33

projZij

W̄

W

node 0

node 0

reduce

reduce

proxr

broadcast

broadcast

U = [ZTijZij + λI]−1︸ ︷︷ ︸
cached

(X + ZTijY︸ ︷︷ ︸
gemm

), V = ZijU︸ ︷︷ ︸
gemm

(5)

Scalable Kernel Methods 17 34

Distributed Block-splitting ADMM

https://github.com/xdata-skylark/libskylark/tree/master/ml

Y1, X1

Y2, X2

Y3, X3

node 1

node 2

node 3

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

T[X1, 2]

T[X3, 2]

T-cores/OpenMP-threads

MPI (rank 1)

proxl

T-cores/OpenMP-threads

MPI (rank 3)

W11 W12 W13

W31 W32 W33

projZij

W̄

W

node 0

node 0

reduce

reduce

proxr

broadcast

broadcast

U = [ZTijZij + λI]−1︸ ︷︷ ︸
cached

(X + ZTijY︸ ︷︷ ︸
gemm

), V = ZijU︸ ︷︷ ︸
gemm

(5)

Scalable Kernel Methods 17 34

Distributed Block-splitting ADMM

https://github.com/xdata-skylark/libskylark/tree/master/ml

Y1, X1

Y2, X2

Y3, X3

node 1

node 2

node 3

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

T[X1, 2]

T[X3, 2]

T-cores/OpenMP-threads

MPI (rank 1)

proxl

T-cores/OpenMP-threads

MPI (rank 3)

W11 W12 W13

W31 W32 W33

projZij

W̄

W

node 0

node 0

reduce

reduce

proxr

broadcast

broadcast

U = [ZTijZij + λI]−1︸ ︷︷ ︸
cached

(X + ZTijY︸ ︷︷ ︸
gemm

), V = ZijU︸ ︷︷ ︸
gemm

(5)

Scalable Kernel Methods 17 34

Distributed Block-splitting ADMM

https://github.com/xdata-skylark/libskylark/tree/master/ml

Y1, X1

Y2, X2

Y3, X3

node 1

node 2

node 3

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

T[X1, 2]

T[X3, 2]

T-cores/OpenMP-threads

MPI (rank 1)

proxl

T-cores/OpenMP-threads

MPI (rank 3)

W11 W12 W13

W31 W32 W33

projZij

W̄

W

node 0

node 0

reduce

reduce

proxr

broadcast

broadcast

U = [ZTijZij + λI]−1︸ ︷︷ ︸
cached

(X + ZTijY︸ ︷︷ ︸
gemm

), V = ZijU︸ ︷︷ ︸
gemm

(5)

Scalable Kernel Methods 17 34

Distributed Block-splitting ADMM

https://github.com/xdata-skylark/libskylark/tree/master/ml

Y1, X1

Y2, X2

Y3, X3

node 1

node 2

node 3

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

T[X1, 2]

T[X3, 2]

T-cores/OpenMP-threads

MPI (rank 1)

proxl

T-cores/OpenMP-threads

MPI (rank 3)

W11 W12 W13

W31 W32 W33

projZij

W̄

W

node 0

node 0

reduce

reduce

proxr

broadcast

broadcast

U = [ZTijZij + λI]−1︸ ︷︷ ︸
cached

(X + ZTijY︸ ︷︷ ︸
gemm

), V = ZijU︸ ︷︷ ︸
gemm

(5)

Scalable Kernel Methods 17 34

Distributed Block-splitting ADMM

https://github.com/xdata-skylark/libskylark/tree/master/ml

Y1, X1

Y2, X2

Y3, X3

node 1

node 2

node 3

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

T[X1, 2]

T[X3, 2]

T-cores/OpenMP-threads

MPI (rank 1)

proxl

T-cores/OpenMP-threads

MPI (rank 3)

W11 W12 W13

W31 W32 W33

projZij

W̄

W

node 0

node 0

reduce

reduce

proxr

broadcast

broadcast

U = [ZTijZij + λI]−1︸ ︷︷ ︸
cached

(X + ZTijY︸ ︷︷ ︸
gemm

), V = ZijU︸ ︷︷ ︸
gemm

(5)

Scalable Kernel Methods 17 34

Scalability

I Graph Projection

U = [ZTijZij + λI]−1︸ ︷︷ ︸
cached

(X + ZTijY︸ ︷︷ ︸
gemm

), V = ZijU︸ ︷︷ ︸
gemm

I High-performance implementation that can handle large column
splits C = κ sd by reorganizing updates to exploit shared-memory
access, structure of graph projection.

Memory nm
R

(T + 5) + nd
R

+ 5sm+ 1
κ

(
Tnd
R

+ Tmd+ sd
)

+�
��κnms
dR

Computation O(
nd2

TRκ
)︸ ︷︷ ︸

transform

+O(
smd

κT
)︸ ︷︷ ︸

graph-proj

+O(
nsm

TR
)︸ ︷︷ ︸

gemm

Communication O(s m log R) (model reduce/broadcast)

I Stochastic, Asynchronous versions may be possible to develop.

Scalable Kernel Methods 18 34

Randomized Kernel methods on thousands of cores
I Triloka: 20 nodes/16-cores per node; BG/Q: 1024 nodes/16 (x4) cores per node.

I s = 100K,C = 200; strong scaling (n = 250k), weak scaling (n = 250k per node)

0 5 10 15 20

Number of MPI processes (t=6 threads/process)
0

5

10

15

20

25

S
p
e
e
d
u
p

MNIST Strong Scaling (Triloka)

Speedup
Ideal

0 5 10 15 20
0

20

40

60

80

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy
 (

%
)

Accuracy

0 50 100 150 200 250

Number of MPI processes (t=64 threads/process)
0

2

4

6

8

10

S
p
e
e
d
u
p

MNIST Strong Scaling (BG/Q)

Speedup
Ideal

0 50 100 150 200 250
0

20

40

60

80

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy
 (

%
)

Accuracy

0 5 10 15 20

Number of MPI processes (t=6 threads/process)
0

50

100

150

200

T
im

e
 (

se
cs

)

MNIST Weak Scaling (Triloka)

0 5 10 15 20
96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy
 (

%
)

0 50 100 150 200 250

Number of MPI processes (t=64 threads/process)
0

100

200

300

400

500

T
im

e
 (

se
cs

)

MNIST Weak Scaling (BG/Q)

0 50 100 150 200 250
98.0

98.2

98.4

98.6

98.8

99.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy
 (

%
)

Scalable Kernel Methods 19 34

Comparisons on MNIST

See “no distortion” results at http://yann.lecun.com/exdb/mnist/

Gaussian Kernel 1.4
Poly (4) 1.1

3-layer NN, 500+300 HU 1.53 Hinton, 2005

LeNet5 0.8 LeCun et al. 1998
Large CNN (pretrained) 0.60 Ranzato et al., NIPS 2006
Large CNN (pretrained) 0.53 Jarrett et al., ICCV 2009

Scattering transform + Gaussian Kernel 0.4 Bruna and Mallat, 2012
20000 random features 0.45 my experiments
5000 random features 0.52 my experiments

committee of 35 conv. nets [elastic distortions] 0.23 Ciresan et al, 2012

I When similar prior knowledge is enforced (invariant learning), performance
gaps vanish.

I RKHS mappings can, in principle, be used to implement CNNs.

Scalable Kernel Methods 20 34

Comparisons on MNIST

See “no distortion” results at http://yann.lecun.com/exdb/mnist/

Gaussian Kernel 1.4
Poly (4) 1.1

3-layer NN, 500+300 HU 1.53 Hinton, 2005

LeNet5 0.8 LeCun et al. 1998
Large CNN (pretrained) 0.60 Ranzato et al., NIPS 2006
Large CNN (pretrained) 0.53 Jarrett et al., ICCV 2009

Scattering transform + Gaussian Kernel 0.4 Bruna and Mallat, 2012
20000 random features 0.45 my experiments
5000 random features 0.52 my experiments

committee of 35 conv. nets [elastic distortions] 0.23 Ciresan et al, 2012

I When similar prior knowledge is enforced (invariant learning), performance
gaps vanish.

I RKHS mappings can, in principle, be used to implement CNNs.

Scalable Kernel Methods 20 34

Aside: LibSkylark

http://xdata-skylark.github.io/libskylark/docs/sphinx/

I C/C++/Python library, MPI,
Elemental/CombBLAS containers.

I Distributed Sketching operators

‖Ax− b‖2 ⇒ ‖S (Ax− b) ‖2

I Randomized Least Squares, SVD

I Randomized Kernel Methods:

– Modularity via Prox operators
– Sqr, hinge, L1, mult. logreg.
– Regularizers: L1, L2

Kernel Embedding z(x) Time

Shift-Invariant RFT e−iGx O(sd), O(s nnz(x))

Shift-Invariant FRFT eiSGHPHBx O(s log(d))

Semigroup RLT e−Gx O(sd), O(s nnz(x))

Polynomial (deg q) PPT F−1 (
F (C1x) ∗ F (Cqx)

)
O(q(nnz(x) + s log s)

Rahimi & Recht, 2007; Pham & Pagh 2013; Le, Sarlos and Smola, 2013

Random Laplace Feature Maps for Semigroup Kernels on Histograms, CVPR 2014, J. Yang, V.S., M. Mahoney, H. Avron, Q. Fan.

Scalable Kernel Methods 21 34

Efficiency of Random Embeddings

I TIMIT: 58.8M (s = 400k,m = 147) vs DNN 19.9M parameters.

I Draw S = [w1 . . .ws] ∼ p and approximate the integral:

k(x, z) =

∫
Rd
e−i(x−z)Twp(w)dw ≈ 1

|S|
∑
w∈S

e−i(x−z)Tw (6)

I Integration error

εp,S [f] =

∣∣∣∣∣
∫
[0,1]d

f(x)p(x)dx− 1

s

∑
w∈S

f(w)

∣∣∣∣∣
I Monte-carlo convergence rate: E[εp,S [f]2]

1
2 ∝ s− 1

2

– 4-fold increase in s will only cut error by half.

I Can we do better with a different sequence S?

Scalable Kernel Methods 22 34

Efficiency of Random Embeddings

I TIMIT: 58.8M (s = 400k,m = 147) vs DNN 19.9M parameters.

I Draw S = [w1 . . .ws] ∼ p and approximate the integral:

k(x, z) =

∫
Rd
e−i(x−z)Twp(w)dw ≈ 1

|S|
∑
w∈S

e−i(x−z)Tw (6)

I Integration error

εp,S [f] =

∣∣∣∣∣
∫
[0,1]d

f(x)p(x)dx− 1

s

∑
w∈S

f(w)

∣∣∣∣∣
I Monte-carlo convergence rate: E[εp,S [f]2]

1
2 ∝ s− 1

2

– 4-fold increase in s will only cut error by half.

I Can we do better with a different sequence S?

Scalable Kernel Methods 22 34

Quasi-Monte Carlo Sequences: Intuition

I Weyl 1916; Koksma 1942; Dick et. al., 2013; Caflisch, 1998

I Consider approximating
∫
[0,1]2

f(x)dx with 1
s

∑
w∈S f(w)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Uniform

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Halton

I Deterministic correlated QMC sampling avoid clustering, clumping effects
in MC point sets.

I Hierarchical structure: coarse-to-fine sampling as s increases.

Scalable Kernel Methods 23 34

Quasi-Monte Carlo Sequences: Intuition

I Weyl 1916; Koksma 1942; Dick et. al., 2013; Caflisch, 1998

I Consider approximating
∫
[0,1]2

f(x)dx with 1
s

∑
w∈S f(w)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Uniform

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Halton

I Deterministic correlated QMC sampling avoid clustering, clumping effects
in MC point sets.

I Hierarchical structure: coarse-to-fine sampling as s increases.

Scalable Kernel Methods 23 34

Star Discrepancy

I Integration error depends on variation f and uniformity of S.

I Theorem (Koksma-Hlawka inequality (1941, 1961))

εS [f] ≤ D?(S)VHK [f], where

D?(S) = sup
x∈[0,1]d

∣∣∣∣vol(Jx)− |{i : wi ∈ Jx}|
s

∣∣∣∣

Scalable Kernel Methods 24 34

Star Discrepancy

I Integration error depends on variation f and uniformity of S.
I Theorem (Koksma-Hlawka inequality (1941, 1961))

εS [f] ≤ D?(S)VHK [f], where

D?(S) = sup
x∈[0,1]d

∣∣∣∣vol(Jx)− |{i : wi ∈ Jx}|
s

∣∣∣∣

Scalable Kernel Methods 24 34

Quasi-Monte Carlo Sequences

I We seek sequences with low discrepancy.

I Theorem (Roth, 1954) D?(S) ≥ cd (log s)
d−1
2

s .

I For the regular grid on [0, 1)d with s = md, D? ≥ s 1
d =⇒ only

optimal for d = 1.

I Theorem (Doerr, 2013) Let S with s be chosen uniformly at

random from [0, 1)d. Then, E[D?(S)] ≥
√
d√
s

- the Monte Carlo rate.

I There exist low-discrepancy sequences that achieve a Cd
(log s)d

s
lower bound conjectured to be optimal.

– Matlab QMC generators: haltonset, sobolset . . .

I With d fixed, this bound actually grows until s ∼ ed to (d/e)d!

– “On the unreasonable effectiveness of QMC” in high-dimensions.
– RKHSs and Kernels show up in Modern QMC analysis!

Scalable Kernel Methods 25 34

Quasi-Monte Carlo Sequences

I We seek sequences with low discrepancy.

I Theorem (Roth, 1954) D?(S) ≥ cd (log s)
d−1
2

s .

I For the regular grid on [0, 1)d with s = md, D? ≥ s 1
d =⇒ only

optimal for d = 1.

I Theorem (Doerr, 2013) Let S with s be chosen uniformly at

random from [0, 1)d. Then, E[D?(S)] ≥
√
d√
s

- the Monte Carlo rate.

I There exist low-discrepancy sequences that achieve a Cd
(log s)d

s
lower bound conjectured to be optimal.

– Matlab QMC generators: haltonset, sobolset . . .

I With d fixed, this bound actually grows until s ∼ ed to (d/e)d!

– “On the unreasonable effectiveness of QMC” in high-dimensions.
– RKHSs and Kernels show up in Modern QMC analysis!

Scalable Kernel Methods 25 34

Quasi-Monte Carlo Sequences

I We seek sequences with low discrepancy.

I Theorem (Roth, 1954) D?(S) ≥ cd (log s)
d−1
2

s .

I For the regular grid on [0, 1)d with s = md, D? ≥ s 1
d =⇒ only

optimal for d = 1.

I Theorem (Doerr, 2013) Let S with s be chosen uniformly at

random from [0, 1)d. Then, E[D?(S)] ≥
√
d√
s

- the Monte Carlo rate.

I There exist low-discrepancy sequences that achieve a Cd
(log s)d

s
lower bound conjectured to be optimal.

– Matlab QMC generators: haltonset, sobolset . . .

I With d fixed, this bound actually grows until s ∼ ed to (d/e)d!

– “On the unreasonable effectiveness of QMC” in high-dimensions.
– RKHSs and Kernels show up in Modern QMC analysis!

Scalable Kernel Methods 25 34

Quasi-Monte Carlo Sequences

I We seek sequences with low discrepancy.

I Theorem (Roth, 1954) D?(S) ≥ cd (log s)
d−1
2

s .

I For the regular grid on [0, 1)d with s = md, D? ≥ s 1
d =⇒ only

optimal for d = 1.

I Theorem (Doerr, 2013) Let S with s be chosen uniformly at

random from [0, 1)d. Then, E[D?(S)] ≥
√
d√
s

- the Monte Carlo rate.

I There exist low-discrepancy sequences that achieve a Cd
(log s)d

s
lower bound conjectured to be optimal.

– Matlab QMC generators: haltonset, sobolset . . .

I With d fixed, this bound actually grows until s ∼ ed to (d/e)d!

– “On the unreasonable effectiveness of QMC” in high-dimensions.
– RKHSs and Kernels show up in Modern QMC analysis!

Scalable Kernel Methods 25 34

Quasi-Monte Carlo Sequences

I We seek sequences with low discrepancy.

I Theorem (Roth, 1954) D?(S) ≥ cd (log s)
d−1
2

s .

I For the regular grid on [0, 1)d with s = md, D? ≥ s 1
d =⇒ only

optimal for d = 1.

I Theorem (Doerr, 2013) Let S with s be chosen uniformly at

random from [0, 1)d. Then, E[D?(S)] ≥
√
d√
s

- the Monte Carlo rate.

I There exist low-discrepancy sequences that achieve a Cd
(log s)d

s
lower bound conjectured to be optimal.

– Matlab QMC generators: haltonset, sobolset . . .

I With d fixed, this bound actually grows until s ∼ ed to (d/e)d!

– “On the unreasonable effectiveness of QMC” in high-dimensions.
– RKHSs and Kernels show up in Modern QMC analysis!

Scalable Kernel Methods 25 34

Quasi-Monte Carlo Sequences

I We seek sequences with low discrepancy.

I Theorem (Roth, 1954) D?(S) ≥ cd (log s)
d−1
2

s .

I For the regular grid on [0, 1)d with s = md, D? ≥ s 1
d =⇒ only

optimal for d = 1.

I Theorem (Doerr, 2013) Let S with s be chosen uniformly at

random from [0, 1)d. Then, E[D?(S)] ≥
√
d√
s

- the Monte Carlo rate.

I There exist low-discrepancy sequences that achieve a Cd
(log s)d

s
lower bound conjectured to be optimal.

– Matlab QMC generators: haltonset, sobolset . . .

I With d fixed, this bound actually grows until s ∼ ed to (d/e)d!

– “On the unreasonable effectiveness of QMC” in high-dimensions.
– RKHSs and Kernels show up in Modern QMC analysis!

Scalable Kernel Methods 25 34

How do standard QMC sequences perform?

I Compare K ≈ Z(X)Z(X)T where Z(X) = e−iXG where G is
drawn from a QMC sequence generator instead.

200 400

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of random features

Re
lati

ve
err

or
on

 ||K
|| 2

USPST, n=1506

MC

Halton
Sobol’
Digital net

Lattice

200 400 600 800

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of random features
Re

lati
ve

err
or

on
 ||K

|| 2

CPU, n=6554

MC

Halton
Sobol’
Digital net

Lattice

I QMC sequences consistently better.

I Why are some QMC sequences better, e.g., Halton over Sobol?

I Can we learn sequences even better adapted to our problem class?

Scalable Kernel Methods 26 34

How do standard QMC sequences perform?

I Compare K ≈ Z(X)Z(X)T where Z(X) = e−iXG where G is
drawn from a QMC sequence generator instead.

200 400

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of random features

Re
lati

ve
err

or
on

 ||K
|| 2

USPST, n=1506

MC

Halton
Sobol’
Digital net

Lattice

200 400 600 800

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of random features
Re

lati
ve

err
or

on
 ||K

|| 2

CPU, n=6554

MC

Halton
Sobol’
Digital net

Lattice

I QMC sequences consistently better.

I Why are some QMC sequences better, e.g., Halton over Sobol?

I Can we learn sequences even better adapted to our problem class?

Scalable Kernel Methods 26 34

How do standard QMC sequences perform?

I Compare K ≈ Z(X)Z(X)T where Z(X) = e−iXG where G is
drawn from a QMC sequence generator instead.

200 400

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of random features

Re
lati

ve
err

or
on

 ||K
|| 2

USPST, n=1506

MC

Halton
Sobol’
Digital net

Lattice

200 400 600 800

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of random features
Re

lati
ve

err
or

on
 ||K

|| 2

CPU, n=6554

MC

Halton
Sobol’
Digital net

Lattice

I QMC sequences consistently better.

I Why are some QMC sequences better, e.g., Halton over Sobol?

I Can we learn sequences even better adapted to our problem class?

Scalable Kernel Methods 26 34

RKHSs in QMC Theory

I “Nice” integrands f ∈ Hh, where h(·, ·) is a kernel function.

I By Reproducing property and Cauchy-Schwartz inequality:∣∣∣∣∣
∫
Rd
f(x)p(x)dx− 1

s

∑
w∈S

f(w)

∣∣∣∣∣ ≤ ‖f‖kDh,p(S) (7)

where D2
h,p is a discrepancy measure:

Dh,p(S) = ‖mp(·)−
1

s

∑
w∈S

h(w, ·)‖2Hh ,

mean embedding︷ ︸︸ ︷
mp =

∫
Rd
h(x, ·)p(x)dx

= const.− 2

s

s∑
l=1

∫
Rd
h(wl, ω)p(ω)dω︸ ︷︷ ︸

Alignment with p (wl ≈ ω)

+
1

s2

s∑
l=1

s∑
j=1

h(wl,wj)︸ ︷︷ ︸
Pairwise similarity in S

(8)

Scalable Kernel Methods 27 34

RKHSs in QMC Theory

I “Nice” integrands f ∈ Hh, where h(·, ·) is a kernel function.
I By Reproducing property and Cauchy-Schwartz inequality:∣∣∣∣∣

∫
Rd
f(x)p(x)dx− 1

s

∑
w∈S

f(w)

∣∣∣∣∣ ≤ ‖f‖kDh,p(S) (7)

where D2
h,p is a discrepancy measure:

Dh,p(S) = ‖mp(·)−
1

s

∑
w∈S

h(w, ·)‖2Hh ,

mean embedding︷ ︸︸ ︷
mp =

∫
Rd
h(x, ·)p(x)dx

= const.− 2

s

s∑
l=1

∫
Rd
h(wl, ω)p(ω)dω︸ ︷︷ ︸

Alignment with p (wl ≈ ω)

+
1

s2

s∑
l=1

s∑
j=1

h(wl,wj)︸ ︷︷ ︸
Pairwise similarity in S

(8)

Scalable Kernel Methods 27 34

RKHSs in QMC Theory

I “Nice” integrands f ∈ Hh, where h(·, ·) is a kernel function.
I By Reproducing property and Cauchy-Schwartz inequality:∣∣∣∣∣

∫
Rd
f(x)p(x)dx− 1

s

∑
w∈S

f(w)

∣∣∣∣∣ ≤ ‖f‖kDh,p(S) (7)

where D2
h,p is a discrepancy measure:

Dh,p(S) = ‖mp(·)−
1

s

∑
w∈S

h(w, ·)‖2Hh ,

mean embedding︷ ︸︸ ︷
mp =

∫
Rd
h(x, ·)p(x)dx

= const.− 2

s

s∑
l=1

∫
Rd
h(wl, ω)p(ω)dω︸ ︷︷ ︸

Alignment with p (wl ≈ ω)

+
1

s2

s∑
l=1

s∑
j=1

h(wl,wj)︸ ︷︷ ︸
Pairwise similarity in S

(8)

Scalable Kernel Methods 27 34

Box Discrepancy

I Assume that the data (shifted) lives in a box

�b = −b ≤ x− z ≤ b,x, z ∈ X
I Class of functions we want to integrate:

F�b = {f(w) = e−i∆
Tw,∆ ∈ �b}

I Theorem: Integration error proportional to ”Box discrepancy”:

Ef∼U(F�b)

[
εS,p[f]2

] 1
2 ∝ D�p (S) (9)

where D�p (S) is discrepancy associated with the sinc kernel:

sincb (u,v) = π−d
d∏
i=1

sin(bj(uj − vj))
uj − vj

Can be evaluated in closed form for Gaussian density.

Scalable Kernel Methods 28 34

Box Discrepancy

I Assume that the data (shifted) lives in a box

�b = −b ≤ x− z ≤ b,x, z ∈ X
I Class of functions we want to integrate:

F�b = {f(w) = e−i∆
Tw,∆ ∈ �b}

I Theorem: Integration error proportional to ”Box discrepancy”:

Ef∼U(F�b)

[
εS,p[f]2

] 1
2 ∝ D�p (S) (9)

where D�p (S) is discrepancy associated with the sinc kernel:

sincb (u,v) = π−d
d∏
i=1

sin(bj(uj − vj))
uj − vj

Can be evaluated in closed form for Gaussian density.

Scalable Kernel Methods 28 34

Box Discrepancy

I Assume that the data (shifted) lives in a box

�b = −b ≤ x− z ≤ b,x, z ∈ X
I Class of functions we want to integrate:

F�b = {f(w) = e−i∆
Tw,∆ ∈ �b}

I Theorem: Integration error proportional to ”Box discrepancy”:

Ef∼U(F�b)

[
εS,p[f]2

] 1
2 ∝ D�p (S) (9)

where D�p (S) is discrepancy associated with the sinc kernel:

sincb (u,v) = π−d
d∏
i=1

sin(bj(uj − vj))
uj − vj

Can be evaluated in closed form for Gaussian density.

Scalable Kernel Methods 28 34

Does Box discrepancy explain behaviour of QMC

sequences?

0 500 1000 1500
10

−5

10
−4

10
−3

10
−2

Samples

D✷
(S

)2

CPU, d=21

Digital Net
MC (expected)
Halton
Sobol’
Lattice

Scalable Kernel Methods 29 34

Learning Adaptive QMC Sequences

Unlike Star discrepancy, Box discrepancy admits numerical optimization,

S∗ = arg min
S=(w1...ws)∈Rds

D�(S), S(0) = Halton. (10)

0 20 40 60 80
10

−6

10
−4

10
−2

10
0

CPU dataset, s=100

Iteration

Normalized D✷(S)2

Maximum Squared Error
Mean Squared Error
‖K̃ −K‖2/‖K‖2

However, full impact on large-scale problems is an open research topic.
Scalable Kernel Methods 30 34

Outline

Motivation and Background

Scalable Kernel Methods
Random Embeddings+Distributed Computation (ICASSP, JSM 2014)
libSkylark: An open source software stack
Quasi-Monte Carlo Embeddings (ICML 2014)

Synergies?

Synergies? 31 34

Randomization-vs-Optimization

k(x, z)

Randomization p⇔ k Optimization

eig
′
5x

eig
′
4x

eig
′
3x

eig
′
2x

eig
′
1x

I Jarret et al 2009, What is the Best Multi-Stage Architecture for Object Recognition?: “The
most astonishing result is that systems with random filters and no filter learning whatsoever
achieve decent performance”

I On Random Weights and Unsupervised Feature Learning, Saxe et al, ICML 2011:
“surprising fraction of performance can be attributed to architecture alone.”

Synergies? 32 34

Randomization-vs-Optimization

k(x, z)

Randomization p⇔ k Optimization

eig
′
5x

eig
′
4x

eig
′
3x

eig
′
2x

eig
′
1x

I Jarret et al 2009, What is the Best Multi-Stage Architecture for Object Recognition?: “The
most astonishing result is that systems with random filters and no filter learning whatsoever
achieve decent performance”

I On Random Weights and Unsupervised Feature Learning, Saxe et al, ICML 2011:
“surprising fraction of performance can be attributed to architecture alone.”

Synergies? 32 34

Deep Learning with Kernels?

Maps across layers can be parameterized using more general
nonlinearities (kernels).

ImagePixel
x1

f1(x1), f1 ∈ Hk1Ω1

x2

Ω2

f2(x2), f2 ∈ Hk2

I Mathematics of Neural Response, Smale et. al., FCM (2010).
I Convolutional Kernel Networks, Mairal et. al., NIPS 2014.

I SimNets: A Generalization of Conv. Nets, Cohen and Sashua, 2014.

– learns networks 1/8 the size of comparable ConvNets.

Figure adapted from Mairal et al, NIPS 2014

Synergies? 33 34

Conclusions

I Some empirical evidence suggests that once Kernel methods are
scaled up and embody similar statistical principles, they are
competitive with Deep Neural Networks.

– Randomization and Distributed Computation both required.
– Ideas from QMC Integration techniques are promising.

I Opportunities for designing new algorithms combining insights from
deep learning with the generality and mathematical richness of
kernel methods.

Synergies? 34 34

	Motivation and Background
	Scalable Kernel Methods
	Random Embeddings+Distributed Computation (ICASSP, JSM 2014)
	libSkylark: An open source software stack
	Quasi-Monte Carlo Embeddings (ICML 2014)

	Synergies?

