A Spectral Algorithm for Ranking using Seriation

Alex d'Aspremont, CNRS & ENS, Paris.

with Fajwel Fogel, Milan Vojnovic, Ecole Polytechnique, Microsoft Research.

Given n items, and **pairwise comparisons**

 $\operatorname{item}_i \succ \operatorname{item}_j, \quad \text{for } (i,j) \in S,$

find a global ranking $\pi(i)$ of these items

```
\operatorname{item}_{\pi(1)} \succ \operatorname{item}_{\pi(2)} \succ \ldots \succ \operatorname{item}_{\pi(n)}
```

Pairwise comparisons?

- Some data sets naturally produce pairwise comparisons, e.g. tournaments, ecommerce transactions, etc.
- Comparing items is often more intuitive than ranking them directly.

Hot or Not? Rank images by "hotness"...

Ranking & pairwise comparisons

[Jamieson and Nowak, 2011]

Classical problem, many algorithms (roughly sorted by increasing complexity)

- **Scores.** Borda, Elo rating system (chess), TrueSkill [Herbrich et al., 2006], etc.
- **Spectral methods.** [Dwork et al., 2001, Negahban et al., 2012]
- MLE based algorithms. [Bradley and Terry, 1952, Luce, 1959, Herbrich et al., 2006]
- **Learning to rank.** Learn scoring functions.

See forthcoming book by Milan Vojnovic on the subject. . .

Various data settings...

- A **partial subset** of preferences is observed.
- Preferences are measured **actively** [Ailon, 2011, Jamieson and Nowak, 2011].
- Preferences are fully observed but arbitrarily corrupted.
- Repeated noisy observations.

Various **performance metrics**...

- Minimize the number of disagreements i.e. # edges inconsistent with the global ordering, e.g. PTAS for min. Feedback Arc Set (FAS) [Kenyon-Mathieu and Schudy, 2007]
- Maximize likelihood given a model on pairwise observations, e.g. [Bradley and Terry, 1952, Luce, 1959]
- **Convex loss** in ranking SVMs

. . . .

Scores

- Borda count. Dates back at least to 18th century. Players are ranked according to the number of wins divided by the total number of comparisons [Ammar and Shah., 2011, Wauthier et al., 2013].
- Also fair-bets, invariant scores, Masey, Maas, Colley, etc.
- **Elo rating system.** (Chess, ~1970)
 - \circ Players have skill levels μ_i .
 - Probability of player *i* beating *j* given by $H(\mu_i \mu_j)$ (e.g. Gaussian CDF).
 - After each game, skills updated to

$$\mu_i := \mu_i + c(w_{ij} - H(\mu_i - \mu_j))$$

 $w_{ij} \in \{0,1\}$, $H(\cdot)$ e.g. Gaussian CDF. Sum of all skills remains constant, skills are transferred from losing players to winning ones.

TrueSkill rating system. [Herbrich et al., 2006] Similar in spirit to Elo, but player skills are represented by a Gaussian distribution.

Very low numerical cost.

Spectral algorithms: Markov chain on a graph.

Similar to HITS [Kleinberg, 1999] or Pagerank [Page et al., 1998]...

- A random walk goes through a graph where each node corresponds to an item or player to rank.
- Likelihood of going from i to j depends on how often i lost to j, so neighbors with more wins will be visited more frequently.
- Ranking is based on asymptotic frequency of visits, i.e. on the stationary distribution.

Simple extremal eigenvalue computation, low complexity (roughly $O(n^2 \log n)$ in the dense case). See Dwork et al. [2001], Negahban et al. [2012] for more details.

Model pairwise comparisons. [Bradley and Terry, 1952, Luce, 1959, Herbrich et al., 2006]

- Comparisons are generated according to a generalized linear model (GLM).
- Repeated observations, independent. Item i is preferred over item j with probability

$$P_{i,j} = H(\nu_i - \nu_j)$$

where

 $\circ \
u \in \mathbb{R}^n$ is a vector of skills.

• $H : \mathbb{R} \to [0, 1]$ is an increasing function. • H(-x) = 1 - H(x), and $\lim_{x \to -\infty} H(x) = 0$ and $\lim_{x \to \infty} H(x) = 1$.

 $H(\cdot)$ is a CDF. Logistic in the Bradley-Terry-Luce model: $H(x) = 1/(1 + e^{-x})$. Also: Gaussian (Thurstone), Laplace, etc.

Estimate ν by maximizing likelihood. (using e.g. fixed point algo)

Alex d'Aspremont

Current tradeoffs.

- Scoring methods are exact in the noiseless case, but not very robust.
- Spectral methods are more robust, but no exact recovery guarantee (error bounds in BTL by [Negahban et al., 2012]).
- Learning to rank methods are very expensive.

Today

- Connect ranking from **pairwise preferences** to ranking based on **similarity**.
- Solution also given by spectral algorithm, but completely different from the "Markov chain on a graph" argument.

- Introduction
- Seriation
- From ranking to seriation
- Robustness
- Numerical results

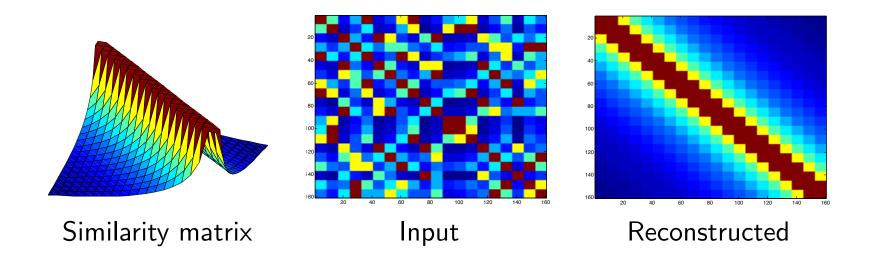
Seriation

The Seriation Problem.

- Pairwise similarity information A_{ij} on n variables.
- Suppose the data has a serial structure, i.e. there is an order π such that

$$A_{\pi(i)\pi(j)}$$
 decreases with $|i-j|$ (R-matrix)

Recover π ?



A Spectral Solution

Spectral Clustering. Define the Laplacian of A as $L_A = \operatorname{diag}(A\mathbf{1}) - A$, the Fiedler vector of A is written

$$f = \underset{\substack{\mathbf{1}^T x = 0, \\ \|x\|_2 = 1}}{\operatorname{argmin}} x^T L_A x.$$

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

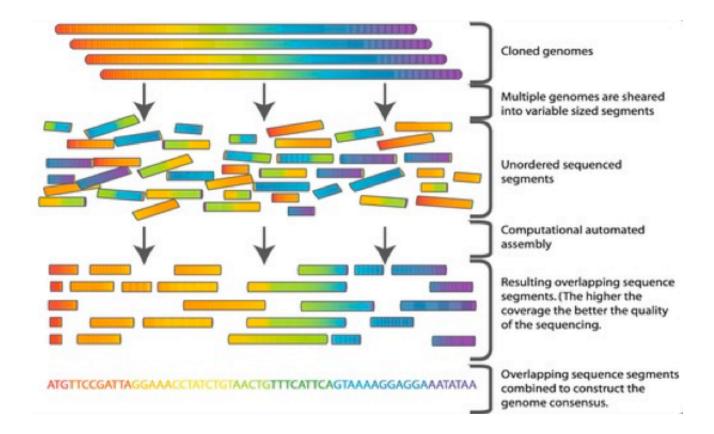
Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose $A \in \mathbf{S}_n$ is a pre-R matrix, with a simple Fiedler value whose Fiedler vector f has no repeated values. Suppose that $\Pi \in \mathcal{P}$ is such that the permuted Fielder vector Πv is monotonic, then $\Pi A \Pi^T$ is an R-matrix.

Shotgun Gene Sequencing

C1P has direct applications in shotgun gene sequencing.

- Genomes are cloned multiple times and randomly cut into shorter reads $(\sim 400 \text{bp})$, which are fully sequenced.
- Reorder the reads to recover the genome.



(from Wikipedia...)

- Introduction
- Seriation
- From ranking to seriation
- Robustness
- Numerical results

From Ranking to Seriation

Similarity matrices from pairwise comparisons.

• Given pairwise comparisons $C \in \{-1, 0, 1\}^{n \times n}$ with

 $C_{i,j} = \begin{cases} 1 & \text{if } i \text{ is ranked higher than } j \\ 0 & \text{if } i \text{ and } j \text{ are not compared or in a draw} \\ -1 & \text{if } j \text{ is ranked higher than } i \end{cases}$

• Define the pairwise similarity matrix S^{match} as

$$S_{i,j}^{\text{match}} = \sum_{k=1}^{n} \left(\frac{1 + C_{i,k} C_{j,k}}{2} \right).$$

S^{match}_{i,j} counts the number of matching comparisons between i and j with other reference items k.

In a tournament setting: players that beat the same players and are beaten by the same players should have a similar ranking. . .

Alex d'Aspremont

[Fogel et al., 2014]

Similarity from preferences. Given all comparisons $C_{i,j} \in \{-1,0,1\}$ between items ranked linearly, the similarity matrix S^{match} is a strict *R*-matrix and

$$S_{ij}^{\text{match}} = n - |i - j|$$

for all i, j = 1, ..., n.

This means that, given all pairwise pairwise comparions, spectral clustering on S^{match} will recover the true ranking.

From Ranking to Seriation

Similarity matrices in the generalized linear model.

Observations are independent, and item i is preferred over item j with probability

$$P_{i,j} = H(\nu_i - \nu_j)$$

with $H(\cdot)$ CDF.

• We estimate the matrix

$$S_{i,j}^{\text{glm}} \to \sum_{k=1}^{n} \left(1 - \frac{|P_{i,k} - P_{j,k}|}{2} \right).$$

based on (repeated) preference observations.

[Fogel et al., 2014]

Similarity from preferences in the GLM. If the items are ordered by decreasing values of the skill parameters, the similarity matrix S^{glm} is a strict R matrix.

This means that, given enough samples on pairwise comparions, spectral clustering on S^{glm} will recover the true ranking.

- Introduction
- Seriation
- From ranking to seriation
- Robustness
- Numerical results

[Fogel et al., 2014]

Robustness to corrupted entries.

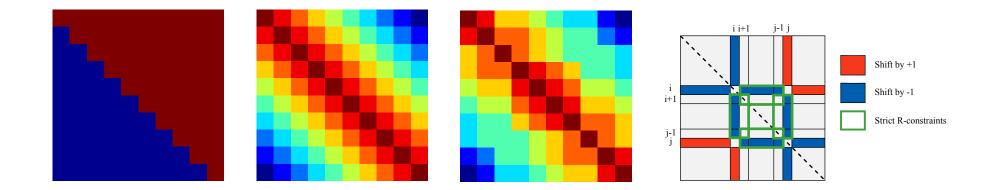
- Given all comparisons $C_{s,t} \in \{-1,1\}$ between items ordered $1, \ldots, n$.
- Suppose the sign of one comparison $C_{i,j}$ is switched, with i < j.

If j - i > 2 then S^{match} remains a strict-R matrix.

In this case, the score vector w has ties between items i and i + 1 and items j and j - 1.

Robustness

A graphical argument. . .



The matrix of pairwise comparisons C (far left).

The corresponding similarity matrix S^{match} is a strict R-matrix (center left).

The same S^{match} similarity matrix with comparison (3,8) corrupted *(center right)*. With one corrupted comparison, S^{match} keeps enough strict R-constraints to recover the right permutation. *(far right)*.

Alex d'Aspremont

Generalizes to several errors. . .

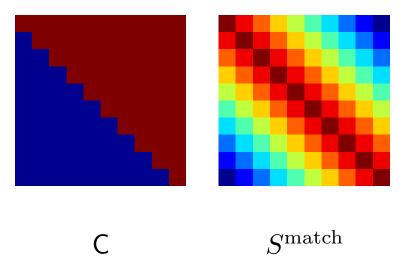
[Fogel et al., 2014]

Robustness to corrupted entries. Given a comparison matrix for a set of n items with m corrupted comparisons selected uniformly at random from the set of all possible item pairs. The probability of recovery p(n,m) using seriation on S^{match} satisfies $p(n,m) \ge 1 - \delta$, provided that $m = O(\sqrt{\delta n})$.

- One corrupted comparison is enough to create ambiguity in scoring arguments.
- Need $\Omega(n^2)$ comparisons for exact recovery [Jamieson and Nowak, 2011].
- No exact recovery results for Markov Chain type spectral methods.

Robustness

We can go bit further....



- Form S^{match} from consistent, ordered comparisons.
- Much simpler to analyze than MC methods: using results from [Von Luxburg et al., 2008], we can compute its Fiedler vector asymptotically.
- The Fiedler vector of the **nonsymmetric normalized Laplacian** is also given by $x_i = c i, i = 1, ..., n$ where c > 0, for finite n.
- The spectral gap between the first three eigenvalues can be controlled.

Robustness

- Asymptotically: $S^{\text{match}}/n \to k(x,y) = 1 |x y|$ for $x, y \in [0,1]$.
- The degree function is then $d(x) = \int_0^1 k(x, y) dy = -x^2 + x + 1/2$.
- The range of d(x) is [0.5, 0.75] and the bulk of the spectrum is contained in this interval.
- The Fiedler vector f with eigenvalue λ satisfies

$$f''(x)(1/2 - \lambda + x - x^2) + 2f'(x)(1 - 2x) = 0.$$

• We can also show that the second smallest eigenvalues of the unnormalized Laplacian satisfies $\lambda_2 < 2/5$, which is outside of this range.

Von Luxburg et al. [2008] then show that the unnormalized Laplacian converges and that its second eigenvalue is simple. Idem for the normalized Laplacian.

This spectral gap means we can use **perturbation analysis** to study recovery.

Perturbation analysis shows that

$$||f - \hat{f}||_2 \le \sqrt{2} \frac{||L - \hat{L}||_2}{\min\{\lambda_2 - \lambda_1, \lambda_3 - \lambda_2\}}$$

where L, f are the true Laplacian (resp. Fiedler vector) and \hat{L}, \hat{f} the perturbed ones.

In fact, we have

$$\hat{f} = f - R_2 E f + o(||E||_2), \text{ with } E = (L - \hat{L})$$

where R_2 is the resolvent

$$R_2 = \sum_{j \neq 2} \frac{1}{\lambda_j - \lambda_2} u_j u_j^T,$$

If $||f - \hat{f}||_{\infty}$ is smaller than the gap between coefficients in the leading eigenvector, ranking recovery remains exact.

With missing observations, C is **subsampled**, which means that the error E can be controlled as in Achlioptas and McSherry [2007].

Take a symmetric matrix $M \in \mathbf{S}_n$ whose entries M are independently sampled as $\sim \int M_{ii}/p$ with probability p

$$S_{ij} = \begin{cases} M_{ij}/p & \text{with probability} \\ 0 & \text{otherwise,} \end{cases}$$

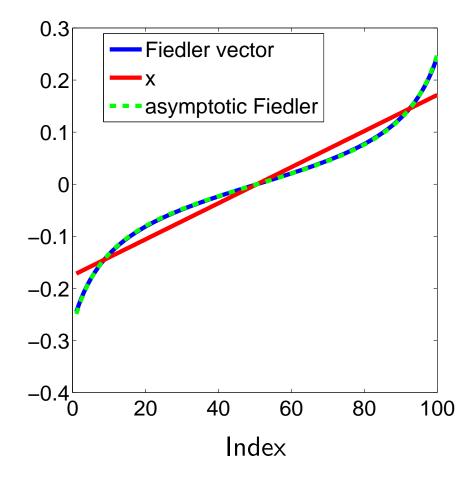
where $p \in [0,1]$.

Theorem 1.4 in Achlioptas and McSherry [2007] shows that when n is large enough

$$|M - S||_2 \le 4 ||M||_{\infty} \sqrt{n/p},$$

holds with high probability.

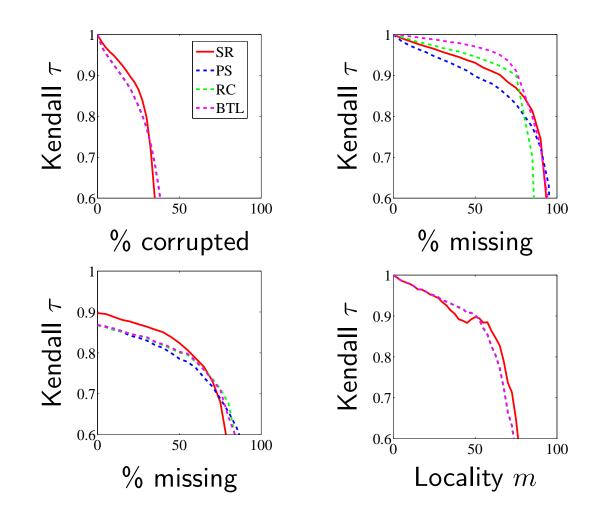
Robustness



Comparing the asymptotic Fiedler vector, and the true one for n = 100.

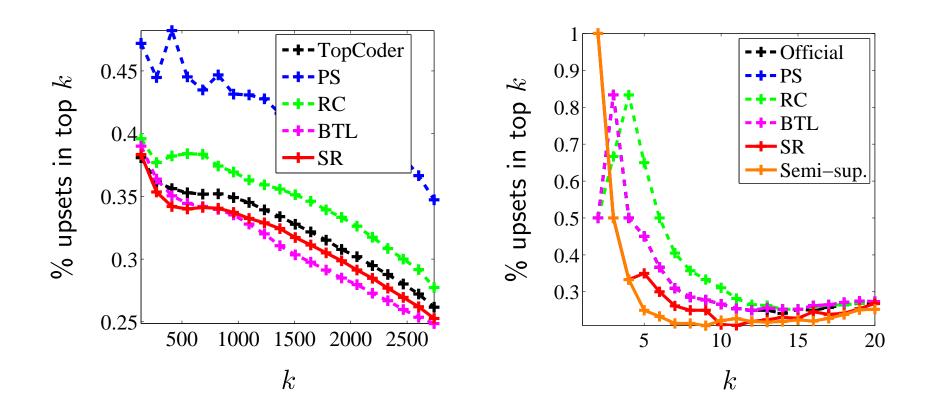
- Introduction
- Seriation
- From ranking to seriation
- Robustness
- Numerical results

Numerical results



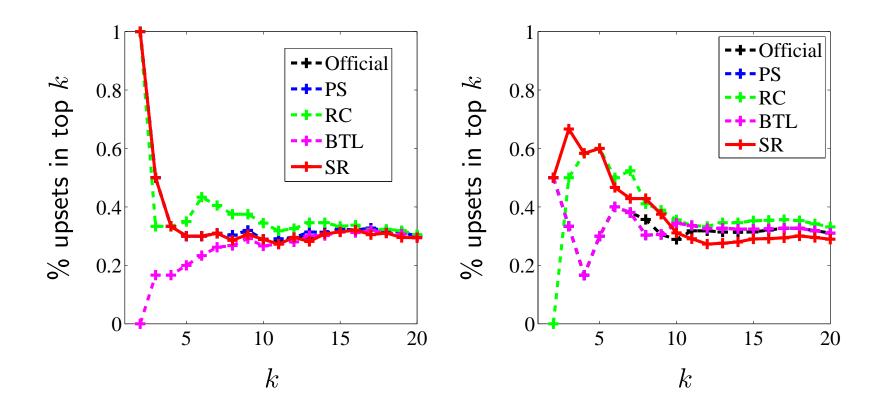
Uniform noise/corruption. Kendall τ (higher is better) for **SerialRank** (SR, full red line), **row-sum** (PS, [Wauthier et al., 2013] dashed blue line), **rank centrality** (RC [Negahban et al., 2012] dashed green line), and **maximum likelihood** (BTL [Bradley and Terry, 1952], dashed magenta line).

Numerical results



Percentage of upsets (i.e. disagreeing comparisons, lower is better), for various values of k and ranking methods, on **TopCoder** (*left*) and **football data** (*right*).

Numerical results



Percentage of upsets (i.e. disagreeing comparisons, lower is better), for various values of k and ranking methods, on England Premier League **2011-2012 season** (*left*) and **2012-2013 season** (*right*).

Official	Row-sum	RC	BTL	SerialRank	Semi-Supervised
Man City (86)	Man City	Liverpool	Man City	Man City	Man City
Liverpool (84)	Liverpool	Arsenal	Liverpool	Chelsea	Chelsea
Chelsea (82)	Chelsea	Man City	Chelsea	Liverpool	Liverpool
Arsenal (79)	Arsenal	Chelsea	Arsenal	Arsenal	Everton
Everton (72)	Everton	Everton	Everton	Everton	Arsenal
Tottenham (69)	Tottenham	Tottenham	Tottenham	Tottenham	Tottenham
Man United (64)	Man United	Man United	Man United	Southampton	Man United
Southampton (56)	Southampton	Southampton	Southampton	Man United	Southampton
Stoke (50)	Stoke	Stoke	Stoke	Stoke	Newcastle
Newcastle (49)	Newcastle	Newcastle	Newcastle	Swansea	Stoke
Crystal Palace (45)	Crystal Palace	Swansea	Crystal Palace	Newcastle	West Brom
Swansea (42)	Swansea	Crystal Palace	Swansea	West Brom	Swansea
West Ham (40)	West Brom	West Ham	West Brom	Hull	Crystal Palace
Aston Villa (38)	West Ham	Hull	West Ham	West Ham	Hull
Sunderland (38)	Aston Villa	Aston Villa	Aston Villa	Cardiff	West Ham
Hull (37)	Sunderland	West Brom	Sunderland	Crystal Palace	Fulham
West Brom (36)	Hull	Sunderland	Hull	Fulham	Norwich
Norwich (33)	Norwich	Fulham	Norwich	Norwich	Sunderland
Fulham (32)	Fulham	Norwich	Fulham	Sunderland	Aston Villa
Cardiff (30)	Cardiff	Cardiff	Cardiff	Aston Villa	Cardiff

Ranking of teams in the England premier league season 2013-2014.

Recruiting **postdocs** (one or two years) at Ecole Normale Superieure in Paris.

Send your resume to aspremon@di.ens.fr.

Very diverse set of algorithmic solutions. . .

- Here: new class of spectral methods based on seriation results.
- Exact recovery results are easy to derive.
- Almost completely explicit perturbation analysis.
- More robust in certain settings.

Coming soon. . .

- Kendall τ type bounds on approximate recovery.
- Better characterize errors with close to $O(n \log n)$ observations.

NIPS 2014, ArXiv. . .

Alex d'Aspremont

References

D. Achlioptas and F. McSherry. Fast computation of low-rank matrix approximations. Journal of the ACM, 54(2), 2007.

Nir Ailon. Active learning ranking from pairwise preferences with almost optimal query complexity. In NIPS, pages 810-818, 2011.

- A. Ammar and D. Shah. Ranking: Compare, don't score. 49th Annual Allerton Conference Communication, Control, and Computing, pages 776–783, 2011.
- J.E. Atkins, E.G. Boman, B. Hendrickson, et al. A spectral algorithm for seriation and the consecutive ones problem. *SIAM J. Comput.*, 28 (1):297–310, 1998.
- Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, pages 324–345, 1952.
- C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. *Proceedings of the Tenth International World Wide Web Conference*, 2001.
- F. Fogel, A. d'Aspremont, and M. Vojnovic. Spectral ranking using seriation. NIPS 2014, 2014.
- Ralf Herbrich, Tom Minka, and Thore Graepel. TrueskillTM: A bayesian skill rating system. In *Advances in Neural Information Processing Systems*, pages 569–576, 2006.
- Kevin G Jamieson and Robert D Nowak. Active ranking using pairwise comparisons. In NIPS, volume 24, pages 2240-2248, 2011.
- Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In *Proceedings of the thirty-ninth annual ACM symposium on Theory of computing*, pages 95–103. ACM, 2007.
- J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46:604-632, 1999.
- RD Luce. Individual choice behavior. Wiley, 1959.
- Sahand Negahban, Sewoong Oh, and Devavrat Shah. Iterative ranking from pairwise comparisons. In NIPS, pages 2483-2491, 2012.
- L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. *Stanford CS Technical Report*, 1998.
- Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clustering. The Annals of Statistics, pages 555-586, 2008.
- Fabian L Wauthier, Michael I Jordan, and Nebojsa Jojic. Efficient ranking from pairwise comparisons. In *Proceedings of the 30th International Conference on Machine Learning (ICML)*, 2013.