Spectral bounds and SDP hierarchies

for geometric packing problems

Frank Vallentin (Universität zu Köln)

September 24, 2014

Workshop: Semidefinite optimization, approximation and applications Simons Institute for the Theory of Computing

Independent sets in Cayley graphs

$\operatorname{Cayley}(G, \Sigma) \quad x \sim y \Longleftrightarrow x y^{-1} \in \Sigma$ group $\Sigma \subseteq G, \Sigma=\Sigma^{-1}$
undirected graph on G may contain loops

$\operatorname{Cayley}(\mathbb{Z} / 5 \mathbb{Z},\{1,4\})$
$I \subseteq G$ independent: $\forall x, y \in I, x \neq y, x \nsim y$
find indep. sets in Cayley (G, Σ) which are as "large" as possible

18. Building up of Space from Congruent Polyhedra
(...) How can one arrange most densely in space an infinite number of equal solids of given form, e.g., spheres with given radii or regular tetrahedra with given edges (or in prescribed position), that is, how can one so fit them together that the ratio of the filled to the unfilled space may be as great as possible?
'goal': solve Hilbert's problem (by computer) using an SOS proof system

$\mathcal{K}=$ unit ball

solved only for dimension 2, 3 (Hales, 1998/2014) almost solved for dimension 8, 24 (Cohn-Elkies, 2003)

Dimension Lower bound Cohn-Elkies bound New upper bound

4	0.12500	0.13126	0.130587
5	0.08839	0.09975	0.099408
6	0.07217	0.08084	0.080618
7	0.06250	0.06933	0.069193
9	0.04419	0.05900	0.058951

de Laat, Oliveira, V. (2012)
density given as point density ($=$ \# centers per unit volume)
$\mathcal{K}=$ regular tetradedron $\quad \bar{\alpha} \in\left[0.85,1-10^{-26}\right]$

Chen, Engel, Glotzer (2010)
Gravel, Elser, Kallus (2011)
$\mathcal{K}=$ regular pentagon

$$
\bar{\alpha} \in[0.92,0.98]
$$

Kuperberg 2 (1992)
Oliveira, V. (2013)

SOS proof systems for finite graphs

polynomial optimization formulation

$$
\begin{aligned}
\alpha(G)=\max & \sum_{v \in V} x_{v}^{2} \\
& x_{v} \geq 0 \\
& x_{v}^{2}-x_{v}=0 \text { for } v \in V \\
& x_{u} x_{v}=0 \text { if } u \sim v
\end{aligned}
$$

t-th step of Lasserre's hierarchy

$\operatorname{las}_{t}(G)=\max \left\{\sum_{x \in V} y_{\{x\}}: y \in \mathbb{R}_{\geq 0}^{I_{2 t}}, y_{\emptyset}=1, M_{t}(y) \succeq 0\right\}$,
$I_{t}=$ set independent sets with $\leq t$ elements
moment matrix $\quad\left(M_{t}(y)\right)_{J, J^{\prime}}= \begin{cases}y_{J \cup J^{\prime}} & \text { if } J \cup J^{\prime} \in I_{2 t}, \\ 0 & \text { otherwise. }\end{cases}$
\emptyset
2 $\left(\begin{array}{ccccccc}y_{\emptyset} & y_{1} & y_{2} & y_{3} & y_{12} & y_{13} & y_{23} \\ y_{1} & y_{1} & y_{12} & y_{13} & y_{12} & y_{13} & y_{123} \\ y_{2} & y_{12} & y_{2} & y_{23} & y_{12} & y_{123} & y_{23} \\ y_{3} & y_{13} & y_{23} & y_{3} & y_{123} & y_{13} & y_{23} \\ y_{12} & y_{12} & y_{12} & y_{123} & y_{12} & y_{123} & y_{123} \\ y_{13} & y_{13} & y_{123} & y_{13} & y_{123} & y_{13} & y_{123} \\ y_{23} & y_{123} & y_{23} & y_{23} & y_{123} & y_{123} & y_{23}\end{array}\right)$

$$
\vartheta^{\prime}(G)=\operatorname{las}_{1}(G) \geq \operatorname{las}_{2}(G) \geq \ldots \geq \operatorname{las}_{\alpha(G)}(G)=\alpha(G) .
$$

$$
\operatorname{las}_{t}(G)=\max \left\{\sum_{x \in V} y_{\{x\}}: y \in \mathbb{R}_{\geq 0}^{I_{2 t}}, y_{\emptyset}=1, M_{t}(y) \succeq 0\right\}
$$

Many variations possible:

* consider "interesting" principal submatrices
* add more constraints

$$
n \text {-point bound: makes use of } y_{I \cup J} \text { with }|I \cup J| \leq n
$$

Generalization of Lasserre's hierarchy

need topological assumptions
Graph $G=(V, E)$ is a topological packing graph if

* V is a Hausdorff topological space
\star every finite clique is contained in a clique which is open

$$
\operatorname{las}_{t}(G)=\max \left\{\sum_{x \in V} y_{\{x\}}: y \in \mathbb{R}_{\geq 0}^{I_{2 t}}, y_{\emptyset}=1, M_{t}(y) \succeq 0\right\},
$$

$$
\operatorname{las}_{t}(G)=\sup \left\{\lambda\left(I_{=1}\right): \lambda \in \mathcal{M}\left(I_{2 t}\right)_{\geq 0}, \lambda(\{\emptyset\})=1, A_{t}^{*} \lambda \in \mathcal{M}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right\}
$$

dual formulation

$$
\begin{aligned}
& \operatorname{las}_{t}(G)=\inf \left\{K(\emptyset, \emptyset): K \in \mathcal{C}\left(I_{t} \times I_{t}\right)_{\succeq 0}\right. \\
& \left.\qquad A_{t} K(S) \leq-1_{I_{=1}}(S) \text { for } S \in I_{2 t} \backslash\{\emptyset\}\right\} \\
& A_{t}: \mathcal{C}\left(I_{t} \times I_{t}\right)_{\mathrm{sym}} \rightarrow \mathcal{C}\left(I_{2 t}\right), \quad A_{t} K(S)=\sum_{J, J^{\prime} \in I_{t}: J \cup J^{\prime}=S} K\left(J, J^{\prime}\right)
\end{aligned}
$$

$$
\vartheta^{\prime}(G)=\operatorname{las}_{1}(G) \geq \operatorname{las}_{2}(G) \geq \ldots \geq \operatorname{las}_{\alpha(G)}(G)=\alpha(G)
$$

when G is a compact topological packing graph

Explicit computations

Packing problem	2-point bound	3 -point bound	4-point bound
Binary codes	Delsarte 1973	Schrijver 2005	Gijswijt, Mittelmann, Schrijver 2011
Spherical codes	Delsarte, Goethals, Seidel 1977	Bachoc, Vallentin 2008	
Sphere packings	Cohn, Elkies 2003		
Congruent copies of a convex body	Oliveira, Vallentin 2013		

2-point (spectral) bounds for Cayley (G, Σ)

$$
\begin{aligned}
\operatorname{las}_{1}(G)=\inf \left\{\frac{f(e)}{\int_{G} f(x) d \mu(x)}:\right. & f: G \rightarrow \mathbb{R} \text { pos. type } \\
& f(x) \leq 0 \text { if } x \notin \Sigma\}
\end{aligned}
$$

f positive type:

$$
\forall x_{1}, \ldots, x_{N} \in G:\left(f\left(x_{i} x_{j}^{-1}\right)\right)_{1 \leq i, j \leq N} \text { is pos. semidefinite }
$$

$$
\begin{aligned}
\operatorname{las}_{1}(G)=\inf \left\{\begin{aligned}
\frac{f(e)}{\int_{G} f(x) d \mu(x)}: & f: G \rightarrow \mathbb{R} \text { pos. type } \\
& f(x) \leq 0 \text { if } x \notin \Sigma\}
\end{aligned}\right.
\end{aligned}
$$

parametrize cone of positive type functions
\& use conic optimization
construction of positive type functions
$\pi: G \rightarrow U\left(H_{\pi}\right)$ unitary representation, $h \in H_{\pi}$ then $f(x)=(\pi(x) h, h)$ is positive type

* Gelfand-Raikov 1942:
* all positive type functions are of this form
\star extreme rays of cone of pos. type functions come from irreducible rep.

Segal-Mautner 1950

If G is nice and if f is rapidly decreasing:
f is pos. type \Longleftrightarrow
optimization variable

$$
f(x)=\int_{\widehat{G}} \operatorname{trace}(\pi(x) \hat{f}(\pi)) d \nu(\pi)
$$

for positive, trace-class operators $\widehat{f}(\pi): H_{\pi} \rightarrow H_{\pi}$
$\widehat{G}=\{$ irred. unitary rep. of $G\} / \sim$
$\nu=$ Plancherel measure on \widehat{G}
$\hat{f}(\pi)=\int_{G} f(x) \pi\left(x^{-1}\right) d \mu(x) \quad$ Fourier transform
relevant irred. rep. of $\mathbb{R}^{n} \rtimes \mathrm{SO}(n)$ for $n=2$

$$
\begin{aligned}
& \pi_{a}: G \rightarrow \mathrm{U}\left(L^{2}\left(S^{1}\right)\right) \quad a>0 \\
& {\left[\pi_{a}(x, A) \varphi\right](\xi)=e^{2 \pi i a x \cdot \xi} \varphi\left(A^{-1} \xi\right)} \\
& \text { optimization variable }
\end{aligned}
$$

in polar coordinates
$f(\rho, \theta, \alpha)=\int_{0}^{\infty} \sum_{r, s \in \mathbb{Z}} \hat{f}(a)_{r, s} i^{s-r} e^{-i(s \alpha+(r-s) \theta)} J_{s-r}(2 \pi a \rho) a d a$
$x=\rho(\cos \theta, \sin \theta), A=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$
the problem of finding an optimal function is an infinite-dimensional SDP goal: reformulate and relax to a finite-dimensional SDP
solve this rigorously on a computer

When

$$
\hat{f}(a)_{r, s}=\sum_{k=0}^{d} f_{r, s ; k} a^{2 k} e^{-\pi a^{2}}
$$

and setting the right $\hat{f}(a)_{r, s}$ to zero forces
$f(\rho, \theta, \alpha)=\int_{0}^{\infty} \sum_{r, s \in \mathbb{Z}} \hat{f}(a)_{r, s} i^{s-r} e^{-i(s \alpha+(r-s) \theta)} J_{s-r}(2 \pi a \rho) a d a$
to become a polynomial times exponential
If

$$
e^{\pi a^{2}} \sum_{r, s=-N}^{N} \hat{f}(a) y_{r} y_{s} \in \mathbb{R}\left[a, y_{-N}, \ldots, y_{N}\right]
$$

is a sum of squares, then f is pos. type

Fix $A \in \operatorname{SO}(n)$.
$x \in \mathbb{R}^{n}$ with $K^{o} \cap x+A K^{o} \neq \emptyset$ is Minkowski difference $K^{o}-A K^{o}$
If K is a polytope, this is a linear condition in x.

Rigorous computations

right choice of polynomial basis is extremely important

- using monomial basis fails badly, even for very small degrees
- our choice: $\left|\mu_{k}^{-1}\right| L_{k}^{n / 2-1}(2 \pi t)$ μ_{k} : coefficient of $L_{k}^{n / 2-1}(2 \pi t)$ with largest absolute value
- SDPA-gmp with 256 bits of precision: $d \leq 51$
- perform post processing of the floating point solution
- perturb to a rational solution
- analyze quality-loss of this perturbation
(by estimates of eigenvalues and condition numbers)
— custom made C++ library for SDPs with SOS constraints

Tetrahedra?

* needs more automatization (also the harmonic analysis part)
* needs more theory for numerical optimization with SOS constraints
(condition numbers, special numerical solvers)
* still a challenge

