# Non-convex Robust PCA: Provable Bounds 

## Anima Anandkumar

U.C. Irvine

Joint work with Praneeth Netrapalli, U.N. Niranjan,
Prateek Jain and Sujay Sanghavi.

## Learning with Big Data



## High Dimensional Regime

- Missing observations, gross corruptions, outliers, ill-posed problems.
- Needle in a haystack: finding low dimensional structures in high dimensional data.

Principled approaches for finding low dimensional structures?

## PCA: Classical Method

- Denoising: find hidden low rank structures in data.
- Efficient computation, perturbation analysis.



## PCA: Classical Method

- Denoising: find hidden low rank structures in data.
- Efficient computation, perturbation analysis.



## PCA: Classical Method

- Denoising: find hidden low rank structures in data.
- Efficient computation, perturbation analysis.


Not robust to even a few outliers

## Robust PCA Problem

- Find low rank structure after removing sparse corruptions.
- Decompose input matrix as low rank + sparse matrices.

- $M \in \mathbb{R}^{n \times n}, L^{*}$ is low rank and $S^{*}$ is sparse.
- Applications in computer vision, topic and community modeling.


## History

Heuristics without guarantes

- Multivariate trimming [Gnanadeskian+ Kettering 72]
- Random sampling [Fischler+ Bolles81].
- Alternating minimization [Ke+ Kanade03].
- Influence functions [de la Torre + Black 03]


## Convex methods with Guarantees

- Chandrasekharan et. al, Candes et. al '11: seminal guarantees.
- Hsu et. al '11, Agarwal et. al '12: further guarantees.
- (Variants) Xu et. al '11: Outlier pursuit, Chen et. al '12: community detection.


## Why is Robust PCA difficult?



- No identifiability in general: Low rank matrices can also be sparse and vice versa.

Natural constraints for identifiability?

- Low rank matrix is NOT sparse and viceversa.
- Incoherent low rank matrix and sparse matrix with sparsity constraints.

Tractable methods for identifiable settings?

## Why is Robust PCA difficult?



- No identifiability in general: Low rank matrices can also be sparse and vice versa.

Natural constraints for identifiability?

- Low rank matrix is NOT sparse and viceversa.
- Incoherent low rank matrix and sparse matrix with sparsity constraints.

Tractable methods for identifiable settings?

## Convex Relaxation Techniques

(Hard) Optimization Problem, given $M \in \mathbb{R}^{n \times n}$

$$
\min _{I S} \operatorname{Rank}(L)+\gamma\|S\|_{0}, \quad M=L+S .
$$

- $\operatorname{Rank}(L)=\left\{\# \sigma_{i}(L): \sigma_{i}(L) \neq 0\right\},\|S\|_{0}=\{\# S(i, j): S(i, j) \neq 0\}$ are not tractable.


## Convex Relaxation Techniques

(Hard) Optimization Problem, given $M \in \mathbb{R}^{n \times n}$

$$
\min _{L, S} \operatorname{Rank}(L)+\gamma\|S\|_{0}, \quad M=L+S .
$$

- $\operatorname{Rank}(L)=\left\{\# \sigma_{i}(L): \sigma_{i}(L) \neq 0\right\},\|S\|_{0}=\{\# S(i, j): S(i, j) \neq 0\}$ are not tractable.

Convex Relaxation

$$
\min _{L, S}\|L\|_{*}+\gamma\|S\|_{1}, \quad M=L+S .
$$

- $\|L\|_{*}=\sum_{i} \sigma_{i}(L),\|S\|_{1}=\sum_{i, j}|S(i, j)|$ are convex sets.
- Chandrasekharan et. al, Candes et. al '11: seminal works.


## Other Alternatives for Robust PCA?

$$
\min _{L, S}\|L\|_{*}+\gamma\|S\|_{1}, \quad M=L+S .
$$

Shortcomings of convex methods

## Other Alternatives for Robust PCA?

$$
\min _{L, S}\|L\|_{*}+\gamma\|S\|_{1}, \quad M=L+S
$$

Shortcomings of convex methods

- Computational cost: $O\left(n^{3} / \epsilon\right)$ to achieve error of $\epsilon$
- Requires SVD of $n \times n$ matrix.
- Analysis: requires dual witness style arguments.
- Conditions for success usually opaque.


## Other Alternatives for Robust PCA?

$$
\min _{L, S}\|L\|_{*}+\gamma\|S\|_{1}, \quad M=L+S
$$

Shortcomings of convex methods

- Computational cost: $O\left(n^{3} / \epsilon\right)$ to achieve error of $\epsilon$
- Requires SVD of $n \times n$ matrix.
- Analysis: requires dual witness style arguments.
- Conditions for success usually opaque.

Non-convex alternatives?

## Proposal for Non-convex Robust PCA

$$
\min _{L, S}\|S\|_{0}, \quad \text { s.t. } M=L+S, \quad \operatorname{Rank}(L)=r
$$

## Proposal for Non-convex Robust PCA

$$
\min _{L, S}\|S\|_{0}, \quad \text { s.t. } M=L+S, \quad \operatorname{Rank}(L)=r
$$

A non-convex heuristic (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{r}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_{r}(\cdot)$ : rank- $r$ projection. $H_{\zeta}(\cdot)$ : thresholding with $\zeta$.
- Computationally efficient: each operation is just a rank-r SVD or thresholding.


## Proposal for Non-convex Robust PCA

$$
\min _{L, S}\|S\|_{0}, \quad \text { s.t. } M=L+S, \quad \operatorname{Rank}(L)=r
$$

A non-convex heuristic (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{r}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_{r}(\cdot)$ : rank- $r$ projection. $H_{\zeta}(\cdot)$ : thresholding with $\zeta$.
- Computationally efficient: each operation is just a rank-r SVD or thresholding.

Any hope for proving guarantees?

## Observations regarding non-convex analysis

Challenges

- Multiple stable points: bad local optima, solution depends on initialization.
- Method may have very slow convergence or may not converge at all!


## Observations regarding non-convex analysis

Challenges

- Multiple stable points: bad local optima, solution depends on initialization.
- Method may have very slow convergence or may not converge at all!

Non-convex Projections vs. Convex Projections

- Projections on to non-convex sets: NP-hard in general.
- Projections on to rank and sparse sets: tractable.
- Less information than convex projections: zero-order conditions.

$$
\begin{aligned}
\|P(M)-M\| & \leq\|Y-M\|, \quad \forall Y \in C(\text { Non-convex }) \\
\|P(M)-M\|^{2} & \leq\langle Y-M, P(M)-M\rangle, \quad \forall Y \in C(\text { Convex }) .
\end{aligned}
$$

## Non-convex success stories

Classical Result

- PCA: Convergence to global optima!


## Non-convex success stories

Classical Result

- PCA: Convergence to global optima!

Recent results

- Tensor methods (Anandkumar et. al '12, '14): Local optima can be characterized in special cases.


## Non-convex success stories

## Classical Result

- PCA: Convergence to global optima!

Recent results

- Tensor methods (Anandkumar et. al '12, '14): Local optima can be characterized in special cases.
- Dictionary learning (Agarwal et. al '14, Arora et. al '14): Initialize using a "clustering style" method and do alternating minimization.


## Non-convex success stories

## Classical Result

- PCA: Convergence to global optima!

Recent results

- Tensor methods (Anandkumar et. al '12, '14): Local optima can be characterized in special cases.
- Dictionary learning (Agarwal et. al '14, Arora et. al '14): Initialize using a "clustering style" method and do alternating minimization.
- Matrix completion/phase retrieval: (Netrapalli et. al '13) Initialize with PCA and do alternating minimization.


## Non-convex success stories

## Classical Result

- PCA: Convergence to global optima!

Recent results

- Tensor methods (Anandkumar et. al '12, '14): Local optima can be characterized in special cases.
- Dictionary learning (Agarwal et. al '14, Arora et. al '14): Initialize using a "clustering style" method and do alternating minimization.
- Matrix completion/phase retrieval: (Netrapalli et. al '13) Initialize with PCA and do alternating minimization.
(Somewhat) common theme
- Characterize basin of attraction for global optimum.
- Obtain a good initialization to "land in the ball".


## Non-convex Robust PCA

A non-convex heuristic (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{r}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Observations regarding Robust PCA

- Projection on to rank and sparse subspaces: non-convex but tractable: SVD and hard thresholding.
- But alternating projections: challenging to analyze


## Non-convex Robust PCA

A non-convex heuristic (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{r}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Observations regarding Robust PCA

- Projection on to rank and sparse subspaces: non-convex but tractable: SVD and hard thresholding.
- But alternating projections: challenging to analyze

Our results for (a variant of) AltProj

- Guaranteed recovery of low rank $L^{*}$ and sparse part $S^{*}$.
- Match the bounds for convex methods (deterministic sparsity).
- Reduced computation: only require low rank SVDs!


## Non-convex Robust PCA

A non-convex heuristic (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{r}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Observations regarding Robust PCA

- Projection on to rank and sparse subspaces: non-convex but tractable: SVD and hard thresholding.
- But alternating projections: challenging to analyze

Our results for (a variant of) AltProj

- Guaranteed recovery of low rank $L^{*}$ and sparse part $S^{*}$.
- Match the bounds for convex methods (deterministic sparsity).
- Reduced computation: only require low rank SVDs!

Best of both worlds: reduced computation with guarantees!

## Outline

(1) Introduction
(2) Analysis
(3) Experiments

4 Robust Tensor PCA
(5) Conclusion


## Toy example: Rank-1 case

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_{1}(\cdot)$ : rank-1 projection. $H_{\zeta}(\cdot)$ : thresholding.


## Toy example: Rank-1 case

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_{1}(\cdot)$ : rank-1 projection. $H_{\zeta}(\cdot)$ : thresholding.

Immediate Observations

- First PCA: $L \leftarrow P_{1}(M)$.


## Toy example: Rank-1 case

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_{1}(\cdot)$ : rank-1 projection. $H_{\zeta}(\cdot)$ : thresholding.

Immediate Observations

- First PCA: $L \leftarrow P_{1}(M)$.
- Matrix perturbation bound: $\|M-L\|_{2} \leq O\left(\left\|S^{*}\right\|\right)$


## Toy example: Rank-1 case

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_{1}(\cdot)$ : rank-1 projection. $H_{\zeta}(\cdot)$ : thresholding.

Immediate Observations

- First PCA: $L \leftarrow P_{1}(M)$.
- Matrix perturbation bound: $\|M-L\|_{2} \leq O\left(\left\|S^{*}\right\|\right)$
- If $\left\|S^{*}\right\| \gg 1$, no progress!


## Toy example: Rank-1 case

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_{1}(\cdot)$ : rank-1 projection. $H_{\zeta}(\cdot)$ : thresholding.

Immediate Observations

- First PCA: $L \leftarrow P_{1}(M)$.
- Matrix perturbation bound: $\|M-L\|_{2} \leq O\left(\left\|S^{*}\right\|\right)$
- If $\left\|S^{*}\right\| \gg 1$, no progress!

Exploit incoherence of $L^{*}$ ?

## Rank-1 Analysis Contd.

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.


## Rank-1 Analysis Contd.

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Incoherence of $L^{*}$

- $L^{*}=u^{*}\left(u^{*}\right)^{\top}$ and $\left\|u^{*}\right\|_{\infty} \leq \frac{\mu}{\sqrt{n}}$ and $\left\|L^{*}\right\|_{\infty} \leq \frac{\mu^{2}}{n}$.


## Rank-1 Analysis Contd.

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Incoherence of $L^{*}$

- $L^{*}=u^{*}\left(u^{*}\right)^{\top}$ and $\left\|u^{*}\right\|_{\infty} \leq \frac{\mu}{\sqrt{n}}$ and $\left\|L^{*}\right\|_{\infty} \leq \frac{\mu^{2}}{n}$.

Solution for handling large $\left\|S^{*}\right\|$

- First threshold $M$ before rank-1 projection.
- Ensures large entries of $S^{*}$ are identified.


## Rank-1 Analysis Contd.

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L, S=0$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Incoherence of $L^{*}$

- $L^{*}=u^{*}\left(u^{*}\right)^{\top}$ and $\left\|u^{*}\right\|_{\infty} \leq \frac{\mu}{\sqrt{n}}$ and $\left\|L^{*}\right\|_{\infty} \leq \frac{\mu^{2}}{n}$.

Solution for handling large $\left\|S^{*}\right\|$

- First threshold $M$ before rank-1 projection.
- Ensures large entries of $S^{*}$ are identified.
- Choose threshold $\zeta_{0}=\frac{4 \mu^{2}}{n}$.


## Rank-1 Analysis Contd.

$$
M=L^{*}+S^{*}, \quad L^{*}=u^{*}\left(u^{*}\right)^{\top}
$$

Non-convex method (AltProj)

- Initialize $L=0, S=H_{\zeta_{0}}(M)$ and iterate:
- $L \leftarrow P_{1}(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Incoherence of $L^{*}$

- $L^{*}=u^{*}\left(u^{*}\right)^{\top}$ and $\left\|u^{*}\right\|_{\infty} \leq \frac{\mu}{\sqrt{n}}$ and $\left\|L^{*}\right\|_{\infty} \leq \frac{\mu^{2}}{n}$.

Solution for handling large $\left\|S^{*}\right\|$

- First threshold $M$ before rank-1 projection.
- Ensures large entries of $S^{*}$ are identified.
- Choose threshold $\zeta_{0}=\frac{4 \mu^{2}}{n}$.


## Rank-1 Analysis Contd.

Non-convex method (AltProj)

$$
\begin{aligned}
& L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M), \\
& L^{(t+1)} \leftarrow P_{1}\left(M-S^{(t)}\right), S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right) .
\end{aligned}
$$



- To analyze progress, track $E^{(t+1)}:=S^{*}-S^{(t+1)}$


## Rank-1 Analysis Contd.

One iteration of AltProj
$L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M), L^{(1)} \leftarrow P_{1}\left(M-S^{(0)}\right), S^{(1)} \leftarrow H_{\zeta}\left(M-L^{(1)}\right)$.
Analyze $E^{(1)}:=S^{*}-S^{(1)}$

- Thresholding is element-wise operation: require $\left\|L^{(1)}-L^{*}\right\|_{\infty}$.
- In general, no special bound for $\left\|L^{(1)}-L^{*}\right\|_{\infty}$.
- Exploit sparsity of $S^{*}$ and incoherence of $L^{*}$ ?


## Rank-1 Analysis Contd.

- $L^{(1)}=u u^{\top}=P_{1}\left(M-S^{(0)}\right)$ and $E^{(0)}=S^{*}-S^{(0)}$.

Fixed point equation for eigenvectors $\left(M-S^{(0)}\right) u=\lambda u$

## Rank-1 Analysis Contd.

- $L^{(1)}=u u^{\top}=P_{1}\left(M-S^{(0)}\right)$ and $E^{(0)}=S^{*}-S^{(0)}$.

Fixed point equation for eigenvectors $\left(M-S^{(0)}\right) u=\lambda u$

$$
\text { - }\left\langle u^{*}, u\right\rangle u^{*}+\left(S^{*}-S^{(0)}\right) u=\lambda u \text { or } u=\lambda\left\langle u^{*}, u\right\rangle\left(I-\frac{E^{(0)}}{\lambda}\right)^{-1} u^{*}
$$

Taylor Series

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

## Rank-1 Analysis Contd.

- $L^{(1)}=u u^{\top}=P_{1}\left(M-S^{(0)}\right)$ and $E^{(0)}=S^{*}-S^{(0)}$.

Fixed point equation for eigenvectors $\left(M-S^{(0)}\right) u=\lambda u$

- $\left\langle u^{*}, u\right\rangle u^{*}+\left(S^{*}-S^{(0)}\right) u=\lambda u$ or $u=\lambda\left\langle u^{*}, u\right\rangle\left(I-\frac{E^{(0)}}{\lambda}\right)^{-1} u^{*}$

Taylor Series

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is sparse: $\operatorname{supp}\left(E^{(0)}\right) \subseteq \operatorname{supp}\left(S^{*}\right)$.


## Rank-1 Analysis Contd.

- $L^{(1)}=u u^{\top}=P_{1}\left(M-S^{(0)}\right)$ and $E^{(0)}=S^{*}-S^{(0)}$.

Fixed point equation for eigenvectors $\left(M-S^{(0)}\right) u=\lambda u$

- $\left\langle u^{*}, u\right\rangle u^{*}+\left(S^{*}-S^{(0)}\right) u=\lambda u$ or $u=\lambda\left\langle u^{*}, u\right\rangle\left(I-\frac{E^{(0)}}{\lambda}\right)^{-1} u^{*}$

Taylor Series

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is $\operatorname{sparse}: \operatorname{supp}\left(E^{(0)}\right) \subseteq \operatorname{supp}\left(S^{*}\right)$.
- Exploiting sparsity: $\left(E^{(0)}\right)^{p}$ is the $p^{\text {th }}$-hop adjacency matrix of $E^{(0)}$.


## Rank-1 Analysis Contd.

- $L^{(1)}=u u^{\top}=P_{1}\left(M-S^{(0)}\right)$ and $E^{(0)}=S^{*}-S^{(0)}$.

Fixed point equation for eigenvectors $\left(M-S^{(0)}\right) u=\lambda u$

- $\left\langle u^{*}, u\right\rangle u^{*}+\left(S^{*}-S^{(0)}\right) u=\lambda u$ or $u=\lambda\left\langle u^{*}, u\right\rangle\left(I-\frac{E^{(0)}}{\lambda}\right)^{-1} u^{*}$

Taylor Series

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is sparse: $\operatorname{supp}\left(E^{(0)}\right) \subseteq \operatorname{supp}\left(S^{*}\right)$.
- Exploiting sparsity: $\left(E^{(0)}\right)^{p}$ is the $p^{\text {th }}$-hop adjacency matrix of $E^{(0)}$.
- Counting walks in sparse graphs.


## Rank-1 Analysis Contd.

- $L^{(1)}=u u^{\top}=P_{1}\left(M-S^{(0)}\right)$ and $E^{(0)}=S^{*}-S^{(0)}$.

Fixed point equation for eigenvectors $\left(M-S^{(0)}\right) u=\lambda u$

- $\left\langle u^{*}, u\right\rangle u^{*}+\left(S^{*}-S^{(0)}\right) u=\lambda u$ or $u=\lambda\left\langle u^{*}, u\right\rangle\left(I-\frac{E^{(0)}}{\lambda}\right)^{-1} u^{*}$

Taylor Series

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is $\operatorname{sparse}: \operatorname{supp}\left(E^{(0)}\right) \subseteq \operatorname{supp}\left(S^{*}\right)$.
- Exploiting sparsity: $\left(E^{(0)}\right)^{p}$ is the $p^{\text {th }}$-hop adjacency matrix of $E^{(0)}$.
- Counting walks in sparse graphs.
- In addition, $u^{*}$ is incoherent: $\left\|u^{*}\right\|_{\infty}<\frac{\mu}{\sqrt{n}}$.


## Rank-1 Analysis Contd.

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is sparse (each row/column is $d$ sparse) and $u^{*}$ is $\mu$-incoherent.


## Rank-1 Analysis Contd.

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is sparse (each row/column is $d$ sparse) and $u^{*}$ is $\mu$-incoherent.
- We show: $\left\|\left(E^{(0)}\right)^{p} u^{*}\right\|_{\infty} \leq \frac{\mu}{\sqrt{n}}\left(d\left\|E^{(0)}\right\|_{\infty}\right)^{p}$


## Rank-1 Analysis Contd.

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is sparse (each row/column is $d$ sparse) and $u^{*}$ is $\mu$-incoherent.
- We show: $\left\|\left(E^{(0)}\right)^{p} u^{*}\right\|_{\infty} \leq \frac{\mu}{\sqrt{n}}\left(d\left\|E^{(0)}\right\|_{\infty}\right)^{p}$
- Convergence when terms are $<1$, i.e. $d\left\|E^{(0)}\right\|_{\infty}<1$.


## Rank-1 Analysis Contd.

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is sparse (each row/column is $d$ sparse) and $u^{*}$ is $\mu$-incoherent.
- We show: $\left\|\left(E^{(0)}\right)^{p} u^{*}\right\|_{\infty} \leq \frac{\mu}{\sqrt{n}}\left(d\left\|E^{(0)}\right\|_{\infty}\right)^{p}$.
- Convergence when terms are $<1$, i.e. $d\left\|E^{(0)}\right\|_{\infty}<1$.
- Recall $\left\|E^{(0)}\right\|_{\infty}<\frac{4 \mu^{2}}{n}$ due to thresholding.


## Rank-1 Analysis Contd.

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is sparse (each row/column is $d$ sparse) and $u^{*}$ is $\mu$-incoherent.
- We show: $\left\|\left(E^{(0)}\right)^{p} u^{*}\right\|_{\infty} \leq \frac{\mu}{\sqrt{n}}\left(d\left\|E^{(0)}\right\|_{\infty}\right)^{p}$.
- Convergence when terms are $<1$, i.e. $d\left\|E^{(0)}\right\|_{\infty}<1$.
- Recall $\left\|E^{(0)}\right\|_{\infty}<\frac{4 \mu^{2}}{n}$ due to thresholding.
- Require $d<\frac{n}{4 \mu^{2}}$. Can tolerate $O(n)$ corruptions!


## Rank-1 Analysis Contd.

$$
u=\lambda\left\langle u^{*}, u\right\rangle\left(I+\sum_{p \geq 1}\left(\frac{E^{(0)}}{\lambda}\right)^{p}\right) u^{*}
$$

- $E^{(0)}$ is sparse (each row/column is $d$ sparse) and $u^{*}$ is $\mu$-incoherent.
- We show: $\left\|\left(E^{(0)}\right)^{p} u^{*}\right\|_{\infty} \leq \frac{\mu}{\sqrt{n}}\left(d\left\|E^{(0)}\right\|_{\infty}\right)^{p}$.
- Convergence when terms are $<1$, i.e. $d\left\|E^{(0)}\right\|_{\infty}<1$.
- Recall $\left\|E^{(0)}\right\|_{\infty}<\frac{4 \mu^{2}}{n}$ due to thresholding.
- Require $d<\frac{n}{4 \mu^{2}}$. Can tolerate $O(n)$ corruptions!

Contraction of error $E^{(t)}$ when degree $d$ is bounded.

## Extension to general rank: challenges

## Extension to general rank: challenges

A proposal for rank-r Non-convex method (AltProj) Init $L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M)$, iterate:

$$
L^{(t+1)} \leftarrow P_{r}\left(M-S^{(t)}\right), \quad S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right)
$$

## Extension to general rank: challenges

A proposal for rank-r Non-convex method (AltProj)
Init $L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M)$, iterate:
$L^{(t+1)} \leftarrow P_{r}\left(M-S^{(t)}\right), \quad S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right)$.

Recall for rank-1 case

- Initial threshold controlled perturbation for rank-1 projection.


## Extension to general rank: challenges

A proposal for rank-r Non-convex method (AltProj)
Init $L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M)$, iterate:
$L^{(t+1)} \leftarrow P_{r}\left(M-S^{(t)}\right), \quad S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right)$.

Recall for rank-1 case

- Initial threshold controlled perturbation for rank-1 projection.

Perturbation analysis in general rank case

- Small $\lambda_{\min }^{*}\left(L^{*}\right)$ : no recovery of lower eigenvectors.


## Extension to general rank: challenges

A proposal for rank-r Non-convex method (AltProj)
Init $L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M)$, iterate:
$L^{(t+1)} \leftarrow P_{r}\left(M-S^{(t)}\right), \quad S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right)$.

Recall for rank-1 case

- Initial threshold controlled perturbation for rank-1 projection.

Perturbation analysis in general rank case

- Small $\lambda_{\text {min }}^{*}\left(L^{*}\right):$ no recovery of lower eigenvectors.
- Sparsity level depends on condition number $\lambda_{\max }^{*} / \lambda_{\text {min }}^{*}$


## Extension to general rank: challenges

A proposal for rank-r Non-convex method (AltProj)
Init $L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M)$, iterate:
$L^{(t+1)} \leftarrow P_{r}\left(M-S^{(t)}\right), \quad S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right)$.

Recall for rank-1 case

- Initial threshold controlled perturbation for rank-1 projection.

Perturbation analysis in general rank case

- Small $\lambda_{\text {min }}^{*}\left(L^{*}\right):$ no recovery of lower eigenvectors.
- Sparsity level depends on condition number $\lambda_{\max }^{*} / \lambda_{\text {min }}^{*}$

Guarantees without dependence on condition number?

## Extension to general rank: challenges

A proposal for rank-r Non-convex method (AltProj)
Init $L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M)$, iterate:
$L^{(t+1)} \leftarrow P_{r}\left(M-S^{(t)}\right), \quad S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right)$.

Recall for rank-1 case

- Initial threshold controlled perturbation for rank-1 projection.

Perturbation analysis in general rank case

- Small $\lambda_{\text {min }}^{*}\left(L^{*}\right)$ : no recovery of lower eigenvectors.
- Sparsity level depends on condition number $\lambda_{\text {max }}^{*} / \lambda_{\text {min }}^{*}$

Guarantees without dependence on condition number?

- Lower eigenvectors subject to a large perturbation initially.


## Extension to general rank: challenges

A proposal for rank-r Non-convex method (AltProj)
Init $L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M)$, iterate:
$L^{(t+1)} \leftarrow P_{r}\left(M-S^{(t)}\right), \quad S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right)$.

Recall for rank-1 case

- Initial threshold controlled perturbation for rank-1 projection.

Perturbation analysis in general rank case

- Small $\lambda_{\text {min }}^{*}\left(L^{*}\right)$ : no recovery of lower eigenvectors.
- Sparsity level depends on condition number $\lambda_{\max }^{*} / \lambda_{\text {min }}^{*}$

Guarantees without dependence on condition number?

- Lower eigenvectors subject to a large perturbation initially.
- Reduce perturbation before recovering lower eigenvectors!


## Improved Algorithm for General Rank Setting

Stage-wise Projections

- Init $L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M)$.
- For stage $k=1$ to $r$,
- Iterate: $L^{(t+1)} \leftarrow P_{k}\left(M-S^{(t)}\right), \quad S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right)$.


## Improved Algorithm for General Rank Setting

Stage-wise Projections

- Init $L^{(0)}=0, S^{(0)}=H_{\zeta_{0}}(M)$.
- For stage $k=1$ to $r$,
- Iterate: $L^{(t+1)} \leftarrow P_{k}\left(M-S^{(t)}\right), \quad S^{(t+1)} \leftarrow H_{\zeta}\left(M-L^{(t+1)}\right)$.



## Summary of Results

- Low rank part: $L^{*}=U^{*} \Lambda^{*}\left(V^{*}\right)^{\top}$ has rank $r$.
- Incoherence: $\left\|U^{*}(i,:)\right\|_{2},\left\|V^{*}(i,:)\right\|_{2} \leq \frac{\mu \sqrt{r}}{\sqrt{n}}$.
- Sparse part: $S^{*}$ has at most $d$ non-zeros per row/column.


## Summary of Results

- Low rank part: $L^{*}=U^{*} \Lambda^{*}\left(V^{*}\right)^{\top}$ has rank $r$.
- Incoherence: $\left\|U^{*}(i,:)\right\|_{2},\left\|V^{*}(i,:)\right\|_{2} \leq \frac{\mu \sqrt{r}}{\sqrt{n}}$.
- Sparse part: $S^{*}$ has at most $d$ non-zeros per row/column.

Theorem: Guarantees for Stage-wise AltProj

- Exact recovery of $L^{*}, S^{*}$ when $d=O\left(\frac{n}{\mu^{2} r}\right)$


## Summary of Results

- Low rank part: $L^{*}=U^{*} \Lambda^{*}\left(V^{*}\right)^{\top}$ has rank $r$.
- Incoherence: $\left\|U^{*}(i,:)\right\|_{2},\left\|V^{*}(i,:)\right\|_{2} \leq \frac{\mu \sqrt{r}}{\sqrt{n}}$.
- Sparse part: $S^{*}$ has at most $d$ non-zeros per row/column.

Theorem: Guarantees for Stage-wise AltProj

- Exact recovery of $L^{*}, S^{*}$ when $d=O\left(\frac{n}{\mu^{2} r}\right)$
- Computational complexity: $O\left(r^{2} n^{2} \log (1 / \epsilon)\right)$


## Summary of Results

- Low rank part: $L^{*}=U^{*} \Lambda^{*}\left(V^{*}\right)^{\top}$ has rank $r$.
- Incoherence: $\left\|U^{*}(i,:)\right\|_{2},\left\|V^{*}(i,:)\right\|_{2} \leq \frac{\mu \sqrt{r}}{\sqrt{n}}$.
- Sparse part: $S^{*}$ has at most $d$ non-zeros per row/column.

Theorem: Guarantees for Stage-wise AltProj

- Exact recovery of $L^{*}, S^{*}$ when $d=O\left(\frac{n}{\mu^{2} r}\right)$
- Computational complexity: $O\left(r^{2} n^{2} \log (1 / \epsilon)\right)$

Comparison to convex method

- Same (deterministic) condition on $d$. Running time: $O\left(n^{3} / \epsilon\right)$


## Summary of Results

- Low rank part: $L^{*}=U^{*} \Lambda^{*}\left(V^{*}\right)^{\top}$ has rank $r$.
- Incoherence: $\left\|U^{*}(i,:)\right\|_{2},\left\|V^{*}(i,:)\right\|_{2} \leq \frac{\mu \sqrt{r}}{\sqrt{n}}$.
- Sparse part: $S^{*}$ has at most $d$ non-zeros per row/column.

Theorem: Guarantees for Stage-wise AltProj

- Exact recovery of $L^{*}, S^{*}$ when $d=O\left(\frac{n}{\mu^{2} r}\right)$
- Computational complexity: $O\left(r^{2} n^{2} \log (1 / \epsilon)\right)$

Comparison to convex method

- Same (deterministic) condition on $d$. Running time: $O\left(n^{3} / \epsilon\right)$

Best of both worlds: reduced computation with guarantees!
"Non-convex Robust PCA," P. Netrapalli, U.N. Niranjan, S. Sanghavi, A. , P. Jain, NIPS '14.

# Outline 

(1) Introduction
(2) Analysis
(3) Experiments

4 Robust Tensor PCA
(5) Conclusion

## Synthetic Results

- NcRPCA: Non-convex Robust PCA.
- IALM: Inexact augmented Lagrange multipliers.








## Real data: Foreground/background Separation



Real data: Foreground/background Separation


IALM


# Outline 

## (1) Introduction

(2) Analysis
(3) Experiments
(4) Robust Tensor PCA
(5) Conclusion

## Robust Tensor PCA



VS.


## Robust Tensor PCA


vs.


Robust Tensor Problem


## Robust Tensor PCA


vs.


## Robust Tensor Problem



Applications: Robust Learning of Latent Variable Models.
A. , R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky "Tensor Decompositions for Learning Latent Variable Models," Preprint, Oct. '12.

## Challenges and Preliminary Observations

$$
T=L^{*}+S^{*} \in \mathbb{R}^{n \times n \times n}, \quad L^{*}=\sum_{i \in[r]} a_{i}^{\otimes 3}
$$

Convex methods

- No natural convex surrogate for tensor (CP) rank.
- Matricization loses the tensor structure!


## Challenges and Preliminary Observations

$$
T=L^{*}+S^{*} \in \mathbb{R}^{n \times n \times n}, \quad L^{*}=\sum_{i \in[r]} a_{i}^{\otimes 3}
$$

Convex methods

- No natural convex surrogate for tensor (CP) rank.
- Matricization loses the tensor structure!

Non-Convex Heuristic: Extension of Matrix AltProj

$$
L^{(t+1)} \leftarrow P_{r}\left(T-S^{(t)}\right), S^{(t+1)} \leftarrow H_{\zeta}\left(T-L^{(t+1)}\right) .
$$

## Challenges and Preliminary Observations

$$
T=L^{*}+S^{*} \in \mathbb{R}^{n \times n \times n}, \quad L^{*}=\sum_{i \in[r]} a_{i}^{\otimes 3}
$$

Convex methods

- No natural convex surrogate for tensor (CP) rank.
- Matricization loses the tensor structure!

Non-Convex Heuristic: Extension of Matrix AltProj
$L^{(t+1)} \leftarrow P_{r}\left(T-S^{(t)}\right), S^{(t+1)} \leftarrow H_{\zeta}\left(T-L^{(t+1)}\right)$.
Challenges in Non-Convex Analysis

- $P_{r}$ for a general tensor is NP-hard!


## Challenges and Preliminary Observations

$$
T=L^{*}+S^{*} \in \mathbb{R}^{n \times n \times n}, \quad L^{*}=\sum_{i \in[r]} a_{i}^{\otimes 3}
$$

Convex methods

- No natural convex surrogate for tensor (CP) rank.
- Matricization loses the tensor structure!

Non-Convex Heuristic: Extension of Matrix AltProj
$L^{(t+1)} \leftarrow P_{r}\left(T-S^{(t)}\right), S^{(t+1)} \leftarrow H_{\zeta}\left(T-L^{(t+1)}\right)$.

Challenges in Non-Convex Analysis

- $P_{r}$ for a general tensor is NP-hard!
- Can be well approximated in special cases, e.g. full rank factors.


## Challenges and Preliminary Observations

$$
T=L^{*}+S^{*} \in \mathbb{R}^{n \times n \times n}, \quad L^{*}=\sum_{i \in[r]} a_{i}^{\otimes 3}
$$

Convex methods

- No natural convex surrogate for tensor (CP) rank.
- Matricization loses the tensor structure!

Non-Convex Heuristic: Extension of Matrix AltProj
$L^{(t+1)} \leftarrow P_{r}\left(T-S^{(t)}\right), S^{(t+1)} \leftarrow H_{\zeta}\left(T-L^{(t+1)}\right)$.

Challenges in Non-Convex Analysis

- $P_{r}$ for a general tensor is NP-hard!
- Can be well approximated in special cases, e.g. full rank factors.

Guaranteed recovery possible!

# Outline 

(1) Introduction
(2) Analysis
(3) Experiments
(4) Robust Tensor PCA
(5) Conclusion

## Conclusion

$$
\begin{aligned}
& {[]=} \\
& M \quad L^{*} \quad S^{*}
\end{aligned}
$$

## Guaranteed Non-Convex Robust PCA

- Simple non-convex method for robust PCA.
- Alternating rank projections and thresholding.
- Estimates for low rank and sparse parts "grown gradually".
- Guarantees match convex methods.
- Low computational complexity: scalable to large matrices.

Possible to have both: guarantees and low computation!

## Outlook



- Reduce computational complexity? Skip stages in rank projections? Tight bounds for incoherent row-column subspaces?
- Extendable to the tensor setting with tight scaling guarantees.
- Other problems where non-convex methods have guarantees?
- Csiszar's alternating minimization framework.
- (Laserre) hierarchy for convex methods: increasing complexity for "harder" problems.
- Analogous unified thinking for non-convex methods?

Holy grail: A general framework for non-convex methods?

