

Sanjeev Arora

Princeton University
Computer Science + Center for Computational
Intractability

Linear Algebra ++

Set of problems and techniques that extend classical linear algebra.

Often are (or seem) NP-hard; currently solved via nonlinear programming heuristics.

For provable bounds need to make assumptions about the input.

Is NP-hardness an obstacle for theory?

Classical linear algebra

Solving linear systems: Ax =b

Matrix factorization/rank M = AB;
 (A has much fewer columns than M)

Eigenvalues/eigenvectors. ("Nice basis")

$$M = \sum_{i} \lambda_{i} u_{i} u_{i}^{T} = \sum_{i} \lambda_{i} u_{i} \otimes u_{i}$$

Classical Lin. Algebra: least square variants

Solving linear systems: Ax =b

$$\min_{x} ||Ax - b||^2 \quad \text{(Least squares fit)}$$

15 10 -20 -10 10 20 30 40 50 60

Matrix factorization/rank M = AB;
 (A has much fewer columns than M)

$$\min \|M - AB\|^2$$
 A has r columns $\rightarrow \operatorname{rank-}r\text{-SVD}$

("PCA" [Hotelling, Pearson, 1930s]) ("Finding a better basis")

Semi-classical linear algebra

$$Ax = b$$
 s.t. $x \ge 0$. (LP)

Can be solved via LP if A is random/incoherent/RIP (Candes,Romberg, Tao;06)

 x is sparse ("l₁-trick")

Goal in several machine learning settings: Matrix factorization analogs of above: Find M = AB with such constraints on A, B (NP-hard in worst case)

(Buzzwords: Sparse PCA, Nonnegative matrix factorization, Sparse coding, Learning PCFGs,...)

Example: k-means =

Least-square rank-k matrix factorization

 each column of B has one nonzero entry and it is 1 (sparsity + nonneg + integrality)

Matrix factorization: Nonlinear variants

Given M produced as follows: Generate low-rank A, B, apply nonlinear operator f on each entry of AB.

Goal: Recover A, B "Nonlinear PCA" [Collins, Dasgupta, Schapire'03]

Deep Learning	f(x) = sgn(x) or sigmoid(x)
Topic Modeling	<pre>f(x) = output 1 with Prob. x . (Also, columns of B are iid.)</pre>
Matrix completion	f(x) = output x with prob. p, else 0

Possible general approach? Convex relaxation via nuclear norm minimization [Candes,Recht'09] [Davenport,Plan,van den Berg, Wooters'12]

Tensor variants of spectral methods

Spectral decomposition:

$$M = \sum_{i} \lambda_{i} u_{i} u_{i}^{T} = \sum_{i} \lambda_{i} u_{i} \otimes u_{i}$$

Analogue decomposition for n x n x n tensors may not exist.

But if it does, and it is "nondegenerate", can be found in poly time. Many ML applications via inverse moment problems. See [Anandkumar,Ge, Hsu, Kakade, Telgarsky'13] and talks of Rong and Anima later.

Applications to unsupervised learning...

Main paradigm for unsupervised Learning

Given: Data

Assumption: Is generated from

a prob. distribution that's

described by small # of parameters.

("Model").

HMMs, Topic Models, Bayes nets, Sparse Coding, ...

Learning ≅ Find good fit to parameter values (usually, "Max-Likelihood")

Difficulty: NP-hard in many cases. Nonconvex; solved via heuristics

Recent success stories.....

Ex 1: Inverse Moment Problem

X ε Rⁿ: Generated by a distribution D with vector of unknown parameters A.

$$M_1 = E[X] = f_1(A)$$

 $M_2 = E[XX^T] = f_2(A)$
 $M_3 = E[X^{\otimes 3}] = f_3(A)$

For many distributions, A may in principle be determined by these moments, but finding it may be NP-hard.

Under reasonable "nondegeneracy" assumptions, can be solved via tensor decomposition.

HMMs [Mossel-Roth06, Hsu-Kakade 09];

Topic Models[Anandkumar et al.'12]; many other settings [AGHKT'13]

Ex2: Topic Models

Given corpus of documents uncover their underlying thematic structure.

"Bag of words" Assumption in Text Analysis

(ith column = ith document)

Hidden Variable Explanation

Document = Mixture of Topics

Banana	3		3%		0
Snow Soccer		= 0.8	0 0	+ 0.2	4% 0
Walnut	5		5%		· · 0

Nonnegative Matrix Factorization

Given nx m nonnegative matrix M write it as M = AB; A, B are nonneg. A is n x r; B is r x m

[A,Ge,Kannan, Moitra'12] n^{f(r)} time worst case (also matching complexity lowerbound);

Poly(n) time if M is separable.

[A., Ge, Moitra'12] Use it to do topic modeling with separable topic matrix in poly(n) time (Very practical; fastest current code uses it; [A,Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu, ICML'13])

Notion also useful in vision, linguistics [Cohen, Collins ACL'14]

Ex 3: Dictionary Learning (aka Sparse Coding)

Simple "dictionary elements" build complicated objects.

- Each object composed of small # of dictionary elements (sparsity assumption)
- Given the objects, can we learn the dictionary?

Given: Samples y_i generated as A x_i , where x_i 's k-sparse, iid from

some distrib.

Goal: Learn matrix A, and x_i's

Why dictionary learning? [Olshausen Field '96]

Gabor-like Filters

natural image patches

Other uses: Image Denoising, Compression, etc.

"Energy minimization" heuristic

$$\min_{B,x_1,x_2,...,\sum_i}||y_i - Bx_i||_2^2$$

$$x_i$$
's are k-sparse

- Alternating Minimization (kSVD):
 Fix one, improve the other; REPEAT
- Approximate gradient descent ("neural")

[A., Ge,Ma,Moitra'14] Under some plausible assumptions, these heuristics find global optimum.

Lots of other work, including an approach using SDP hierarchies. [Barak, Kelner, Steurer'14]

Ex 4: A Theory for Deep Nets?

Deep learning: learn multilevel representation of data (nonlinear)

(inspired e.g. by 7-8 levels of visual cortex)

Successes: speech recognition, image recognition, etc.

[Krizhevsky et al NIPS'12.] 600K variables; Millions of training images. 84% success rate on IMAGENET (multiclass prediction).

(Current best: 94% [Szegedy et al'14])

Understanding "randomly-wired" deep nets

Inspirations: Random error correcting codes, expanders, etc...

[A.,Bhaskara, Ge, Ma, ICML'14] Provable learning in Hinton's generative model. Proof of hypothesized "autoencoder" property.

- No nonlinear optimization.
- Combinatorial algorithm that leverages correlations.

"Inspired and guided" Google's leading deep net code [Szegedy et al., Sept 2014]

Example of a useful ingredient

Perturbation bounds for top eigenvector (Davis-Kahan, Wedin)

```
v_1: top eigenvector for A v_1': top eigenvector for A +E
```

```
If |Ev_1| \ll difference of top two eigenvals of A,
then v_1' \approx v_1
```

Open Problems (LinAL++)

- NP-hardness of various LinAl++ problems?
- Generic n^{f(r)} time algorithm for rank-r matrix decomposition problems (linear/nonlinear)? (Least square versions seem most difficult.)
- Efficient gradient-like algorithms for LinAL++ problems, especially nonlinear PCA?
 (OK to make more assumptions)
- Application of LinAl++ algorithms to combinatorial optimization?
- Efficient dictionary learning beyond sparsity vn?

Open Problems (ML)

- Analyse other local-improvement heuristics.
- More provable bounds for deep learning.
- Rigorous analysis of nonconvex methods (variational inference, variational bayes, belief propagation..)
- Complexity theory of avg case problems (say interreducibilityin Lin Al++)?

Variants of matrix factorization (finding better bases)

Rank: Given n x m matrix M rewrite it (if possible) as M = A B (A: n x r; B: r x m)

"Least squares" version: min $|M - AB|^2$ (rank-r SVD)

Nonnegative matrix factorization: M, A, B have nonneg entries Solvable in n^r time; [AGKM'12, M'13]; in poly time for separable M

Sparse PCA: Rows of A are sparse. (Dictionary learning is a special case.) Solvable under some condns.

Least squares versions of above are open (k-means is a subcase...)