analyzing optimization algorithms with integral quadratic constraints

Laurent Lessard, Andrew Packard, and Benjamin Recht University of California, Berkeley

Optimization

Control

- Are joined by their arxiv category
- Controls made the SVD to SDP jump in the early 90s
- ML + Optimization perhaps now the synergistic duo
- There are many untapped analysis tools from controls

fly by wire philosophy

Feature Extractor

Linear
Solver

optimization (for big data?)

convex cost
minimize $f(x)$ subject to $x \in \Omega \quad$ "simple," convex constraints

- closely related cousin where P is a simple convex function: minimize $f(x)+P(x)$
- need algorithms that scale linearly (or sublinearly) with dimension and data
- currently favored family are the first-order methods

$$
x[k+1]=x[k]-\alpha \nabla f(x[k])
$$

for constrained optimization, use projected gradient descent

$$
x[k+1]=\Pi_{\Omega}(x[k]-\alpha \nabla f(x[k]))
$$

acceleration/multistep

gradient method akin to an ODE

$$
\begin{aligned}
& x[k+1]=x[k]-\alpha \nabla f(x[k]) \\
& \dot{x}=-\nabla f(x)
\end{aligned}
$$

to prevent oscillation, add a second order term

$$
\begin{aligned}
& \ddot{x}=-b \dot{x}-\nabla f(x) \\
& x[k+1]=x[k]-\alpha \nabla f(x[k])+\beta(x[k]-x[k-1])
\end{aligned}
$$

heavy ball method (constant α, β)

$$
\begin{aligned}
x[k+1] & =y[k]-\alpha \nabla f(x[k]) \\
y[k] & =(1+\beta) x[k]-\beta x[k-1]
\end{aligned}
$$

when f is quadratic, this is Chebyshev's iterative method

canonical first order methods

Gradient

Heavy Ball

$$
\begin{aligned}
x[k+1] & =y[k]-\alpha \nabla f(x[k]) \\
y[k] & =(1+\beta) x[k]-\beta x[k-1]
\end{aligned}
$$

$$
\begin{aligned}
x[k+1] & =y[k]-\alpha \nabla f(y[y]) \\
y[k] & =(1+\beta) x[k]-\beta x[k-1]
\end{aligned}
$$

- each analyzed using specialized techniques
- what's the right algorithm for my problem?
- are there other algorithms in this space that could be more effective for specific instances?

Control theory is the study of dynamical systems with inputs

$$
\begin{aligned}
\xi[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k]
\end{aligned}
$$

Simplest case of such systems are linear systems

The Lur'e problem

$$
\begin{aligned}
\xi[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k] \\
u[k] & =\Delta(y[k])
\end{aligned}
$$

- A linear dynamical system is connected in feedback with a nonlinearity.
- When do all trajectories converge to a fixed point?

$$
\begin{aligned}
\xi[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k] \\
u[k] & =\nabla f(y[k])
\end{aligned}
$$

method
Gradient

$$
\left.\left.\left.\begin{array}{l}
{\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{l|l}
1 & -\alpha \\
\hline 1 & 0
\end{array}\right]} \\
{\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{cc}
1+\beta & -\beta \\
1 & 0
\end{array}\right]}
\end{array} \right\rvert\, \begin{array}{c}
-\alpha \\
0
\end{array}\right]\right] .\left[\begin{array}{c|c}
\hline 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
\xi[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k] \\
u[k] & =\nabla f(y[k])
\end{aligned}
$$

method
Gradient

$$
\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{c|c}
1 & -\alpha \\
\hline 1 & 0
\end{array}\right]
$$

$\xi[k+1]=\xi[k]-\alpha u[k]$
$y[k]=\xi[k]$
$u[k]=\nabla f(y[k])$

$$
x[k+1]=x[k]-\alpha \nabla f(x[k])
$$

Nesterov

$$
\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]=\left[\begin{array}{cc|c}
{\left[\begin{array}{cc}
1+\beta & -\beta \\
1 & 0
\end{array}\right]} & {\left[\begin{array}{c}
-\alpha \\
0
\end{array}\right]} \\
\hline 1+\beta & -\beta
\end{array}\right]
$$

$$
\begin{aligned}
\xi_{1}[k+1] & =(1+\beta) \xi_{1}[k]-\beta \xi_{2}[k]-\alpha u[k] \\
\xi_{2}[k+1] & =\xi_{1}[k] \\
y[k] & =(1+\beta) \xi_{1}[k]-\beta \xi_{2}[k] \\
u[k] & =\nabla f(y[k]) \\
\xi_{1}[k+1] & =(1+\beta) \xi_{1}[k]-\beta \xi_{1}[k-1]-\alpha u[k] \\
y[k] & =(1+\beta) \xi_{1}[k]-\beta \xi_{1}[k-1] \\
u[k] & =\nabla f(y[k])
\end{aligned}
$$

$$
\xi_{2}[k]=\xi_{1}[k-1]
$$

$$
\begin{aligned}
x[k+1] & =y[k]-\alpha \nabla f(y[k]) \\
y[k] & =(1+\beta) x[k]-\beta x[k-1]
\end{aligned}
$$

$$
\begin{aligned}
\xi[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k] \\
u[k] & =\nabla f(y[k])
\end{aligned}
$$

a dynamical system is stable?
How do you prove meorgern?
Step 1: find a fixed point.

$$
\nabla f\left(x_{\star}\right)=0 \Longrightarrow\left\{\begin{array}{l}
y_{\star}=x_{\star} \\
u_{\star}=0 \\
\xi_{\star}=A \xi_{\star} \\
x_{\star}=C \xi_{\star}
\end{array}\right.
$$

$$
\begin{aligned}
\xi[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k] \\
u[k] & =\nabla f(y[k])
\end{aligned}
$$

a dynamical system is stable?
How do you prove erign?
Step 2: prove all trajectories converge to the fixed point Simple case: $\quad f(x)=\frac{1}{2} x^{\top} Q x-p^{T} x$

$$
\begin{aligned}
& \nabla f(x)=Q x-p \quad x_{\star}=Q^{-1} p \\
& \xi[k+1]-\xi_{\star}=(A+B Q C)\left(\xi[k]-\xi_{\star}\right)
\end{aligned}
$$

Necessary and sufficient condition is $\rho(A+B Q C)<1$

$$
\lim _{k \rightarrow \infty}\left\|\xi[k]-\xi_{\star}\right\|^{1 / k} \leq \rho(A+B Q C)
$$

$$
\begin{aligned}
\square G[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k] \\
u[k] & =Q y[k]
\end{aligned}
$$

method
Gradient $\quad \alpha=\frac{2}{L+m} \quad \rho(A+B Q C) \leq \frac{\kappa-1}{\kappa+1}$

Heavy Ball

$$
\begin{aligned}
& \alpha=\frac{4}{(\sqrt{L}+\sqrt{m})^{2}} \\
& \beta=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
\end{aligned}
$$

$$
\rho(A+B Q C) \leq\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{1 / 2}
$$

Nesterov

$$
\begin{aligned}
\alpha & =\frac{1}{L} \\
\beta & =\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
\end{aligned}
$$

$$
\rho(A+B Q C) \leq 1-\frac{1}{\sqrt{\kappa}}
$$

Theorem: $\rho(A)<\rho$ if and only if there exists $P \succeq 0 \quad$ satisfying $\quad A^{T} P A-\rho^{2} P \prec 0$

Proof: If $\rho(A)<\rho$, then $P=\sum_{k=0}^{\infty} \rho^{-2 k}\left(A^{T}\right)^{k} A^{k}$ exists and satisfies the desired LMI.

Conversely, assume the LMI has a solution and let λ be an eigenvalue with corresponding eigenvector ξ. Then

$$
\xi^{\top} A^{\top} P A \xi-\rho^{2} \xi^{\top} P \xi=\left(|\lambda|^{2}-\rho^{2}\right) \xi^{\top} P \xi<0
$$

which implies $|\lambda|^{2}<\rho^{2}$

Theorem: $\rho(A)<\rho$ if and only if there exists $P \succeq 0 \quad$ satisfying $\quad A^{T} P A-\rho^{2} P \prec 0$

For dynamical systems, if $\xi[k+1]=A \xi[k]$ the LMI implies

$$
\xi[k+1]^{\top} P \xi[k+1]<\rho^{2} \xi[k]^{\top} P \xi[k]
$$

Iterating the recursion to $\mathrm{k}=0$ gives

$$
\xi[k]^{\top} P \xi[k]<\rho^{2 k} \xi[0]^{\top} P \xi[0]
$$

which in turn implies

$$
\|\xi[k]\| \leq \sqrt{\operatorname{cond}(P)} \rho^{k}\left\|\xi_{0}\right\|
$$

Lyapunov functions

$$
V(x) \geq 0
$$

$$
V\left(x_{\star}\right)=0
$$

$$
V(x[k])<V(x[k-1])
$$

- LMI characterization of stability parametrizes quadratic Lyapunov functions for the system
- This notion generalizes to nonlinear systems

$$
\begin{aligned}
\xi[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k] \\
u[k] & =\Delta(y[k])
\end{aligned}
$$

How do we prove the interconnection is stable?

Suppose there exists a $\mathrm{P}>0$ and matrix M such that

$$
\left[\begin{array}{c}
y_{1}-y_{2} \\
\Delta\left(y_{1}\right)-\Delta\left(y_{2}\right)
\end{array}\right]^{T} M\left[\begin{array}{c}
y_{1}-y_{2} \\
\Delta\left(y_{1}\right)-\Delta\left(y_{2}\right)
\end{array}\right] \geq 0 \quad \text { for all y1, y2 }
$$

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]^{\top} P\left[\begin{array}{ll}
A & B
\end{array}\right]-\left[\begin{array}{cc}
\rho^{2} P & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
C & D \\
0 & 1
\end{array}\right]^{T} M\left[\begin{array}{ll}
C & D \\
0 & 1
\end{array}\right] \preceq 0
$$

Then $\left(\xi[k]-\xi_{\star}\right)^{\top} P\left(\xi[k]-\xi_{\star}\right) \leq \rho^{2 k}\left(\xi[0]-\xi_{\star}\right)^{\top} P\left(\xi[0]-\xi_{\star}\right)$

$$
\begin{aligned}
\xi[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k] \\
u[k] & =\Delta(y[k])
\end{aligned}
$$

and there exists a P

$$
\left[\begin{array}{c}
y_{1}-y_{2} \\
\Delta\left(y_{1}\right)-\Delta\left(y_{2}\right)
\end{array}\right]^{T} M\left[\begin{array}{c}
y_{1}-y_{2} \\
\Delta\left(y_{1}\right)-\Delta\left(y_{2}\right)
\end{array}\right] \geq 0 \quad \text { for all } y 1, y 2
$$

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]^{T} P\left[\begin{array}{ll}
A & B
\end{array}\right]-\left[\begin{array}{cc}
\rho^{2} P & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
C & D \\
0 & 1
\end{array}\right]^{T} M\left[\begin{array}{cc}
C & D \\
0 & 1
\end{array}\right] \preceq 0
$$

Multiply both sides by $\left[\begin{array}{l}\xi[k]-\xi_{*} \\ u[k]-u_{*}\end{array}\right]$

$$
\begin{gathered}
\left(\xi[k+1]-\xi_{\star}\right)^{\top} P\left(\xi[k+1]-\xi_{\star}\right)-\rho^{2}\left(\xi[k]-\xi_{\star}\right)^{\top} P\left(\xi[k]-\xi_{\star}\right) \\
+\left[\begin{array}{l}
y[k]-y_{\star} \\
u[k]-u_{\star}
\end{array}\right]^{T} M\left[\begin{array}{l}
y[k]-y_{\star} \\
u[k]-u_{\star}
\end{array}\right] \leq 0
\end{gathered}
$$

Gradient method

Sector QC

$$
\left[\begin{array}{c}
z_{1}-z_{2} \\
\nabla f\left(z_{1}\right)-\nabla f\left(z_{2}\right)
\end{array}\right]^{T}\left[\begin{array}{cc}
-2 m L l_{d} & (L+m) I_{d} \\
(L+m) I_{d} & 2 I_{d}
\end{array}\right]\left[\begin{array}{c}
z_{1}-z_{2} \\
\nabla f\left(z_{1}\right)-\nabla f\left(z_{2}\right)
\end{array}\right] \geq 0
$$

aka cocoercivity: $\left\langle\nabla f\left(z_{1}\right)-\nabla f\left(z_{2}\right), z_{1}-z_{2}\right\rangle \geq \frac{1}{L}\left\|\nabla f\left(z_{1}\right)-\nabla f\left(z_{2}\right)\right\|^{2}$

Proposition: If f is convex, then f satisfies the Sector QC iff f has L-Lipschitz gradients and is strongly convex with parameter m.

Gradient method

Sector QC

$$
\begin{gathered}
{\left[\begin{array}{c}
z_{1}-z_{2} \\
\nabla f\left(z_{1}\right)-\nabla f\left(z_{2}\right)
\end{array}\right]^{T} \underbrace{\left[\begin{array}{cc}
-2 m L I_{d} & (L+m) I_{d} \\
(L+m) I_{d} & 2 I_{d}
\end{array}\right]}_{M}\left[\begin{array}{c}
z_{1}-z_{2} \\
\nabla f\left(z_{1}\right)-\nabla f\left(z_{2}\right)
\end{array}\right] \geq 0} \\
{\left[\begin{array}{ll}
A & B
\end{array}\right]^{\top} P\left[\begin{array}{ll}
A & B
\end{array}\right]-\left[\begin{array}{cc}
\rho^{2} P & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
C & D \\
0 & 1
\end{array}\right]^{T} M\left[\begin{array}{ll}
C & D \\
0 & 1
\end{array}\right] \preceq 0} \\
\quad p\left[\begin{array}{cc}
1-\rho^{2} & -\alpha \\
-\alpha & \alpha^{2}
\end{array}\right]+\mu\left[\begin{array}{cc}
-2 m L & L+m \\
L+m & -2
\end{array}\right] \preceq 0
\end{gathered}
$$

Setting $p=1$, and setting the LMI to be exactly equal to zero, gives

$$
\rho=\frac{\kappa-1}{\kappa+1}
$$

Heavy Ball and Nesterov

The sector quadratic constraint is not sufficient to prove stability

$$
\begin{aligned}
\xi[k+1] & =A \xi[k]+B u[k] \\
y[k] & =C \xi[k]+D u[k] \\
u[k] & =\nabla f(y[k])
\end{aligned}
$$

$$
\zeta[k+1]=A_{\Psi} \zeta[k]+B_{\Psi}^{(u)} u[k]+B_{\Psi}^{(y)} y[k]
$$

$$
z[k]=C_{\Psi} \zeta[k]+D_{\Psi}^{(u)} u[k]+D_{\Psi}^{(y)} y[k]
$$

Main Result (1): Suppose that there exists a linear system $\boldsymbol{\Psi}$ and a matrix M such that for any sequence $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\top}$

$$
\sum_{k=1}^{T} \rho^{-2 k}\left(z[k]-z_{\star}\right)^{T} M\left(z[k]-z_{\star}\right) \geq 0
$$

integral quadratic constraint
and there exists a $P>0$ such that

$$
\left[\begin{array}{ll}
\hat{A} & \hat{B}
\end{array}\right]^{T} P\left[\begin{array}{ll}
\hat{A} & \hat{B}
\end{array}\right]-\left[\begin{array}{cc}
\rho^{2} P & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
\hat{C} & \hat{D} \\
0 & 1
\end{array}\right]^{T} M\left[\begin{array}{cc}
\hat{C} & \hat{D} \\
0 & 1
\end{array}\right] \preceq 0
$$

composite system matrices
Then $\left(\hat{\xi}[k]-\hat{\xi}_{*}\right)^{\top} P\left(\hat{\xi}[k]-\hat{\xi}_{*}\right) \leq \rho^{2 k}\left(\hat{\xi}[0]-\hat{\xi}_{*}\right)^{\top} P\left(\hat{\xi}[0]-\hat{\xi}_{*}\right)$

off-by-one IQC

Main Result (2): Let f be a strongly convex function with L-Lipschitz gradients and strong convexity parameter m. Then for any sequence $y[0], \ldots, y[T]$ with $u[k]=\nabla f(y[k])$
$\sum_{k=1}^{T} \rho^{-2 k}(u[k]-m y[k])^{T}\left\{L\left(y[k]-\rho^{2} y[k-1]\right)-\left(u[k]-\rho^{2} u[k-1]\right)\right\} \geq 0$

- Without the delay terms ($\rho=0$), this is just the sector QC
- Builds on Popov and Zames-Falb multipliers from control.
- Elementary proof using co-coercivity inequalities.

$$
\begin{gathered}
\sum_{k=1}^{T} \rho^{-2 k}\left(z[k]-z_{\star}\right)^{\top} M\left(z[k]-z_{\star}\right) \geq 0 \\
{\left[\begin{array}{c|c}
A_{\Psi} & B_{\Psi} \\
\hline C_{\Psi} & D_{\Psi}
\end{array}\right]=\left[\begin{array}{c|cc}
0 & \rho L_{d} & \rho l_{d} \\
\hline-\rho l_{d} & L l_{d} & -1 \\
0 & -m I_{d} & I_{d}
\end{array}\right] \quad M=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}
\end{gathered}
$$

Nesterov

Heavy Ball

Nesterov

Heavy Ball

Heavy Ball isn't stable

$$
\begin{gathered}
f(x)= \begin{cases}16 x^{2}+90 x+135 & x<-3 \\
x^{2} & x \in[-3,0] \\
16 x^{2} & x \geq 0\end{cases} \\
m=1 \quad L=16
\end{gathered}
$$

If you start at $x_{0} \in[1.9,2.4]$, Heavy Ball with standard parameters converges to the limit cycle.

- Aizerman's conjecture [1949]. A linear system in feedback with a sector nonlinearity is stable if the linear system is stable for any linear gain of the sector.
- THE AIZERMAN CONJECTURE IS FALSE [Krasovskii 1952]
- This is a very simple counterexample.

Nesterov

Iterations differ from the quadratic case by less than a factor of 2.

Heavy-Ball

Iterations (--log-1 ρ)

Fix $\alpha=1 / L$.
Grid search over β to find minimal convergence rate ρ

Integral Quadratic Constraints in Context

- Proposed by Megretski and Rantzer in 1996 (frequency domain)
- Generalizes the KYP Lemma/dissipativity theory
- Special case of S-Procedure/sum-of-squares hierarchy
- Drori and Teboulle 2013 used all quadratic constraints between time points to provide sharp analysis of gradient method for weakly convex functions.
- IQCs allow analysis which is dimension-free and certificates of size independent of the time horizon.

Extensions

Proximal/Projected methods

Achieve same rate as unconstrained case via an LFT argument

Removing strong convexity

Achieve standard Õ(poly($\left.\mathrm{k}^{-1}\right)$) rates by adding a regularization term

Noisy Gradients

Gradient method becomes robust when $a=1 / L$

Synthesis (brutal forces)

- test all algorithms with two states
- parameterization in terms of $\left(\alpha, \beta_{1}, \beta_{2}\right)$:

$$
x_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}+\beta_{2}\left(x_{k}-x_{k-1}\right)\right)+\beta_{1}\left(x_{k}-x_{k-1}\right)
$$

Special cases:
gradient

$$
(a, \beta 1, \beta 2)=(a, 0,0)
$$

Heavy Ball
$(a, \beta 1, \beta 2)=(a, \beta, 0)$
$(\alpha, \beta 1, \beta 2)=(\alpha, \beta, \beta)$

Synthesis (brutal forces)

- parameterization in terms of ($\alpha, \beta_{1}, \beta_{2}$):

$$
x_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}+\beta_{2}\left(x_{k}-x_{k-1}\right)\right)+\beta_{1}\left(x_{k}-x_{k-1}\right)
$$

- Faster than the gradient method AND provably robust to noise.
- Suggests that more sophisticated algorithm design is possible.

Conclusions

- IQCs provide a powerful proof system for algorithm analysis by replacing complicated nonlinearities with quadratic constraint sets.
- Collects constraints about function classes, not algorithms.
- New proofs of convergence for popular first-order methods.
- Enables numerical exploration of parameter spaces.
- Only beginning to get a sense of what IQCs can tell us about optimization schemes
- Many more control theory techniques that may provide new insight when applied to optimization and machine learning.

Open Problems

- Improve the analysis for Nesterov's method using refined IQCs
- An analytic proof of Nesterov's method using IQCs
- Lower bounds using Zames-Falb IQCs and Megretski argument
- Integrating time varying plants. Is Nonlinear Conjugate Gradient actually stable?
- Is there a way to choose the stepsize using adaptive control techniques?
- New algorithm design via DK iterations and IQC-based nonlinear control synthesis.
- Stochastic coordinate descent and stochastic gradient descent via expected IQCs
- Subgaussian noise analysis via LQG and Ricatti equations
- Bringing the function value into the picture. The function itself is Lyapunov!
- Extending the library of IQCs.
- Automatically proving and deriving IQCs via sum-of-squares techniques
- Smaller function classes. With more structure, do we get better rates?
- Search for non-quadratic Lyapunov functions using IQC + SOS
- Analyzing really complicated interconnections for modular machine learning

Acknowledgments

Andrew Packard

- Many thanks to Elad Hazan, Ali Jadbabaie, Pablo Parrilo and Peter Seiler for many helpful pointers and discussions
- Preprint at arxiv.org/abs/1408.3595

Thanks!

