
TENSOR DECOMPOSITION AND ALGEBRAIC GEOMETRY

LUKE OEDING

1. Summary

In this lecture I will introduce tensors and tensor rank from an algebraic perspective. I will
introduce multilinear rank and tensor rank, and I will discuss the related classical algebraic
varieties – subspace varieties and secant varieties. I will give basic tools for computing
dimensions, Terracini’s lemma and the notion of the abstract secant variety. This will lead
to the notion of generic rank. I will briefly disucss implicit equations, which lead to rank
tests. Some basic references: [CGO14, Lan12].

In the second lecture I will focus on one special case of tensor decomposition - symmetric
tensors and Waring decomposition. I will start by discussing the naive approach, then I
will discuss Sylvester’s algorithm for binary forms. As a bonus I will show how Sylvester’s
algorithm for symmetric tensor decomposition also gives a method find the roots of a cubic
polynomial in one variable.

I will discuss what to expect regarding generic rank and uniqueness of tensor decomposi-
tion. With the remaining time I will discuss the recently defined notion of an eigenvector of a
(symmetric) tensor ([Lim05, Qi05]), which leads to a new method (developed with Ottaviani)
for exact Waring decomposition ([OO13].

Lecture 1: Tensors and classical Algebraic Geometry

2. Tensors with and without coordinates

The main goal in these lectures is to explain the basics of tensors from an Algebraic
Geometry point of view. The main goal is to find exact expressions for specific tensors that
are as efficient as possible. The guiding questions are the following:

• Find the space using the least number of variables for whit to represent a tensor.
• Determine the rank of a tensor.
• Find a decomposition as a sum of rank 1 tensors.
• Find equations that determine the rank (or border rank) of a tensor.
• Find the expected rank for a given tensor format.
• Provide an Algebraic-Geometry framework to study these questions.

Notation: A,B,C vector spaces over a field F (usually C or R), or when there are many
vector spaces V1, . . . , Vn are all vector spaces over F. In a somewhat circular manner, we
define a tensor as an element of the tensor product of vector spaces.

2.1. Matrices as tensors. We present two ways to think of matrices:
Without coordinates: The tensor product over F of vector spaces A and B is the new

vector space denoted A⊗B spanned by all elements of the form a⊗ b with a ∈ A and b ∈ B.
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With coordinates: Suppose {a1, . . . , am} is a basis of A and {b1, . . . bn} is a basis of
B, then A ⊗ B is the vector space with basis {ai ⊗ bj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. So every
M ∈ A⊗B can be written in coordinates as

M =
∑
i,j

Mi,j (ai ⊗ bj), with Mi,j ∈ F.

Now an element in A⊗B, (with the given choice of basis) is represented by the data (Mi,j)
and we can think of (Mi,j) as a matrix,

(1) M =


M1,1 M1,2 . . . M1,n

M2,1 M2,2 . . . M2,n

...
. . .

...
Mm,1 Mm,2 . . . Mm,n

 .

The dual vector space of a vector space A, denoted A∗ is the vector space of linear maps to
F. To a basis {a1, . . . , am} of A we may associate the dual basis {α1, . . . , αm}, which satisfies
the condition

αi(aj) =

{
1 if i = j

0 if i 6= j
.

We can also think of M as a linear mapping from A∗ → B. If we evaluate the tensor M on
a basis of A∗ and express the resulting vector in B as a column vector and put the resulting
columns in a matrix, we obtain the transpose of the matrix M in (1). If we write the linear
mapping B∗ → A in the same fashion, we obtain the matrix M in (1).

We can vectorize M by choosing an (column-first) ordering on the pairs (i, j) to get

M =
(
M1,1 M2,1 . . . Mm,1 | M1,2 M2,2 . . . Mm,2 | . . . | M1,n M2,n . . . Mm,n

)
.

The symbol ⊗ is F-bilinear:

λ · (a⊗ b) = (λ · a)⊗ b = a⊗ (λ · b)

(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b
a⊗ (b+ b′) = a⊗ b+ a⊗ b′

for all λ ∈ F, a, a′ ∈ A, b, b′ ∈ B.
Note that ⊗ is not commutative. For instance, if A and B are two different vector spaces

b⊗ a might not even make sense in A⊗B.

2.2. Tensor products of many vector spaces. The tensor product ⊗ is associative, so
we can iterate the process and write a general tensor as an element in A⊗B ⊗ C or (when
there are many factors) in V1 ⊗ V2 ⊗ . . .⊗ Vn.

Without coordinates: The vector space A⊗B ⊗C is the F-linear span of all a⊗ b⊗ c
with a ∈ A, b ∈ B, c ∈ C.

With coordinates: If {c1, . . . , cp} is a basis of C, and A and B are as above, then
{ai ⊗ bj ⊗ ck | 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p} is a basis of A⊗B ⊗ C.

Let’s look at the associative property more closely. If (A⊗ B)⊗ C = A⊗ (B ⊗ C), then
we delete the parentheses and view A⊗B⊗C as a space of (3-rd order) tensors. Note while
⊗ is not commutative element-wise, ⊗ is actually commutative on the level of vector spaces.
So it actually makes sense to write (A⊗ C)⊗B = A⊗B ⊗ C, for instance.
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2.3. Symmetric tensors and homogeneous polynomials. An important class of tensors
are the symmetric tensors. Suppose F ∈ V ⊗ V ⊗ . . . ⊗ V (a d-fold tensor product). Let
{x1, . . . , xn} denote a basis of V and write

F =
∑

i1,...,id∈{1,...,n

Fi1,...,id (xi1 ⊗ . . .⊗ xid).

We say that F is symmetric (or fully symmetric) if

Fi1,...,id = Fσ(i1),...,σ(id) for all σ ∈ Sd.

The coordinates of a symmetric tensor F can be thought of as the coefficients of a degree
d homogeneous polynomial on n variables. The vector space of all such symmetric tenors,
denoted SdV , has a basis of monomials,

{xi1 · · ·xid | ij ∈ {1, . . . , n}} , with xi1 · · ·xid =

(
d

i1, . . . , id

)
xi1 ⊗ . . .⊗ xid .

3. Notions of rank and their associated classical algebraic varieties

All of the different notions of rank we will discuss are unchanged by multiplication by a
global non-zero scalar, so it makes sense to work in projective space P(A ⊗ B ⊗ C). For
T ∈ A⊗ B ⊗ C we will write [T ] for the line through T and for the corresponding point in
projective space.

3.1. Flattenings, multilinear rank and the subspace variety. View A⊗B as a vector
space with no extra structure by vectorizing all elements in A⊗B and view (A⊗B)⊗C as
a space of matrices (utilizing a basis), or as a space of linear maps

(A⊗B)∗ → C.

If T = (Ti,j,k) ∈ A⊗B ⊗ C, the corresponding element in (A⊗B)⊗ C is

T =
∑
k

(∑
i,j

Ti,j,k (ai ⊗ bj)

)
⊗ ck,

and we can represent T as a matrix, which is called a flattening of T and has block structure:
TC =

T1,1,1 T2,1,1 . . . Tm,1,1
T1,1,2 T2,1,2 . . . Tm,1,2

...
T1,1,p T2,1,p . . . Tm,1,p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T1,2,1 T2,2,1 . . . Tm,2,1
T1,2,2 T2,2,2 . . . Tm,2,2

...
T1,2,p T2,2,p . . . Tm,2,p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T1,n,1 T2,n,1 . . . Tm,n,1
T1,n,2 T2,n,2 . . . Tm,n,2

...
T1,n,p T2,n,p . . . Tm,n,p

 .

The matrix TC is called a flattening of T . The other flattenings TA and TB are similarly
defined.

If we fix one of the indices and let the other two vary and collect the results into matrix
we have the so-called slices of the tensor. For instance the m different matrices

Ti,, =


Ti,1,1 Ti,2,1 . . . Ti,n,1
Ti,1,2 Ti,2,2 . . . Ti,n,2

...
Ti,1,p Ti,2,p . . . Ti,n,p

 : B∗ → C
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are called the (frontal) slices of T and
Even though we used coordinates to define them, it turns out that the ranks of the

flattenings of a tensor are independent of our choice of basis. For this reason it makes sense
to define the multilinear rank of T as

MR(T ) := (rank(TA), rank(TB), rank(TC)).

Example 3.1. Note that the ranks in MR(T ) don’t have to be the same. For example,
consider

T = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c1.

Then

TA =

(
T1,1,1 T1,2,1 T1,1,2 T1,2,2
T2,1,1 T2,2,1 T2,1,2 T2,2,2

)
=
(
T,,1 | T,,2

)
,

TB =

(
T1,1,1 T1,1,2 T2,1,1 T2,1,2
T1,2,1 T1,2,2 T2,2,1 T2,2,2

)
=
(
T1,, | T2,,

)
,

TC =

(
T1,1,1 T2,1,1 T1,2,1 T2,2,1
T1,1,2 T2,1,2 T1,2,2 T2,2,2

)
=
(
T,1, | T,2,

)
.

TA =

11 12 21 22( )
1 1 0 0 0
2 0 1 0 0

, TB =

11 21 12 22( )
1 1 0 0 0
2 0 0 1 0

, TC =

11 21 12 22( )
1 1 0 0 1
2 0 0 0 0

.

So

MR(T ) = (2, 2, 1).

Suppose T ∈ A ⊗ B ⊗ C and MR(T ) = (p, q, r). Then we can consider the image of each
flattening:

TA(B ⊗ C) =: Cp
A ⊂ A, TB(A⊗ C) =: Cq

B ⊂ B, TC(A⊗B) =: Cr
C ⊂ C,

and by construction T ∈ Cp
A⊗Cq

B⊗Cr
C . So computing the multilinear rank of T tells us the

smallest tensor space in which T lives.
The set of tensors whose multilinear rank is bounded above by a given triple forms the

subspace variety:

Subp,q,r(A⊗B ⊗ C) := {[T ] ∈ P(A⊗B ⊗ C) | MR(T ) = (p, q, r)},

where the over line indicates the Zariski closure.
In the case of symmetric tensors, we have symmetric flattenings and the symmetric subspace

variety, which is

Subr(S
dV ) := {[F ] ∈ P(SdV ) | MR(T ) = (r, r, . . . , r)}.

Intuitively, the symmetric subspace variety is the variety of symmetric tensors that can be
expressed using fewer variables. Geometrically, if F ∈ Subr(S

dV ), then there exists an
r-dimensional subspace Cr ⊂ V so that F ∈ SdCr.
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3.2. Generic projection (contraction) rank and the Prank-variety. We can also view
the tensor space (A⊗B)⊗C as a vector space of matrices A∗ → B, depending on parameters
coming from C. With this perspective, we can again write

T =
∑
k

(∑
i,j

Ti,j,k (ai ⊗ bj)

)
⊗ ck.

but treat the vectors ck as indeterminants so that

T (C) = T,,1 · c1 + · · ·+ T,,k · ck
is a matrix depending linearly on the ck. If we assign values to the ck we obtain a generic
projection in the C-factor. The other generic projections T (A) and T (B) are similarly defined.

Again, while our construction depended on choices of bases, the ranks of the generic
projections do not depend on the choice of basis, so it makes sense to define the generic
projection ranks of T as

PR(T ) := (rank(T (A)), rank(T (B)), rank(T (C))).

The set of tensors whose generic projection rank is bounded above by a given triple forms
the Prank variety:

Prankp,q,r(A⊗B ⊗ C) := {[T ] ∈ P(A⊗B ⊗ C) | PR(T ) = (p, q, r)},
where the over line indicates the Zariski closure.

Example 3.2. For example, consider again

T = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c1.
Then

T (A) =

(
a1 0
a2 0

)
, T (B) =

(
b1 b2
0 0

)
, T (C) =

(
c1 0
0 c1

)
.

So
PR(T ) = (1, 1, 2).

3.3. Tensor rank, border rank and secant varieties. As a vector space A ⊗ B ⊗ C is
spanned by elements of the form a⊗ b⊗ c. We say that an indecomposable tensor a⊗ b⊗ c
has rank 1. The set of tensors of rank 1 forms the Segre variety

Seg(PA× PB × PC) := {[T ] ∈ P(A⊗B ⊗ C) | R(T ) = 1} ⊂ P(A⊗B ⊗ C).

In coordinates, the points [T ] on the Segre variety have the form T = x⊗ y ⊗ z, or

Ti,j,k = xi · yj · zk.
An element T ∈ A⊗B⊗C has an expression as linear combination of rank one elements.

The minimum number r of rank one elements needed to express T is called the rank or tensor
rank of T :

R(T ) := min
r

{
T =

r∑
s=1

λs (as ⊗ bs ⊗ cs)
∣∣∣∣ λs ∈ F, as ∈ A, bs ∈ B, cs ∈ C

}
.

We may be interested in approximating T by a family of tensors Tε of (possibly) lower
rank. This leads to the notion of border rank, which is

BR(T ) := min
r

{
∃{Tε | R(Tε) = r ∀ ε > 0} and lim

ε→0
Tε = T

}
.
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If X ⊂ PN is any algebraic variety, the r-th secant variety of X, denoted σr(X) is the
Zariski closure of all points in PN which are a linear combination of r points from X. In the
tensor case we have

σr(Seg(PA× PB × PC)) := {[T ] ∈ P(A⊗B ⊗ C) | BR(T ) = r}.
Note that in the Zariski closure the rank can go up in the limit and this causes the ill-
posedness of many low rank approximation problems, see [dSL08].

Similarly, in the symmetric case we define the symmetric rank and symmetric border rank
of a symmetric tensor F ∈ SdV as

RS(F ) := min
r

{
F =

r∑
s=1

λs (`s)

∣∣∣∣ λs ∈ F, ` ∈ V

}
,

and
BRS(F ) := min

r

{
∃{Fε | RS(Fε) = r ∀ ε > 0} and lim

ε→0
Fε = F

}
.

The set of symmetric tensors of (symmetric) rank 1 forms the Veronese variety

νd(PV ) := {[F ] ∈ P(SdV ) | R(F ) = 1}.
The points [F ] on the Veronese variety have the form F = `d, for ` ∈ V , or in coordinates

Fi1,...,id = `i1 · · · `id , with ` = (`1, . . . , `n) ∈ V.
The Zariski closure of the points [F ] ∈ PSdV of symmetric border rank r form the r-th

secant variety of the Veronese variety:

σr(νd(PV )) := {[F ] ∈ P(SdV ) | BRS(F ) = r}.
Example 3.3. Consider the point [xd−1y] ∈ νd(P1) for d ≥ 2. Suppose for contradiction
that xd−1y were a pure power.

Expand
xd−1y = (ax+ bb)d

and consider the system of equations gotten by comparing coefficients on both sides:

0 = ad

1 = d · ad−1b
0 =

(
d
2

)
· ad−2b2

...
0 = bd

.

Since this system of equations is inconsistent (look at the first, last and second equations),
xd−1y is not a pure power. On the other hand

lim
ε→0

xd − (x+ εy)d

dε
= xd−1y,

which shows that xd−1y ∈ σ2νd(P1), and hence has border rank 2. More work shows that
xd−1y has rank d.

4. Dimension, Terracini’s lemma and expected behavior

There are many ways to compute the dimension of an algebraic variety. For our purpose,
we prefer the differential-geometric approach.
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4.1. Computing tangent spaces. If X ⊂ PV is an algebraic variety, let X̂ ⊂ V denote the
cone over X. The affine tangent space to X at a smooth point [x] ∈ X, denoted TxX ⊂ V , is

the set of all tangent vectors to X̂ at x. An effective way to compute TxX is as the collection
of derivatives of all smooth curves γ : [0, 1]→ X that pass through x:

TxX =

{
∂γ

∂t
(0) | γ(t) ∈ X ∀t ∈ [0, 1], γ(0) = x

}
.

Example 4.1. Consider X = Seg(PA × PB), and x = [a ⊗ b] ∈ X. Let γ(t) = a(t) ⊗ b(t)
be an arbitrary curve in X through a ⊗ b, that is, we take a(t) and b(t) to respectively be
arbitrary curves in A and B with a(0) = a and b(0) = b.

First note that all points of the Segre product look like [a ⊗ b] for a ∈ A and b ∈ B
arbitrary. We apply the product rule to the tensor product and compute:

γ′(0) = a′(0)⊗ b(0) + a(0)⊗ b′(0) = a′(0)⊗ b+ a⊗ b′(0).

Now since a(t) and b(t) were arbitrary curves through a and b respectively, we can take
a′(0) to be any direction vector in A and we can take b′(0) to be any direction vector in B.
Therefore

Ta⊗b Seg(PA× PB) = A⊗ b+ a⊗B
The two vector spaces A ⊗ b and a ⊗ B overlap precisely at 〈a ⊗ b〉, so we can write the
tangent space as a direct sum

Ta⊗b Seg(PA× PB) = 〈a⊗ b〉 ⊕ (A/a)⊗ 〈b〉 ⊕ 〈a〉 ⊗ (B/b).

So if A and B are respectively m and n-dimensional, then the Segre product is a (m− 1) +
(n− 1)-dimensional subvariety of Pmm−1 (the dimension of the cone is one more).

Now compare to the matrix interpretation. Every rank one m × n matrix M can be

represented by the outer product of a m-vector ~a and a n-vector ~b. There are m + n

parameters, however the line through M is unchanged if ~a and ~b are each rescaled by nonzero
scalars. So there are precisely (m− 1) + (n− 1) free parameters, agreeing with our previous
computation.

In a similar fashion, one determines that Seg(Pm−1×Pn−1×Pp−1) is a smooth (m+n+p−3)-
dimensional subvariety of Pmnp−1, so almost every tensor has rank > 1.

4.2. Terracini’s lemma. To find the dimension of secant varieties we have one main tool,
namely Terracini’s Lemma, whose proof essentially follows from the summation rule for
derivatives.

Lemma 4.2 (Terracini’s Lemma). Let P1, . . . , Pr ∈ X be general points and P ∈ 〈P1, . . . , Ps〉 ⊂
σr(X) be a general point. Then the tangent space to σr(X) in P is

TP (σr(X)) = 〈TP1(X), . . . , TPr(X)〉.

From Terracini’s lemma we immediately can determine the expected dimension of a secant
variety, which occurs when the collection of tangent spaces at the r points have empty
pairwise intersections, and the secant variety doesn’t fill the ambient space. In that case we
have r independent choices from an s+ 1 dimensional (affine) tangent space for most points
on the secant variety. In particular, if we have an s-dimensional variety X ⊂ PN , we expect
the r-th secant variety to have dimension

ExpDim(σr(X)) = min{N, r · (s+ 1)− 1}.
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So if ExpDim(σr(Seg(Pm−1×Pn−1×Pp−1))) < mnp−1 then we expect that most tensors in
P(A⊗B ⊗C) do not have rank r. On the other hand, if the r-th secant variety is expected
to fill the ambient space, we expect that most tensors in that space will have rank ≤ r.
When the tangent spaces at general points of X overlap, this causes the dimension of the
secant variety to drop, and X will not have the expected dimension, in which case we call
X defective, and we set δr(X) = ExpDim(σr(X))− dim(σr(X)).

Example 4.3. Consider σ2(P1×P1×P1) and a genera point p = a1⊗ b1⊗ c1 + a2⊗ b2⊗ c2.
Terracini’s lemma says that

Tpσ2(P1 × P1 × P1) = Ta1⊗b1⊗c1 Seg(PA× PB × PC) + Ta2⊗b2⊗c2 Seg(PA× PB × PC)

= 〈a1 ⊗ b1 ⊗ c1〉 ⊕ (A/a1)⊗ 〈b1〉 ⊗ 〈c1〉 ⊕ 〈a1〉 ⊗ (B/b1)⊗ 〈c1〉 ⊕ 〈a1〉 ⊗ 〈b1〉 ⊗ (C/c1)
+

〈a2 ⊗ b2 ⊗ c2〉 ⊕ (A/a2)⊗ 〈b2〉 ⊗ 〈c2〉 ⊕ 〈a2〉 ⊗ (B/b2)⊗ 〈c2〉 ⊕ 〈a2〉 ⊗ 〈b2〉 ⊗ (C/c2).

First notice that this vector space is the entire C8, which implies that σ2(P1×P1×P1) = P7

and therefore most 2× 2× 2 tensors have rank 7 over C.
Another interesting fact is that a spanning set for this tangent space is given by all rank

1 tensors ai ⊗ bj ⊗ ck such that the indices (i, j, k) come from two disjoint Hamming balls
of radius one centered respectively at (1, 1, 1) and (2, 2, 2). This type of analysis applies to
many other secant varieties of Segre products.

We just noticed that most 2× 2× 2 tensors have rank 7 over C. Over R the story is a bit
more interesting. There are 2 typical ranks, meaning that real rank 2 and 3 both occur in
full dimensional open sets [CtBDLC09]. Comon and Ottaviani [CO12] show that in the case
of symmetric tensors of the same format the discriminant of a binary cubic cuts the space
of binary cubics into typical ranks 2 and 3 depending on the sign of the discriminant. In
the non-symmetric case the space R2 ⊗ R2 ⊗ R2 is cut by the 2 × 2 × 2-hyperdeterminant
(which also has degree 4 and whose symmetrization is the discriminant of a binary cubic,
see [Oed12].

4.3. The incidence variety. One important construction for secant varieties is the notion
of an incidence variety, or the abstract secant variety, which provides an alternate construction
of the secant variety.

Again, for X ⊂ PN the r-th abstract secant variety of X is

Ir = {(p, x1, . . . , xr) | [xi] ∈ X, p ∈ 〈x1, . . . , xr〉} ⊂ PN × (PN)×r.

The image of the projection to the first factor is the usual r-th secant variety of X. Now Ir
always has dimension r · (s+ 1)− 1, which is sometimes called the virtual dimension.

Now we have another geometric interpretation of defectivity. Consider the projection

Ir
π1 // σr(X) , then the defect δr(X) is the dimension of the fiber π−11 (p) over a general

point p ∈ σr(X).

Remark 4.4. One key insight provided by the incidence variety is that the number of decom-
positions of a given tensor T (as a sum of r rank one tensors) is completely by the size of the
fiber π−11 (T ). This is one of the key facts exploited in the recent works of Bocci, Chiantini,
Ottaviani, Vannieuwenhoven on determining when identifiability holds for many classes of
tensors.
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5. First equations and tests for border rank

The ideal of the subspace variety we defined above has a nice description.

Proposition 5.1 (Landsberg-Weyman). The ideal of the subspace variety Subr,s,...,t(A⊗B⊗
. . .⊗ C) is generated by all

• (r + 1)× (r + 1)-minors of TA,
• (s+ 1)× (s+ 1)-minors of TB

• ...
• (t+ 1)× (t+ 1)-minors of TC.

Landsberg and Weyman actually gave a much more refined statement regarding singular-
ities, ideal generation, etc, but this statement is enough for our purposes.

Remark 5.2. There are many more types of flattenings when there are more than 3 factors,
such as

TA⊗B : (C ⊗D)∗ → A⊗B.
One question from the lecture was about how much is understood about the intersections
of those types of subspace varieties. For instance the defectivity of σ3(P1 × P1 × P1 × P1)
can be explained by noting that in the case all the vector spaces are 2 dimensional, the
determinant of TA⊗B and the determinant of TA⊗C are algebraically independent and vanish
on σ3(P1×P1×P1×P1), causing its dimension to be one less than the expected dimension.

This explains some of the interesting features of flattenings to more than one factor, and
it seems an interesting avenue to pursue.

Consider a general point [T ] ∈ σr(Seg(PA× PB × PC)) and write

T =
r∑
s=1

as ⊗ bs ⊗ cs.

Now we can consider separately the span of the vectors appearing in the decomposition

A′ := 〈a1, . . . , as〉,
B′ := 〈b1, . . . , bs〉,
C ′ := 〈c1, . . . , cs〉.

Then T ∈ A′ ⊗B′ ⊗ C ′. Since everything happens on an open set, we have the following:

Proposition 5.3. The following containment holds

σr(Seg(PA× PB × PC)) ⊂ Subr,r,r(A⊗B ⊗ C).

In particular if T ∈ σr(Seg(PA× PB × PC)), the (r + 1)× (r + 1) minors of the flattenings
TA, TB and TC must all vanish.

Usually the containment is strict. For instance, σ4(P2×P2×P2) is a degree 9 hypersurface
in P26, but all the flattenings have size 3× 9, which in particular, have no 5× 5 minors.

On the other hand, minors of flattenings are enough to detect border rank 1 (classical),
and border rank 2, which was conjectured by Garcia, Stillman and Sturmfels:

Theorem 5.4 (Landsberg,Manivel,Weyman 2004–08, Raicu2012). The ideal of σ2(Pn1 ×
· · · × Pnd) is generated by all 3× 3 minors of flattenings.
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The most refined statement over C is by Raicu. Michalek-Oeding
For border rank 3 the following result was recently obtained:

Theorem 5.5 (Yang Qi 2013). As a set σ3(Pn1 × · · · × Pnd) is defined by all 4 × 4 minors
of flattenings and Strassen’s degree 4 commutation conditions.

For border rank 4 much less is known in general, but for 3 factors we have the following
result, which is known as the “salmon prize problem.”

Theorem 5.6 (Friedland2010, Bates-Oeding2011, Friedland-Gross2012). As a set
σ4(PA× PB × PC) is defined by

• all 5× 5 minors of flattenings,
• Strassen’s degree 5 commutation conditions,
• Landsberg and Manivel’s degree 6 equations,
• Strassen’s degree 9 commutation conditions.

For higher secants and for more factors many sporadic cases are known, but little is known
in general. Landsberg and Ottaviani’s work on what they call Young flattenings provides a
vast generalization of the usual flattenings that accounts for most of the known equations of
secant varieties. Much more work is needed to find equations of secant varieties.
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Lecture 2: Algorithms for tensor decomposition and identifiability

6. Symmetric tensor decomposition

Now we come to the question of how to actually find a decomposition of a tensor. For this
we will focus on the case of symmetric tensors. Waring’s classic problem is to write a number
as a sum of powers of whole numbers using as few terms as possible. Waring’s problem for
polynomials is: write a given polynomial as a sum of powers of linear forms using as few
terms as possible. Such a decomposition always exists over C, but may be much more subtle
over other fields. For instance in characteristic 2, the monomial xy has no decomposition as
the sum of squares. Because of this, we assume we are working in characteristic 0 for what
follows.

Let {x1, . . . , xn} be a basis of V , with dual basis yi := ∂
∂xi

. The induced basis of SpV is

given by monomials xα := xα1
1 · · ·xαnn , with |α| = p, and the induced basis on the dual is

given by the monomials in partial derivatives ∂
∂xβ

:= ∂

∂x
β1
1

· · · ∂

∂xβnn
with |β| = q.

The naive formulation of the problem is the following: Given F =
∑
Fαx

α

minimize r so that F =
r∑
s=1

λs`
d
s, with `s ∈ V.

If we expand both sides of the equation and compare coefficients, we have the following
problem

minimize r so that the system Fα =
r∑
s=1

λs
∑
|βs|=d

`
β1,s
1,s · · · `βr,sr , with `s,n ∈ C has a solution.

Finally, one can take a brute force approach to finding the tensor rank of F and the tensor
decomposition of F . That is arbitrarily pick an r, and try to solve the following optimization
problem (for some appropriate norm || · ||).

minimize ||F −
r∑
s=1

λs`
d
s||, for λ ∈ F and `s ∈ V.

While such an approach is guaranteed to eventually find a solution (given enough time,
computational power and memory), the approach can quickly become infeasible even for
plane quintics.

6.1. Symmetric flattenings (Catalecticants). Let’s return to flattenings, but now in
the symmetric case. Since SdV has the interpretation as a d-mode symmetric tensor, we
can relax some of the symmetry to obtain an inclusion SdV ⊂ SpV ⊗ SqV for any positive
integers p, q such that p + q = d. Let Cp(F ) denote the image of F in SpV ⊗ SqV . Like
usual flattenings Cp(F ) can be viewed as a linear mapping:

Cp(F ) : SpV ∗ → SqV

and can be represented by the following matrix

Cp(F ) =
(

∂F
∂xα+β

)
α,β

,

with |α| = p and |β| = q. The matrix Cp(F ) is often called a catalecticant matrix, moment
matrix, or Hankel matrix.
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Symmetric flattenings all satisfy the following:

• The rank of Cp(xd1) is one, and so is the rank of Cp(`d) for all linear forms ` ∈ V .
• The construction is linear in the F -argument: Cp(λF + F ′) = λCp(F ) + Cp(F ′).
• Matrix rank is sub-additive, so if F has rank r, then rank(Cp(F )) ≤ r.

6.2. Apolarity. A key tool for this study is apolarity. That is, given ` = αx + βy ∈ C2 we
define its polar as `⊥ = −β∂x + α∂y ∈ (C2)∗. Notice that `⊥(`) = 0 and also

`⊥(`d) = 0.

By the Fundamental Theorem of Algebra, elements in Sd(C2)∗ can be factored as `⊥1 · · · `⊥d
for some `i ∈ C2.

The following proposition is the key to Sylvester’s algorithm:

Proposition 6.1. Let `i be distinct for i = 1, . . . , e. Then there exists λi ∈ C such that

f =
e∑
i=1

λi(`i)
d

if and only if
`⊥1 · · · `⊥e f = 0.

Proof. Since we have `⊥(`d) = 0 this implies the forward direction and shows that 〈`d1, . . . , `de〉 ⊂
Ker(`⊥1 · · · `⊥e ). The other inclusion comes from noticing that both linear spaces have dimen-
sion e so equality holds, and this proves the other direction of the proposition. �

6.3. Sylvester’s algorithm by example. Consider the following cubic polynomial in one
variable

f(x) = 9x3 − 3x2 + 81x− 124.

For convenience we prefer work with the homogenization

f(x, y) = 9x3 − 3x2y + 81xy2 − 124y3.

We’re interested in knowing how to write f(x, y) as a sum of cubes of linear forms. We will
do this via Sylvester’s algorithm. As a consequence we’ll be able to solve the cubic equation
f(x, y) = 0.

Let {x, y} be a basis of C2, so we can consider f ∈ S3C2.
Step 1 is to construct the symmetric flattening:

Cf : S2(C2)∗ // C2 ,

Cf =

∂2x ∂x∂y ∂2y( )
∂x 54 −6 162
∂y −6 162 −744

= 6 ·
(

9 −1 27
−1 27 −124

)
Now compute the kernel:

ker(Cf ) =


−5

9
2

 ⊂ S2(C2)∗

Reinterpret the kernel as a vector space (a line) of polynomials:

P = −5∂2x + 9∂x∂y + 2∂2y
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This is a quadratic polynomial in two homogeneous variables, so it factors (over C):

P = (−∂x + 2∂y) · (5∂x + ∂y)

(I picked a nice example so that it actually factors over Z.)
Now notice that if (α∂x + β∂y)` = 0 for some ` ∈ C2 then also (α∂x + β∂y)`

d = 0 for all
d > 0.

So the polar forms are 2x+ y and (x− 5y). We then expand and solve the system defined
by:

f(x, y) = 9x3 − 3x2y + 81xy2 − 124y3 = λ1(2x+ y)3 + λ2(x− 5y)3,

and find that (miraculously) λ1 = λ2 = 1.
Solving cubic equations As a side benefit, Sylvester’s algorithm also allows us to solve

the (dehomogenized) cubic equation

0 = f(x) = 9x3 − 3x2 + 81x− 124.

The decomposition we computed implies that

0 = (2x+ 1)3 + (x− 5)3,

so

1 =

(
2x+ 1

−x+ 5

)3

and if ω = e2πi/3 then we have three solutions (for j = 0, 1, 2):

x =
5ωj − 3

ωj + 2
.

7. Eigenvectors of tensors

7.1. Eigenvectors of matrices. Recall that if M represents a linear map from V to V , we
say that v ∈ V is an eigenvector of M associated to an eigenvalue λ ∈ F if

Mv = λv.

Since v and λv point in the same direction, we can write the eigenvector equation in
another way as

(Mv) ∧ v = 0,

where the wedge product ∧ is defined as v ∧ w = 1
2
(v ⊗ w − w ⊗ v).

7.2. Eigenvectors of symmetric tensors (polynomials). Now we consider how to ex-
tend the definition of an eigenvector of a matrix to an eigenvector of a tensor. We work in
the symmetric case first. Suppose P ∈ SdV , and write the first symmetric flattening

C1
P : Sd−1V ∗ → V

We can think of this as a linear mapping that is multilinear and symmetric:

C1
P : V ∗ × · · · × V ∗ → V.

With this perspective we will say that v ∈ V is an eigenvector of the tensor P ∈ SdV if

C1
P (v, . . . , v) = λv, for some λ ∈ C,

or if
C1
P (v, . . . , v) ∧ v = 0.

This essential definition appeared in Lim ’05 and Qi ’05.
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A general m ×m matrix will have m linearly independent eigenvectors. Cartwright and
Sturmfels computed the number of eigenvectors of a general symmetric tensor P ∈ SdCn,
which is

(d− 1)n − 1

d− 2
.

Example 7.1. Consider xyz ∈ S3V . The first symmetric flattening of xyz is

C1
xyz =

∂2x ∂x∂y ∂x∂z ∂2y ∂y∂z ∂2z( )
∂x 0 0 0 0 1 0
∂y 0 0 1 0 0 0
∂z 0 1 0 0 0 0

.

Now consider the system of equations:

C1
xyz((ax+ by + cz)2) = λ(ax+ by + cz)

0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0

 ·

a2

2ab
2ac
b2

2bc
c2

 = λ

ab
c



2bc = λa
2ac = λb
2ab = λc

.

The seven eigenvalues of xyz are the following solutions of this system. If λ = 0 there
are 3 solutions corresponding to two of the variables a, b, c being zero, and one solution
corresponding to all 3 variables equal to zero (which we exclude). The other set of solutions
is when λ = 1. Here we have one solution a = b = c = 1

2
, and 3 more solutions with

a, b, c = ±1
2

with precisely two of the three negative.

7.3. Eigenvectors of slightly more general tensors. Let
∧aV denote the vector space of

alternating tensors. If {v1 . . . , vn} is a basis of V , then {vi1∧vi2∧· · ·∧via | i1 < i2 < · · · < ia}
is the natural basis of

∧aV .
Now the eigenvalue-free approach to eigenvectors of tensors allows us to define the notion

of an eigenvector of a tensor T ∈ SdV ∗ ⊗
∧aV (why we need this type of tensor will be

apparent later). Consider T ∈ SdV ∗ ⊗
∧aV as a linear mapping

SdV →
∧aV

We will say that v ∈ V is an eigenvector of the tensor T ∈ SdV ∗ ⊗
∧aV if

T (vd) ∧ v = 0 ∈
∧a+1V.

The number of such eigenvectors is given by the following:

Proposition 7.2 ([OO13]). Let T ∈ T ∈ SdV ∗⊗
∧aV be general with V ∼= Cn. The number

of e(T ) of eigenvectors of T is
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e(M) = m, when n = 2 and a ∈ {0, 2},
e(M) =∞, when n > 2 and a ∈ {0, n},

(classical)

e(M) = mn−1
m−1 , when a = 1 [CS’10],

e(M) = 0, for 2 ≤ a ≤ n− 1,

e(M) = (m+1)n+(−1)n−1

m+2
, for a = n.

Our result includes a result of Cartwright-Sturmfels. Our proofs rely on the simple ob-
servation that the a Chern class computation for the appropriate vector bundle gives the
number of eigenvectors.

(See also [FO14]

8. What to do when flattenings run out

A classical result of Hilbert, Richmond, and Palatini is the following:

Theorem 8.1. A general f ∈ S5C3 has an essentially unique decomposition as the sum of seven
5-th powers of linear forms.

Try to find the unique decomposition.
Naively, we can parametrize seven linear forms and solve the system of quintic equations on

21variables given by equating the coefficients on each side of the equation

f =
7∑
s=1

(asx+ bsy + csz)
5.

This turns out to be feasible, but computationally intensive. Instead, we seek a solution that is
on the same order as linear algebraic computations such as rank and null space computations.

Catalecticants: The most square flattenings are Cf : (S3C3)∗ → S2C3, which are 6 × 10 ma-
trices, and can’t distinguish rank 6 from rank 7.

The new tool is called an exterior flattening. The following example is part of a more general
method described in [OO13]. Consider one of the Koszul maps

K : C3


0 −z y
z 0 −x
−y x 0


//
∧2C3 ∼= (C3)∗

Now twist the catalecticant by the Koszul matrix K:

(K ⊗ C)f : C3 ⊗ (S2C3)∗


0 −C∂zf C∂yf

C∂zf 0 −C∂xf
−C∂yf C∂xf 0


// (C3)∗ ⊗ S2C3

The matrix representing (K ⊗ C)f in this case is 18× 18.
Now K ⊗ C has the following properties:

• (K ⊗ C)f is skew-symmetric.
• (K ⊗ C)f is linear in the f -argument, that is (K ⊗ C)λf+f ′ = λ(K ⊗ C)f + (K ⊗ C)f ′ ,
• rank(K ⊗ C)f = 2 if rank(f) = 1,
• Subadditivity of matrix rank implies that if rank f = r then rank(K ⊗ C)f ≤ 2r.

Therefore the 16× 16 Pfaffians of (K ⊗C)f vanish if f has rank 7. Moreover, if R(f) = 7, then
(K ⊗ C)f has a non-trivial kernel. Let M be a general element in ker(K ⊗ C)f ⊂ (S2C3)∗ ⊗ C3.
Note that Cartwright and Sturmfel’s count says that M must have 7 eigenvectors.

It turns out that the eigenvectors of M are the linear forms `s in the decomposition
∑7

s=1 λs`s
for some λs ∈ C.

We can find the eigenverctors of M by solving a (smaller) system of equations implied by M(v2) =
v as we did in Example 7.1.
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9. Optimization, and Euclidean Distance Degree

Given f ∈ SdCn we would like to solve the system of polynomial equations

f =
r∑
s=1

(asx+ bsy + . . . csz)
d.

We might hope for a fast algorithm like in the Hilbert Quintics example, but it turns out that
we shouldn’t hope for one unless we believe P = NP , since the general problem of finding the rank
of a polynomial is NP -hard [HL09].

On the other hand, we might be interested in relaxing the exact problem to an optimization
problem (as mentioned above):

minimize ||f −
r∑
s=1

λs`
d
s ||, for λ ∈ F and `s ∈ V.

Just to get an idea of how complicated this problem is, we may try to understand how many optimal
solutions we might expect to find. In the case that || · || is the usual norm induced by the euclidean
distance, the number of critical points of the function

(~λ, `1, . . . , `s) 7−→ ||f −
r∑
s=1

λs`
d
s ||

for a general data point f is called the Euclidean Distance Degree. For more on this topic we invite
the reader to consult [DHO+13, Lee14].

10. Exercises

Exercise 10.1. Consider the following 3× 3× 3 tensor:

T = a1 ⊗ b2 ⊗ c1 + a3 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3 ∈ A⊗B ⊗ C.
(1) Write the three different flattenings of T and compute the multilinear rank MR(T ).
(2) Write the three different representations of T as a matrix with linear entries and compute

the generic projection rank PR(T ).

Exercise 10.2. Consider T = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b1 ⊗ c1 + a1 ⊗ b2 ⊗ c1 + a1 ⊗ b1 ⊗ c2. Show that
T has rank 3 but border rank 2.

Exercise 10.3. Show that for F ∈ SdV , the symmetric rank RS(F ) = 1 if and only if the rank
R(F ) = 1.

Exercise 10.4. (1) Show that the variety Subp,q,r is irreducible.
(2) Show that the variety Prankp,q,r is not in general irreducible.
(3) Show that Seg(PA× PB × PC) is a closed algebraic variety.
(4) Show that σr(Seg(PA× PB × PC)) is irreducible.

The exercises marked (CGO), while classical, also appear (with hints and solutions) in [CGO14].

Exercise 10.5 (CGO). For X ⊂ PN , show that, if σi(X) = σi+1(X) 6= PN , then σi(X) is a linear
space and hence σj(X) = σi(X) for all j ≥ i.

Exercise 10.6 (CGO). If X ⊆ PN is non-degenerate, then there exists an r ≥ 1 with the property
that

X = σ1(X) ( σ2(X) ( . . . ( σr(X) = PN .
In particular, all inclusions are strict and there is a higher secant variety that coincides with the
ambient space.
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Exercise 10.7 (CGO). Let X ⊆ Pn be a curve. Prove that σ2(X) has dimension 3 unless X is
contained in a plane. (This is why every curve is isomorphic to a space curve but only birational
to a plane curve.)

Exercise 10.8 (CGO). Let M be an n × n symmetric matrix of rank r. Prove that M is a sum
of r symmetric matrices of rank 1.

Exercise 10.9 (CGO). Consider the rational normal curve in P3, i.e. the twisted cubic curve
X = ν3(P(S1)) ⊂ P(S3). We know that σ2(X) fills up all the space. Can we write any binary cubic
as the sum of two cubes of linear forms? Try x0x

2
1.

Exercise 10.10 (CGO). Show that σ5(ν4(P2)) is a hypersurface, i.e. that it has dimension equal
to 13.

Exercise 10.11 (CGO). Let X = PV1 × · · · × PVt and let [v] = [v1 ⊗ · · · ⊗ vt] be a point of X.
Show that the cone over the tangent space to X at v is the span of the following vector spaces:

V1 ⊗ v2 ⊗ v3 ⊗ · · · ⊗ vt,
v1 ⊗ V2 ⊗ v3 ⊗ · · · ⊗ vt,

...
v1 ⊗ v2 ⊗ · · · ⊗ vt−1 ⊗ Vt.

Exercise 10.12. Show that Seg(PA× PB × PC) = Sub1,1,1(A⊗B ⊗ C).

Exercise 10.13 (CGO). Show that σ2(P1 × P1 × P1) = P7.

Exercise 10.14 (CGO). Use the description of the tangent space of the Segre product and Ter-
racini’s lemma to show that σ3(P1 × P1 × P1 × P1) is a hypersurface in P15 and not the entire
ambient space as expected. This shows that the four-factor Segre product of P1s is defective.

The connection between subspace varieties and secant varieties is the content of the following
exercise.

Exercise 10.15 (CGO). Let X = PV1 × · · · × PVt. Show that if r ≤ ri for 1 ≤ i ≤ t, then

σr(X) ⊂ Subr1,...,rt .

Notice that for the 2-factor case, σr(Pa−1 × Pb−1) = Subr,r.
The following exercise marked (Sturmfels) appeared in Bernd Sturmfels’ course on “Introduction
to Non-Linear Algebra” at KAIST, Summer 2014:

Exercise 10.16 (Sturmfels). Consider the tensors T whose coordinates are

Ti,j,k = i+ j + k.

Give the “simplest” expression of T by choosing a “good” set of coordinates. Compute the rank
and border rank of T .

Try to repeat the exercise for Ti,j,k = i2 + j2 + k2.

Exercise 10.17 (Sturmfels). Give an example of a real 2× 2× 2 tensor whose tensor rank over C
is 2 but whose tensor rank over R is 3.

Exercise 10.18 (Sturmfels). The monomial φ = xyz is a symmetric 3 × 3 × 3 tensor. Compute
the rank and border rank of φ (if this is difficult, try to find upper or lower bounds).

Find symmetric tensors of ranks 1 and 2 that best approximate φ.

Exercise 10.19 (Sturmfels). The monomial x1x2 · · ·xn is a symmetric tensor of format n × n ×
· · · × n. Find all eigenvectors of this tensor. Start with the familiar case of n = 2.
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