Determinant vs Permanent: Exercises

1. Prove Ryser's formula : if $X=\left(x_{i j}\right)$ is an $m \times m$ matrix,

$$
\operatorname{perm}_{m}(X)=\sum_{S \subset\{1, \ldots, m\}}(-1)^{m-|S|} \prod_{i=1}^{m}\left(\sum_{j \in S} x_{i j}\right) .
$$

2. Prove Glinn's formula :

$$
\operatorname{perm}_{m}(X)=2^{1-m} \sum_{\epsilon \in\{ \pm 1\}^{m}}\left(\prod_{k=1}^{m} \epsilon_{k}\right) \prod_{i=1}^{m}\left(\sum_{j=1}^{m} \epsilon_{j} x_{i j}\right) .
$$

3. Prove that for matrices of size $n \geq 3$, there is no way to change the signs of the entries of a generic matrix, in such a way that taking the determinant, one gets the permanent of the original matrix. (This holds true over any field of characteristic different from two.)
4. Let T be an invertible linear transformation of the space of $n \times n$ matrices, that preserves the space of rank one matrices. Show that there exist two matrices A and B such that either

$$
T(X)=A X B \quad \text { or } \quad T(X)=A^{t} X B .
$$

Are A and B uniquely determined by T ? Hints :
(a) Show that there are two families of maximal linear spaces of rank one matrices : those, denoted I_{v}, whose images are generated by a given vector v (or zero) ; those, denoted K_{x}, whose kernels contain a given hyperplane $x=0$ (where x is a non zero linear form).
(b) Suppose that T sends some I_{v} to some I_{w}. Show that there exist two transformations α and β such that T sends I_{u} to $I_{\alpha(u)}$ for any vector u, and K_{x} to $K_{\beta(x)}$ for any linear form x.
(c) Conclude.
5. The goal of this exercise is to prove the following result of : There is no linear transformation T of the space of matrices such that the polynomial identity

$$
\operatorname{perm}(X)=\operatorname{det}(T(X))
$$

does hold. Hints :
(a) Show that T must be invertible.
(b) Show by descending induction on r that any subpermanent of size r of X is a linear combination of the r-minors of $T(X)$.
(c) Show that if X has all its subpermanents of size two equal to zero, then its non zero entries are all either on a line, a column, or a block of size two.
(d) Deduce that T preserves the space of rank one matrices. Conclude with the help of the previous exercise.
6. Use the same kind of techniques to characterize the linear transformations T that preserve the permanent.
(a) Show that T must be invertible.
(b) Show by descending induction on r that any subpermanent of size r of $T(X)$ is a linear combination of the subpermanents of size r of X.
(c) Deduce that T preserves the space of rank one matrices.
(d) According to Ex. 1 there exist two matrices A and B such that either $T(X)=A X B$ or $T(X)=A^{t} X B$. Show that A and B must be diagonal up to permutations. Conclude.
7. Show that the permanent is determined (up to scalar) by its stabilizer. Hints :
(a) Let P be a homogeneous polynomial of degree n of the space of $n \times n$ matrices, with the same stabilizer as the permanent. Using the diagonal part show that each monomial in P must be of the form $X_{1 \sigma(1)} \cdots X_{n \sigma(n)}$ for some permutation σ.
(b) Using the permutation part show that the coefficient of this monomial in P must be independent of σ.
8. Show that the determinant is determined (up to scalar) by its stabilizer.
9. The hypersurface $($ det $=0)$ contains very large linear spaces, for example the space K_{v} of matrices vanishing on some non zero fixed vector v.
(a) Show that each K_{v} is a maximal linear space in the determinantal hypersurface.
(b) Show that there exist linear spaces of singular matrices not contained in any of these maximal spaces (or their transpose).
10. Let P be any non constant polynomial in n variables x_{1}, \ldots, x_{n}. Prove that for any $d>0$, the $S L_{n+1}$-orbit of the padded polynomial $x_{0}^{d} P$ is not closed.
11. Prove that the $G L_{n^{2}}$-orbit of the determinant contains the variety of polynomials of degree n which are products of n linear forms.

