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Quantitative traits

· Traits that vary continuously in
populations

- Mass
- Height
- Bristle number (approx)

· Adaption

- Low oxygen tolerance

· Disease

- Obesity

· Agriculture

- Fruit yield
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Fisher’s quantitative trait model

· n biallelic loci impacting trait

· Allele j at locus i has effect aij
· Phenotype is Xk =

∑
i ,j aijzijk

- zijk is number of copies of allele j
at locus i in individual k

· E(X̄ ) = 2nE(p)E(a)

· E(Var(X )) = 2nE(p(1− p))E(a2)

· Environmental variation induces
extra variability
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Neutral genetic variance

· Equilibrium genetic variance

- E(VA(∞)) = 2NVm

· Vm is the additive variance of new
mutations

- Vm ≈ 2µσ2

- µ: is trait-wide mutation rate
- σ2: variance of mutant effect size

distribution

· Var(VA(∞)) ≈ 4Nµσ4 (Lynch and
Hill 1986)
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Lande’s Brownian motion model

· Approximation to full model

- Don’t keep track of individual loci
- Assume genetic variance constant

in time
- Mutations have small effect sizes

· Can incorporate selection via
Ornstein-Uhlenbeck model

· Extremely influential in
comparative biology

- c.f. Felsenstein: independent
contrasts
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Evidence for non-Brownian evolution
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A coalescent model

· Haploid population of size N

· Trait governed by n loci

· Each locus has an independent coalescent tree

· Each locus has mutation rate θ
2 (coalescent time units)

· When a mutation happens, effect Y is drawn from
distribution with density p(y).
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Example
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Mutational effects

· Common assumption: many loci of very small effect

- Infinitesimal model
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Large effect mutations

· In some cases, large effect mutations may occur

- Transcription factor binding sites
- Null mutants upstream in pathways
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Characteristic functions

Characteristic function

For a random variable X drawn from the probability measure µ(·),
the function

φX (k) = E(e ikX )

=

∫
e ikxdµ(x)

is called the characteristic function

Sums of random variables

If X1, . . . ,Xn are independent random variables, and X =
∑

i Xi

then
φX (k) =

∏
i

φXi
(k)
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Compound Poisson process

Definition

Let N(t) be a rate λ Poisson process, and (Yi , i ≥ 1) a sequence
of independent and identically distributed random variables. Then

X (t) =

N(t)∑
i=1

Yi

is called a compound Poisson process.
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Characteristic function of a compound Poisson process

CF of a CP process

If X (t) is a rate λ Compound Poisson process, and ψ(k) is the
characteristic function of the jump distribution, then the
characteristic function of X is

φt(k) = eλt(ψ(k)−1)
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One locus, sample of size 2

· Condition on T2, the
coalescence time

- X1 and X2 are
independent CP(θ/2)
processes run for time T2

- Joint distribution depends
on root value

· Consider Z = X2 − X1

- Doesn’t depend on root
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One locus, sample of size 2 (CF)

φZ (k) =

∫ ∞
0

E(e ikZ )e−tdt

=

∫ ∞
0

E(e ik(X2−X1))e−tdt

=

∫ ∞
0

φt(k)φt(−k)e−tdt

=

∫ ∞
0

e
θ
2
t(ψ(k)+ψ(−k)−2)e−tdt

=
1

1− θ
2 (ψ(k) + ψ(−k)− 2)
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Phenotype at the root

· The root of the tree must be specified

· A new individual could coalesce more anciently than the
current root

- For each n, there is a fixed root
- Ensuring consistency could be hard
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The root problem
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Getting rid of the root

Normalization

If X = (X0, . . . ,Xn−1) are the trait values in the sample, then the
random vector

Z = (Z1, . . . ,Zn−1)

= (X1 − X0, . . . ,Xn−1 − X0)

does not depend on the root value

· ”Normalizing” by an arbitrary individual makes n unimportant

- Intuition: now every sample has to follow the path through the
tree to individual 0, so the root doesn’t matter
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One locus, sample of size 3

Characteristic function for n = 3, and symmetric mutational effects

φZ1,Z2(k1, k2) =

1
1+θ(1−ψ(k1)) + 1

1+θ(1−ψ(k2)) + 1
1+θ(1−ψ(k1+k2))

3− θ
2 (ψ(k1) + ψ(k2) + ψ(k1 + k2)− 3)

· Sketch of derivation:

- Condition on topology (each of 3 topologies equally likely)
- Compute characteristic function for each topology while

conditioning on coalescence times
- Integrate over coalescence times
- Take weighted sum of characteristic functions for each

topology
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Sending the number of loci off to infinity

· We would like some nice limit as the number of loci increases

- Trivial result: “uniform on R” or δ(x)

· Need to decrease the effect size or mutation rate of each locus

· Three nontrivial limits

- Mutation rate per locus decreases but effect sizes remain
constaint

- Mutation rate per locus remains constant but effect sizes
decrease and effect size distribution does not have fat tails

- Mutation rate per locus remains constant but effect size
decreases and effect size distribution has fat tail
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Decreasing mutation rate

Correlated CPP limit

As n ↑ ∞ and θ ↓ 0 such that nθ → Θ,

φZ1,Z2(k1, k2)→ e
Θ
2

(ψ(k1)+ψ(k2)+ψ(k1+k2)−3)

which is the characteristic function of two correlated compound
Poisson processes.

· Perhaps not very biologically relevant

· Will ignore for rest of talk
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Small effect mutations

Bivariate Gaussian limit

As n ↑ ∞ and the second moment of the effect distrbution, τ2, ↓ 0
such that nτ2 → σ2,

φZ1,Z2(k1, k2)→ e−
θ
2
σ2(k2

1 +k1k2+k2
2 )

which is the characteristic function of a Bivariate Gaussian
distribution with mean vector (0, 0) and variance-covariance matrix

Σ = θσ2

[
1 1/2

1/2 1

]
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Large effect mutations

Bivariate stable distribution

Assume that p(y) ∼ κ|y |−(α+1) and set
t = κπ (sin(απ/2)Γ(α)α)−1. As n ↑ ∞ and t ↓ 0 such that
nt → c ,

φZ1,Z2(k1, k2)→ e−
1
2
θc(|k1|α+|k2|α+|k1+k2|α)

where c = c̃ π
sin(απ

2 )
, which is the characteristic function of a

bivariate α-stable distribution
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de Finetti’s theorem

Theorem

If (X1,X2, . . .) is an infinitely exchangeable random vector, then
the probability density of (X1 = x1, . . .Xn = xn) is a mixture over
i.i.d. probability densities. That is,

p(x1, . . . , xn) =

∫ ∏
i

pθ(xi )ν(dθ)

· Suggests that we can find a de Finetti measure such that all
our normalized samples are i.i.d.
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A guess in the normal case

· Given the mean, the trait is distributed N (0, θ2σ
2)

· The mean is itself distributed N (0, θ2σ
2)

· Law of total variance gives Var(X ) = 2Nµσ2

- Same as classical derivation

φ(k1, k2) =

∫ (∫ 2∏
l=1

e iklxl
1√
πθσ2

e−
(m−xl )

2

θσ2 dxl

)
1√
πθσ2

e−
m2

θσ2 dm

= e−
θ
4
σ2(k2

1 +k2
2 )
∫

e im(k1+k2) 1√
πθσ2

e−
m2

θσ2 dm

= e−
θ
4
σ2(k2

1 +k2
2 )e−

θ
4
σ2(k1+k2)2

= e−
θ
2
σ2(k2

1 +k1k2+k2
2 )
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Tempting interpretation and conjecture

· Conditioning on the amount of evolution “exclusive to sample
0”

- Integrate over whether sample 1 or sample 2 coalesces with
sample 0 first

· Suggests that this can be extended to arbitrary sample sizes

Conjecture about larger samples (Gaussian limit)

When the mutation kernel has only small effect mutations, the
limit distribution is normal with variance θ

2σ
2 and random mean.
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Testing the Gaussian conjecture

· Simulate quantitative traits according to the coalescent model
· Use KS test to assess convergence in the limit
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Conjecture for the stable limit

· Bivariate case

- Independently α-stable with random median
- Analogous to Gaussian limit

Conjecture about larger samples (Stable limit)

When the mutation kernel has large mutational effects, the limit

distribution is α-stable with scale
(
θ
2c
)1/α

and random median.
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Testing the stable conjecture

· Simulate quantitative traits according to the coalescent model
· Use KS test to assess convergence in the limit

22

23

24

25

26

27

28

21 22 23 24 25 26 27 28
# loci

# 
sa

m
pl

es

same

diff
value

Stable, KS D

Joshua G. Schraiber and Michael J. Landis Mutations of large effect



More randomness than expected
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Stable limit for sample of size 4

· Tedious computation

- Need to average over 18 trees.

· Conjecture would require

φZ1,Z2,Z3(k1, k2, k3)→ e−
θ
2
c(|k1|α+|k2|α+|k3|α+|k1+k2+k3|α)

Trivariate characteristic function

For a sample of size three, under the same conditions as the
bivariate limit,

φZ1,Z2,Z3 (k1, k2, k3)→ exp{−θ
3
c(|k1|α + |k2|α + |k3|α

+
1

2
|k1 + k2|α +

1

2
|k1 + k3|α +

1

2
|k2 + k3|α

+ |k1 + k2 + k3|α)}
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Extremely weak conjecture for large effect mutations

Conjecture (Stable limit)

When the mutation kernel has large mutational effects, the limit
distribution is α-stable with random parameters

· Not even sure that this is true

- A mixture of stable distributions?
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Empirical data

· Neurospora crassa mRNA-seq

- Ellison et al (2011), PNAS
- Restrict to genes with FPKM > 1

· For each gene fit normal distribution, α-stable distribution

· Bootstrap likelihood ratio test (H0 : α = 2 vs. H1 : α < 2)

· Preliminary!

- Only analyzed 346 genes
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Distribution of p-values
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· 54 genes significant at FDR of 32%
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Distribution of α in significant genes
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Cherry-picked examples
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Conclusions

· Introduced a coalescent model of quantitative trait evolution

- Provided exact formulas for the characteristic functions for
samples of size 2, 3, 4

- Found limiting distributions as the number of loci became
large in each case

- Conjectured about extending these limits to larger samples

· Extensions

- Samples not contemporaneous
- Population structure
- Diploids

· Why a neutral model?

- Analytically tractable calculations
- Intuition for what to expect with weak selection
- Null model
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