Probabilistic models for pathogen evolution within and between hosts

Shishi Luo UC Berkeley

Pathogen evolution

- Influenza
- HIV
- General two-level selection

Antigenic drift of influenza

(with K Koelle, JC Mattingly, MC Reed)

Vaccinate

Viral dynamics and evolution

Within-host influenza viral dynamics (colors are different studies)

ODEs with Poisson mutation

$$\dot{C} = -\beta C V_r - \beta C V_m$$
$$\dot{V}_r = \gamma C V_r - \delta_r V_r$$
$$\dot{V}_m = \gamma C V_m - \delta_m V_m$$
$$V_r(0) = V_0 \quad C(0) = C_0$$

mutations occur at rate $\mu V_r(t)$

Luo, Reed, Mattingly, Koelle Interface 2012

Results: Within hosts

Probability of immune escape Simulations Analytical formula

Results: Population level

Koelle et al Epidemics 2009

Broadly neutralizing HIV antibodies (with A Perelson)

Data from UNAIDS Global fact sheet 2012

Broadly neutralizing HIV antibodies are highly mutated

Data from: Wrammert et al J Exp Med 2011, Kwong & Mascola Immunity 2012, hiv.lanl.gov

'Bitstring' model

Conserved region is less accessible

Binding properties

Infection with single strain

Vaccine strategies

Bars show +/-1 SE

Multilevel selection in hostpathogen systems (with JC Mattingly)

- myxomatosis-rabbit
- human
 papillomavirus
- malaria

Suppose:

- ${\scriptstyle \bullet}\,m$ groups, n individuals per group
- . red beats blue in each group, 1 + s vs 1
- bluer groups be at redder groups, $1 + r\frac{k}{n}$, were $\frac{k}{n}$ is fraction of blue
- $w = \frac{\text{rate of group-level events}}{\text{rate of individual-level events}}$

Recall: blue types beneficial at group level

- Let X_t^j be the position of ball j on the (rescaled) 1-d lattice $\{0, \frac{1}{n}, \dots, 1\}$ at time t.
- Define the measure-valued process:

$$\mu_t^{m,n} = \frac{1}{m} \sum_{j=1}^m \delta_{X_t^j}$$

 $\mu_t^{m,n}$ has transition rate matrix $R = R_1 + wR_2$ where:

$$R_1\left(v,v+\frac{1}{m}\left(\delta_{\frac{j}{n}}-\delta_{\frac{i}{n}}\right)\right) = \begin{cases} mv(\frac{i}{n})i\left(1-\frac{i}{n}\right)\left(1+s\right) & \text{if } j=i-1, i0\\ 0 & \text{otherwise} \end{cases}$$
$$R_2\left(v,v+\frac{1}{m}\left(\delta_{\frac{j}{n}}-\delta_{\frac{i}{n}}\right)\right) = mv(\frac{i}{n})v(\frac{j}{n})(1+r\frac{j}{n})$$

s: individual-level selection, r: group-level selection, w: relative rate of events, m: number of groups, n: number of individuals in each group

The deterministic limit of $\mu_t^{m,n}$:

$$\frac{\partial}{\partial t}\mu(t,x) = s\frac{\partial}{\partial x}\left[x(1-x)\mu(t,x)\right] + wr\mu(t,x)\left[x - \int_0^1 y\mu(t,y)dy\right]$$

The stochastic (Fleming-Viot) limit:

$$\partial_t \nu_t = \sigma \partial_x \left[x(1-x)\nu_t \right] + \partial_{xx} \left[x(1-x)\nu_t \right] + w\alpha \rho \nu_t \cdot \left[x - \int_0^1 y\nu_t(y)dy \right] + w\alpha \sqrt{2\nu_t(1-\nu_t)}\dot{W}_t$$

Long-term behavior of PDE

Suppose μ_0 is a density and k^* is such that

 $\mu_0^{(k)}(1) = 0$ for all integers $k < k^*$ and $\mu_0^{(k^*)}(1) \neq 0$

If $\lambda - 1 > k^*$,

$$\mu(t, x) \to \text{Beta}(\lambda - k^* - 1, k^* + 1) \text{ as } t \to \infty$$

If $\lambda - 1 \le k^*$,

$$\mu(t,x) \to \delta_0(x) \text{ as } t \to \infty$$

Properties of particle system

Relative rate of replication acts like group-level selection

What if *m* and *n* are finite?

$$\frac{\partial}{\partial t}\mu(t,x) = s\frac{\partial}{\partial x}\left[x(1-x)\mu(t,x)\right] + wr\mu(t,x)\left[x - \int_0^1 y\mu(t,y)dy\right]$$