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The basic reproductive number

I R0 = βD is the mean
potential number of new
infections created by an
infectious individual

I Re = βDS/N is the
mean realized number
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The rabies puzzle



R0 estimates for rabies



Digression: heterogeneity and R0
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The commensal theory



The tradeoff theory

Susceptibles as a resource
I Clearance = death
I Immune = dead



Tradeoff
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Micro-predators



No tradeoff
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No tradeoff
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Modeling assumptions



Self-limiting pathogens

Emergent trade-offs and selection for outbreak
frequency in spatial epidemics
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Nonspatial theory on pathogen evolution generally predicts selec-
tion for maximal number of secondary infections, constrained only
by supposed physiological trade-offs between pathogen infec-
tiousness and virulence. Spread of diseases in human populations
can, however, exhibit large scale patterns, underlining the need for
spatially explicit approaches to pathogen evolution. Here, we
show, in a spatial model where all pathogen traits are allowed to
evolve independently, that evolutionary trajectories follow a sin-
gle relationship between transmission and clearance. This trade-
off relation is an emergent system property, as opposed to being
a property of pathogen physiology, and maximizes outbreak
frequency instead of the number of secondary infections. We
conclude that spatial pattern formation in contact networks can act
to link infectiousness and clearance during pathogen evolution in
the absence of any physiological trade-off. Selection for outbreak
frequency offers an explanation for the evolution of pathogens
that cause mild but frequent infections.

evolution � pathogen � spatial model � spatial patterns

Current theory on pathogen evolution places much emphasis
on physiological (or life-history) trade-offs that relate viru-

lence, infectiousness, mode of transmission, and immune clear-
ance (1–6). These trade-offs, motivated by a supposed functional
link between two (or more) traits, specify that evolutionary
improvements in one trait are necessarily accompanied by a
decline in another (7, 8). One of the most commonly made
trade-off assumptions is that increased production of transmis-
sion stages causes increased host mortality and thereby shortens
the infection period (9). Where traits can evolve independently,
nonspatial theory typically predicts selection for maximal trans-
missibility and infection period, thus maximizing the number of
secondary infections (i.e., the number of new infections an
infected host causes). It is commonly held, however, that the
benefits of increased transmission and the associated penalties of
virulence and shorter infection are balanced so that the number
of secondary infections is maximized at intermediate transmis-
sibility and virulence (2). In simple nonspatial models, this
evolutionary maximization corresponds to selection for maximal
basic reproductive ratio R0 (10), i.e., the expected number of
secondary infections in an unexposed population [but note that
this result depends on absence of multiple infections (5) and
vertical transmission (11, 12)]. The current popularity of trade-
offs in studies of pathogen evolution stems from the fact that they
provide a possible explanation for selection for intermediate
virulence and transmissibility (8), and that they can be used to
predict pathogen evolution in response to human interventions
such as the use of imperfect vaccines (4) or improved hygiene
(13). However, the exact shape (and even existence) of trade-offs
is unknown for many diseases (14).

A growing body of work reports on the role of spatial pattern
formation on evolutionary processes (3, 6, 15–21). Recent
studies have shown large-scale spatiotemporal patterns in mea-
sles (22) and dengue fever (23). Existing theoretical work on
pathogen evolution and spatial pattern formation has focused on
a model in which local colonization of ‘‘empty spaces’’ by
susceptible hosts plays a central role (3, 6, 19–21). Pathogen

lethality in this model leads to host patchiness, and too aggressive
pathogens will die out because they cause local extinction of
hosts (19). In this manner, spatial processes can lead to limita-
tions in the evolution of transmissibility, but the evolutionary
attractor is close to host extinction. Furthermore, local clustering
of infections (so-called self-shading) reduces the effective infec-
tion rate (20). This effect of spatial patterns makes trade-off
optimization in spatial populations less straightforward than in
their nonspatial counterparts. Although theoretically appealing,
the patchiness that dominates this model depends heavily on
local birth of hosts into empty spaces, which does not seem
representative for, e.g., human populations. Moreover, for the
persistence mechanism proposed by this model to work, the
infection process and host reproduction must operate on similar
timescales. This implicit assumption does not hold for a large
number of pathogen–host systems. Our aim is to examine how
spatial selection processes determine pathogen evolution in the
absence of the dominant role of virulence, host demographics,
and physiological trade-offs.

Methods
We developed a spatial susceptible-infected-resistant (SIRS)
model for disease dynamics (24), using a grid-structured contact
network (25, 26). In the model (see Fig. 1), hosts can be
susceptible (S), infected (I), or resistant (R). Infected hosts can
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Fig. 1. Representation of processes in the contact network model. (A)
Infection. Infected hosts (I) can infect susceptible (S) neighbors with infection
rate �. The total probability of infection is 1 � ei��t, where i is the number of
infected neighbors. (B) Acquisition of resistance. Hosts are infectious for a
fixed period �I, after which they become resistant (R). (C) Loss of resistance.
After a fixed period �R, resistant hosts once again become susceptible.

18246–18250 � PNAS � December 28, 2004 � vol. 101 � no. 52 www.pnas.org�cgi�doi�10.1073�pnas.0405682101
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A simple model

I Square grid (8
neighbors)

I τ and D can evolve
freely



Fixed time course
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Fixed time course
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Fixed time course

I Movie



Variable time course (sdlog=0.2)
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Sdlog = 0.2
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Variable time course (sdlog=0.5)
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Sdlog = 0.5
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The conventional wisdom



Some simpler simulations

heat map: stoch prob of invasion 
 with analytic approximation contour lines
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An approximation
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Modeling assumptions
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