Tracking the Invisible a probabilistic approach to field cancerization

Marc D. Ryser

Department of Mathematics Duke University

Collaborators

- Rick Durrett (Duke)
- Jasmine Foo (U of Minnesota)
- Kevin Leder (U of Minnesota)

Motivation a clinical problem

Diagnosis

 Patient presents with tongue cancer

Treatment

- I. Surgical resection
- 2. Check margin –
- 3. Follow-up therapy: radiation and/or chemotherapy

Resected tongue cancer

Resected tongue cancer

Frequent recurrence of disease (20-30%)...

... I-5 years later

Local recurrence

... I-5 years later

Local recurrence

But margin was tumor free... why the new tumor?

The Problem field cancerization

Field Cancerization

- Malignant tumor is surrounded by precancerous 'field'
- Not visible to surgeon
- 'Field': high risk of progression

Field Cancerization

- Present in most skin-cancers (carcinomas)
- Head and neck, lung, bladder
- Also: breast, colon, cervix, etc

Invisibility = Uncertainty

- Surgeon: how much margin around tumor?
- Distant field present at diagnosis?
- Risk of progression surveillance protocol?

Invisibility = Uncertainty

- Surgeon: how much margin around tumor?
- Distant field present at diagnosis?
- Risk of progression surveillance protocol?

Can we develop a mechanistic, dynamic model to answer these questions?

The Model

- Non-spatial model: branching process
- Here, geometry matters!

cross-section of epithelium

Cellular dynamics

Cellular dynamics

Focus on basal layer

- Spatial evolutionary dynamics
- Cell of type i: stochastic division @ rate f_i
- Replace neighbor (unif. at random)

Growth dynamics of mutant progeny

Movie I

sped-up process

Movie 2

Add mutations

Movie 3

Movie 4

Add mutations: multistep carcinogenesis

Biased voter model

Jasmine Foo's talk

Mesoscopic model

time

Model Analysis

Assumptions

- 3 cell types: normal cells, precancerous cells and malignant cells
- General dimension $d \ge I$

- New precancer fields: Poisson arrivals
- Fields grow at constant radial rate
- Each field: non-homogeneous Poisson process to yield a tumor clone

Important notion: size-biased pick

Definition 3.1 (Size-biased pick). Let L_1, \ldots, L_n be a family of n random variables. A size-biased pick from L_1, \ldots, L_n is defined as a random variable $L_{[1]}$ with conditional probability distribution

$$P(L_{[1]} = L_i | L_1, \dots, L_n) = L_i / \sum_{j=1}^n L_j.$$

Local field area

Theorem 0.1. The distribution of the area of the local field at time of tumor initiation σ_2 , conditioned on $\{\sigma_2 \in dt\}$, is given by

$$\hat{P}\left(X_l(\sigma_2) \in dx
ight) = \hat{P}\left(X_{[1]} \in dx
ight) = rac{u_2 ar{s}_2 x^{1/d}}{d\gamma_d^{1/d} c_d(s_1)(1 - e^{- heta t^{d+1}})} \exp\left[rac{-u_2 ar{s}_2 x^{rac{d+1}{d}}}{(d+1)\gamma_d^{1/d} c_d(s_1)}
ight],$$

for $x \in [0, \gamma_d c_d^d(s_1) t^d]$.

Distant field area

Theorem 0.2. The size-distribution of the distant field clones at time of tumor initiation σ_2 , conditioned on $\{\sigma_2 = t\}$, is given by

$$\begin{aligned} \mathcal{L}(\bar{X}_d | t \in dt) =_d \hat{P}(\tilde{X}_1 \in dx_1, \dots, \tilde{X}_{M(t)-1} \in dx_{M(t)-1}) \\ &= \frac{1}{1 - e^{-\lambda t \phi(t)}} \sum_{m=1}^{\infty} \frac{(\lambda \phi(t)t)^m e^{-\lambda \phi(t)t}}{m!} \prod_{i=1}^{m-1} g_t(x_i), \end{aligned}$$

where

$$g_t(x) \equiv rac{x^{1/d-1}}{d\gamma_d^{1/d}c_d(s_1)t\phi(t)} \exp\left[rac{-u_2ar{s}_2 x^{rac{d+1}{d}}}{(d+1)\gamma_d^{1/d}c_d(s_1)}
ight],$$

Key insight from these results:

How do microscopic parameters (cellular fitness, mutation rates etc) influence the geometry of the invisible precancer fields. Key insight from these results:

How do microscopic parameters (cellular fitness, mutation rates etc) influence the geometry of the invisible precancer fields.

Now, let's go back to the clinical issues outlined in the beginning...

Excision Margin I

How big should the margin be to avoid recurrence from unresected portion of the field?

Excision Margin II

Cumulative incidence of second field tumor

diam=diameter of excised portion

Excision Margin III

Probability of recurrence

Recurrence: local vs distant

- At time T=0, remove the tumor
- Time to distant recurrence?
- Time to local recurrence?

Reference

Foo, Leder, Ryser (2014) Journal of Theoretical Biology

Ongoing Work

With Drs. Lee, Ready, and Shealy (Duke Medicine)

Added complexity

- Beyond the 2-step model
- Collect clinical data for validation/ refinement
- Goal: patient-specific predictions via integrated data-modeling framework

