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DISPLACING ONE TYPE  
BY ANOTHER

• Spread of an advantageous gene	



• Spread of infectious disease (influenza, SARS)  
~ chemical reaction, e.g. S+I->2I  	



• Spread of invasive species (gypsy moth, cane toad)	



• Spread of information, gossip …

How fast?
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EPIDEMIC SPREAD

J. V. Noble, Nature 250, 726 (1974).

Historic scenario

bubonic plague

300-600km/yr

In addition to this dynamics, one must specify the initial condi-
tion p(S, I; t ! t0), which is typically assumed to be a small but
fixed number of infecteds I0, i.e., p(S, I; t ! t0) ! !I,I0!S,N"I0.

The relation of the probabilistic master equation 3 to the
deterministic SIR model (1) can be made in the limit of a large but
finite population, i.e.,N ## 1. In this limit, one can approximate the
master equation by a Fokker–Planck equation by means of an
expansion in terms of conditional moments [Kramers–Moyal ex-
pansion (13); see supporting information, which is published on the
PNAS web site]. The associated description in terms of stochastic
Langevin equations reads

ds!dt " "#sj $
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"#sj%1$ t% [4]
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1
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"#sj%1$ t% $

1
"N
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[5]

Here, the independent Gaussian white noise forces%1(t) and %2(t)
reflect the fluctuations of transmission and recovery, respectively.
Note that the magnitude of the fluctuations are & 1!'N and
disappear in the limit N3 (, in which case Eqs. 1 are recovered.
However, for large but finite N, a crucial difference is apparent:
Eqs. 4 and 5 contain fluctuating forces, andN is a parameter of the
system. A careful analysis shows that even for very large populations
(i.e., N ## 1), fluctuations play a prominent role in the initial phase
of an epidemic outbreak and cannot be neglected. For instance,
even when (0 # 0, a small initial number of infecteds in a population
may not necessarily lead to an outbreak that cannot be accounted
for by the deterministic model.

Dispersal on the Aviation Network
As individuals travel around the world, the disease may spread
from one place to another. To quantify the traveling behavior of

individuals, we have analyzed all national and international civil
f lights among the 500 largest airports by passenger capacity.‡
This analysis yields the global aviation network shown in Fig. 1;
further details of the data collection are compiled in the
supporting information. The strength of a connection between
two airports is given by passenger capacity, i.e., the number of
passengers that travel a given route per day.

We incorporate the global dispersion of individuals into our
model by dividing the population into M local urban populations
labeled i containing Ni individuals. For each i, the number of
susceptible and infected individuals is given by Si and Ii, respec-
tively. In each urban area, the infection dynamics is governed by
master equation 3.

Stochastic dispersal of individuals is defined by a matrix )ij of
transition probability rates among populations

SiO¡
)ij

Sj IiO¡
)ij

Ij, i, j " 1, . . . , M, [6]

where )ii ! 0. Along the same lines as presented above, one can
formulate a master equation for the pair of vectors X ! {S1,
I1, . . . , SM, IM}, which defines the stochastic state of the system.
This master equation is provided explicitly in Eq. 3, supporting
information.

To account for the global spread of an epidemic via the
aviation network, one needs to specify the matrix )ij. Because the

‡Data on flight schedules and airport information are available from OAG Worldwide
Limited, London (www.oag.com), and the International Air Transport Association, Geneva
(www.iata.org).

Fig. 1. Global aviation network. A geographical representation of the civil
aviation traffic among the 500 largest international airports in #100 different
countries is shown. Each line represents a direct connection between airports.
The color encodes the number of passengers per day (see color code at the
bottom) traveling between two airports. The network accounts for #95% of
the international civil aviation traffic. For each pair (i, j) of airports, we checked
all flights departing from airport j and arriving at airport i. The amount of
passengers carried by a specific flight within 1 week can be estimated by the
size of the aircraft (We used manufacturer capacity information on #150
different aircraft types) times the number of days the flight operates in 1
week. The sum of all flights yields the passengers per week, i.e., Mij in Eq. 7. We
computed the total passenger capacity ) Mij of each airport j per week and
found very good agreement with independently obtained airport capacities.

Fig. 2. Global spread of SARS. (A) Geographical representation of the global
spreading of probable SARS cases on May 30, 2003, as reported by the WHO
and Centers for Disease Control and Prevention. The first cases of SARS
emerged in mid-November 2002 in Guangdong Province, China (17). The
disease was then carried to Hong Kong on the February 21, 2003, and began
spreading around the world along international air travel routes, because
tourists and the medical doctors who treated the early cases traveled inter-
nationally. As the disease moved out of southern China, the first hot zones of
SARS were Hong Kong, Singapore, Hanoi (Vietnam), and Toronto (Canada),
but soon cases in Taiwan, Thailand, the U.S., Europe, and elsewhere were
reported. (B) Geographical representation of the results of our simulations 90
days after an initial infection in Hong Kong, The simulation corresponds to the
real SARS infection at the end of May 2003. Because our simulations cannot
describe the infection in China, where the disease started in November 2002,
we used the WHO data for China.
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Modern scenario

SARS

Around the world 
in ~6 months
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time. Figure 1b shows secondary reports of bank notes with initial
entry at Omaha that have dispersed for times T . 100 days (with an
average time kTl ¼ 289 days). Only 23.6% of the bank notes travelled
farther than 800 km, whereas 57.3% travelled an intermediate dis-
tance 50 , r , 800 km, and a relatively large fraction of 19.1%
remained within a radius of 50 km, even after an average time of
nearly one year. From the computed value Teq < 68 days, a much
higher fraction of bills is expected to reach the metropolitan areas of
the West coast and the New England states after this time. This is
sufficient evidence that the simple Lévy flight picture for dispersal is
incomplete. What causes this attenuation of dispersal?
Two alternative explanations might account for this effect. The

slowing down might be caused by strong spatial inhomogeneities of
the system. People might be less likely to leave large cities than for
example, suburban areas. Alternatively, long periods of rest might be
an intrinsic temporal property of dispersal. In asmuch as an algebraic
tail in spatial displacements yields superdiffusive behaviour, a tail in
the probability density f(t) for times t between successive spatial
displacements of an ordinary randomwalk can lead to subdiffusion15

(see Supplementary Information). Here, the ambivalence between
scale-free spatial displacements and scale-free periods of rest can be
responsible for the observed attenuation of superdiffusion.
In order to address this issue we investigated the relative pro-

portion Pi
0ðtÞ of bank notes which are reported in a small (20 km)

radius of the initial entry location i as a function of time (Fig. 1d).
The quantity Pi

0ðtÞ estimates the probability of a bank note being
reported at the initial location at time t. We computed Pi

0ðtÞ for
metropolitan areas, cities of intermediate size and small towns: for all
classes we found the asymptotic behaviour P0(t) , At2h, with the
same exponent h ¼ 0.6 ^ 0.03, which indicates that waiting time
and dispersal characteristics are universal. Notice that for a pure
Lévy flight with index b in two dimensions, P0(t) scales with time
as t22/b (dashed red line)15. For b < 0.6 (as suggested by Fig. 1c) this
implies h < 3.33. This is a fivefold steeper decrease than observed,
which clearly shows that dispersal cannot be described by a pure Lévy
flight. The measured decay is even slower than the decay expected
from ordinary two-dimensional diffusion (h ¼ 1, dashed black line).
Therefore, we conclude that the slow decay in P0(t) reflects the effect

Figure 1 | Dispersal of bank notes and humans on geographical scales.
a, Relative logarithmic densities of population (cP ¼ logrP/krPl), report
(cR ¼ logrR/krRl) and initial entry (c IE ¼ logr IE/kr IEl) as functions of
geographical coordinates. Colour-code shows densities relative to the
nationwide averages (3,109 counties) of krPl ¼ 95.15, krRl ¼ 0.34 and
kr IEl ¼ 0.15 individuals, reports and initial entries per km2, respectively.
b, Trajectories of bank notes originating from four different places. City
names indicate initial location, symbols secondary report locations. Lines
represent short-time trajectories with travelling time T , 14 days. Lines are
omitted for the long-time trajectories (initial entry in Omaha) with
T . 100 days. The inset depicts a close-up view of the New York area. Pie
charts indicate the relative number of secondary reports coarsely sorted by
distance. The fractions of secondary reports that occurred at the initial entry
location (dark), at short (0 , r , 50 km), intermediate (50 , r , 800 km)
and long (r . 800 km) distances are ordered by increasing brightness of hue.
The total number of initial entries are N ¼ 2,055 (Omaha), N ¼ 524
(Seattle), N ¼ 231 (New York), N ¼ 381 (Jacksonville). c, The short-time

dispersal kernel. The measured probability density function P(r) of
traversing a distance r in less than T ¼ 4 days is depicted in blue symbols.
It is computed from an ensemble of 20,540 short-time displacements. The
dashed black line indicates a power law P(r),r2(1 þ b) with an exponent of
b ¼ 0.59. The inset shows P(r) for three classes of initial entry locations
(black triangles for metropolitan areas, diamonds for cities of intermediate
size, circles for small towns). Their decay is consistent with the measured
exponent b ¼ 0.59 (dashed line). d, The relative proportion P0(t) of
secondary reports within a short radius (r0 ¼ 20 km) of the initial entry
location as a function of time. Blue squares show P0(t) averaged over 25,375
initial entry locations. Black triangles, diamonds, and circles show P0(t) for
the same classes as c. All curves decrease asymptotically as t2h with an
exponent h ¼ 0.60 ^ 0.03 indicated by the blue dashed line. Ordinary
diffusion in two dimensions predicts an exponent h ¼ 1.0 (black dashed
line). Lévy flight dispersal with an exponent b ¼ 0.6 as suggested by b
predicts an even steeper decrease, h ¼ 3.33 (red dashed line).
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Tracking $ bills:	


broad tails ...

P (r) ⇠ r�1.6

Historic scenario

Qualitative 
Difference?

Modern scenario

Helbing, Brockmann, et al.  ArXiv:1402.7011 (2014)Figure 19: Global connectivity in the 21st century: Heterogeneity and lack of scale.
The network represents the worldwide air-transportation network connecting approx. four
thousand airports worldwide. Symbol size quantifies airport capacity, a proxy for local
population size. Two major characteristics of global connectivity are scale-free connec-
tivity in terms of distance and strong heterogeneity. These factors yield spatio-temporal
complexity of global disease dynamics.

diseases, see also Refs. [124, 125].
These types of models were designed to describe the time course of epidemics in

single populations in which every individual is assumed to interact with every other
individual at the same rate. The spatial spread of epidemics was first modeled by
parsimonious reaction diffusion type equations [126] in which the local nonlinear
dynamics are combined with ordinary diffusion in space. The combination of local,
initially exponential growth, typical for disease dynamics, with diffusion in space
generically yields regular wave fronts and constant spreading speeds. This type of
approach was successfully applied in the context the spread of the Black Death in Eu-
rope in the 14th century [127]. Despite their high level of abstraction, these models
provide a solid intuition and understanding of spreading processes. Their mathemati-
cal simplicity allows one to compute how key properties, e.g. spreading speed, arrival
times, and pattern geometry depend on system parameters [128].

One of the key problems in understanding global disease dynamics in the 21st
century is that some of the key assumptions in homogeneous reaction-diffusion mod-
els are not valid, not even approximately, i.) the host population is typically not dis-
tributed homogeneously in space, ii.) global human mobility is characterized by a lack
of scale which cannot be accounted for by local diffusion processes. This is illustrated

37



SPREAD DEPENDS ON 
DISPERSAL PATTERNS

Short distance	


dispersal (SDD)

Long distance	


dispersal (LDD)

Traveling waves ‘Metastatic growth’
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NOISY TRAVELING WAVES
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GENERALIZATION 
TO LONG DISTANCE DISP.
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so far, mostly 

mean field approaches:

Mean-field approaches neglect the 
discreteness of long-range jumps

inconsistent with simulations, see below

Hufnagel, Brockmann (2008)

lin. growth‘fat tail cutoff ’

jump kernel
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e.g. Mancinelli, Vergni, Vulpiani, (2002),	


del Castillo-Negrete D (2003)

exp. growthµ < 2
G(~z) ⇠ |z|�(µ+d)



SIMULATIONS

• Start with one ‘seed’ on a 
d={1,2} lattice.	



• New seeds due to long 
range jumps from 
established populations.

in our model by having compact mutant clusters grow at a constant
speed. Long-range jumps seed new clusters that, upon survival, again
expand at a constant speed. In the simulation, these jumps are drawn
at a certain rate from a fixed dispersal kernel with power law tails, as
is characteristic for many biological systems [4, 5, 6, 7, 8, 9].

Specifically, the state of the population is described by a linear
array of N sites with periodic boundary conditions. N is chosen large
enough so that end-effects can be ignored (typically between 10

7 and
10

8 sites). In the following, we use the convention that N time-steps
comprise “one generation”. Each site has the identity of either mutant
or wildtype. Initially, the whole population is wildtype except for the
central site, which is occupied by mutants.

In our one-dimensional simulations, each time step cycles through
following procedure. First, a pair of sites is chosen randomly. If these
sites happen to fall on a boundary of a mutant cluster, i.e. the identity
of both sites is mixed, then the wildtype site is switched to a mutant
site. This leads to expansion of mutant clusters at average speed of
2 sites per generation. Secondly, a long-range jump is realized with
probability ✏̃ per time step. That is, a source site A and target site B
are chosen randomly such that their distance r is sampled from a prob-
ability density function with a tail µr�(1+µ) at large r with support in
[1, L], see Appendix A for details. If A is mutant and B a wild type
then B turns into mutants and seeds a new cluster of mutations. The
rate ✏̃ of long-range jumps should be thought of as representing the
product of the probability to establish a new cluster per jump and the
jump rate per generation and site. Our two-dimensional simulations
are carried out analogously, see Appendix A for details.

Results
Simulated spreading dynamics. The growth of mutant populations
generated by our simulations is best visualized in a space-time por-
trait. A typical result of a (small) simulation for µ = 1.6 is illustrated
in Fig. 2. It is clear from the depicted genealogical tree (highlighted in
red) that long-range jumps play a pivotal role in the spreading process.
Fig. 3A and Fig. 3B show the overlaid space-time plots of multiple
runs in the regimes 1.5 < µ < 2 and 0.8 < µ < 1.1, respectively.

We have also measured the growth of mutant population averaged
over many realizations. Fig. 5 depicts the size of mutant population
as a function of time. Three different values of µ were chosen to
display three qualitatively different behaviors we find: For µ & 1.4,
we find fast approach to a power law. For µ . 0.7, the simulations
are consistent with stretched exponentials. The intermediate regime

Fig. 6. The pre-factor Aµ of the predicted power law in [ 3 ]. The blue curve is ob-
tained numerically from solving [ 1 ] with the power-law ansatz [ 3 ], the red-curve
represents an analytic approximation derived in . Notice the sharp (non-analytic)
drop of the pre-factor as µ approaches 1. The reason is a very slow cross-over
to the power law from an intermediate asymptotic regime derived in Sec. . THIS
PLOT MAY GO INTO THE SUPPLEMENT.

0.7 < µ < 1.3 is elusive, as one cannot extract a clear asymptotic
behavior on the time scales feasible to simulations.

In the following, we develop an analytical theory that is able to
predict not only the asymptotic growth dynamics but also the cru-
cial transients. This will suggest to plot the simulation data in a
more meaningful way that reveals the key control parameters of the
problem. The mathematical analysis also has the advantage to be ex-
tendable to a wide range of dispersal kernels (NEED TO WRITE AN
APPENDIX).

Self-consistency condition. The seeding of new mutant clusters and
the growth of the total mutant population has to satisfy a self-
consistency condition that enables us to determine the typical spread-
ing dynamics of the mutant population.

Our argument assumes that the population consists of an almost
fully occupied core of typical radius l(t) bounded by a sufficiently
steeply decaying (power law) tail of lower occupancy. We check the
validity of the compactness assumption in the appendix ?? (HOW
SHALL WE DO THIS?).

If l(t) grows faster than linear, a space-time plot of the growing
cluster core resembles a funnel with concave boundaries, as illustrated
in Fig. 4. Consider the edge of the growing population core at time
t (grey point in Fig. 4). The only way that this edge can become
populated is by becoming part of a population sub-cluster seeded by
an appropriate long-range jump at earlier times. To this end, the seed
of this sub-cluster must have been established somewhere in the in-
verted blue funnel in Fig. 4. This “target” funnel has the same shape
as the space-time portrait of the growing total population, but its stem
is placed at (l(t), t) and the mouth opens backward in time. Notice
that a long range jump is required due to the concavity of the funnel
shape.

Asymptotic regimes. We now show that the asymptotic growth dy-
namics is severely constrained by the above self-consistency condi-
tion. In one dimension, it can be stated mathematically as

1 ⇡
Z t

0

dt0
Z

Bl(t0)

ddr

Z

Bl(t�t0)

ddr0 G
ˆ
l(t)ê + ~r � ~r0

˜
, [1]

where Bl denotes a d dimensional ball of radius l centered at the ori-
gin. The kernel G(~z) represents the rate density of jumps of size |~z|.
ê is a unit vector that can point in any direction if the dispersal ker-
nel is isotropic (for a generalization, see the Appendix (NEEDS TO
BE DONE)). We suppose, as in our simulations, that jumps follow a
power law distribution

G(~z) ⇠ ✏|~z|�(µ+d) , [2 ]

for large enough |~z|. In terms of the parameters of our 1d simula-
tion, the pre-factor ✏ = ✏̃µ is given by the product of the power law
exponent µ and the jump probability ✏̃ per generation and site.

For d < µ < d+1, equations [1] and [2] exhibit the asymptotic
solution

l(t) = Aµt1/(µ�d) . [3]

Inserting the ansatz [3] into equation [1] determines the pre-factor
Aµ, which is plotted as a function of µ in Fig. 8 for d = 1. No-
tice that Aµ sharply drops for µ approaching d, where it follows the
asymptotics Aµ ⇠ 2

�2d/(µ�1). As we discuss below, this drop is
a manifestation of an intermediate asymptotic regime that leads to a
very slow approach to the asymptotic behavior.

For µ < d, a direct solution to [1] cannot be found. How-
ever, much can be learned when we approximate [1] by assuming
G[l(t)ê + ~r � ~r0] ⇡ G[l(t)ê],

1 ⇡ G[l(t)ê]S2
(d)

Z t

0

dt0ld(t0)ld(t� t0) , [4 ]
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The spreading of evolutionary novelties across populations is the
central element of adaptation. Unless population are well-mixed
(like bacteria in a shaken test tube), the spreading dynamics not
only depends on fitness differences but also on the dispersal be-
havior of the species. Spreading at a constant speed is generally
predicted when dispersal is sufficiently short-ranged. However,
the case of long-range dispersal is unresolved: While it is clear
that even rare long-range jumps can lead to a drastic speedup, it
has been difficult to quantify the ensuing stochastic growth pro-
cess. We present a simple self-consistent argument supported
by simulations that accurately predicts the asymptotic spreading
dynamics for fat-tailed jump distributions. In contrast to the ex-
ponential laws predicted by deterministic ’mean-field’ models, we
show that growth is either according to a power-law or a stretched
exponential, depending on the tails of the dispersal kernel. We
also find that the actual fitness advantage of the mutants has a
surprisingly small impact on the spreading dynamics. This con-
flicts with the paradigm that the rapidity of a selective sweep is a
good measure for the selective advantage of the spreading vari-
ant. Due to the simplicity of our model, which lacks any complex
interactions between individuals, we expect our results to be appli-
cable to a wide range of spreading processes, such as large-scale
signal propagation in the brain or epidemic outbreaks.

long-range dispersal | selective sweeps | epidemics | range expansions |
species invasions

Abbreviations: LDD, long-range dispersal

Humans have developed convenient transport mechanisms for
nearly any spatial scale relevant to the globe. We walk to the

grocery store, bike to school, drive between cities or take the airplane
if we want to cross continents. The development of long-distance
travel has crucially changed the way how ourselves and those items
traveling with us are distributed across the globe [1, 2, 3] (CITE OTH-
ERS?). Besides hitchhiking with humans, small living things like mi-
crobes or algae are easily caught by wind or sea currents, resulting in
passive transport over large spatial scales [10, 11, 12] (WHOM ELSE
TO CITE? Boris?). Effective long distance dispersal is also wide-
spread in the animal world, and occurs when individuals primarily
disperse locally but occasionally move over long distances. Such be-
havior has been reported in many species such as soil amoebas [4],
zooplankton [5], jackals [6], albatrosses [7], spider monkeys [8] and
elephants[9].

Long distance dispersal has crucial consequences for epidemic
spreading processes. Nowadays, human infectious disease rarely
remain confined to small spatial regions, but instead rapidly cross
countries and continents by the air travel of infected individuals. For
a similar reason, long distance dispersal accelerates the advance of
beneficial mutations across spatially extended populations: When
dispersal is short-range only, the competition between fitter mutants
and non-mutated wild-type individuals is confined to small regions in
which they are both present at the same time. As a consequence, a
compact mutant population emerges that spreads at a constant speed,
illustrated in Fig. 1 and first predicted by Ronald A. Fisher and Kol-
mogrov and colleagues. However, when a long range jump occurs
from the primary mutant population into a pristine population lacking
the beneficial mutation, the displaced mutant can found a new ex-

panding sub-population of mutants. Each such jump can potentially
found a new satellite cluster, which again expands at a constant speed,
as illustrated in Fig. 1b. Hence, any successful jump increases the
rate of growth of the mutant population. As a consequence, even very
rare long-range jumps can greatly accelerate the spreading dynamics,
which becomes much faster than linear, although (as we will see) typ-
ically slower than exponential. The goal of this paper is to develop a
theory of this highly stochastic process that is capable of predicting
the resulting growth laws. For definiteness, we focus for most of the
paper on the evolutionary context of the spread of a single beneficial
mutation. By analogy, we will argue that the same line of argument
can be applied to the spreading of any kind of reactive agent, such as
infectious disease or invasive species.

In the past, two types of mean field models have been devel-
oped to estimate the consequence of long range jumps on non-linear
spreading processes. The first type incorporates long range dispersal
via a deterministic approximation, which predicts faster than linear
growth when the distribution of jump sizes is broader than exponen-
tial [13, 14] (NEED TO MORE THROUGHLY DISCUSS MOLLI-

Fig. 1. The spread of beneficial variants sensitively depends on the dispersal
behavior of individuals. (a) For a broad class of models with ’short-range migra-
tion’, the mutant subpopulation expands at a constant speed that characterizes
the advance of the mutant-wild type boundary. In the space-time plot, the mu-
tant population therefore takes the form of a cone. (b) The picture is changed
drastically if individuals even occasionally move long distances, because such
long-range jumps seed new expanding clusters. As a result of this “meta-static”
growth, the spreading is much faster than linear, though typically markedly slower
than exponential. ILLUSTRATION NEEDS TO BE IMPROVED.
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ERS?). Besides hitchhiking with humans, small living things like mi-
crobes or algae are easily caught by wind or sea currents, resulting in
passive transport over large spatial scales [10, 11, 12] (WHOM ELSE
TO CITE? Boris?). Effective long distance dispersal is also wide-
spread in the animal world, and occurs when individuals primarily
disperse locally but occasionally move over long distances. Such be-
havior has been reported in many species such as soil amoebas [4],
zooplankton [5], jackals [6], albatrosses [7], spider monkeys [8] and
elephants[9].

Long distance dispersal has crucial consequences for epidemic
spreading processes. Nowadays, human infectious disease rarely
remain confined to small spatial regions, but instead rapidly cross
countries and continents by the air travel of infected individuals. For
a similar reason, long distance dispersal accelerates the advance of
beneficial mutations across spatially extended populations: When
dispersal is short-range only, the competition between fitter mutants
and non-mutated wild-type individuals is confined to small regions in
which they are both present at the same time. As a consequence, a
compact mutant population emerges that spreads at a constant speed,
illustrated in Fig. 1 and first predicted by Ronald A. Fisher and Kol-
mogrov and colleagues. However, when a long range jump occurs
from the primary mutant population into a pristine population lacking
the beneficial mutation, the displaced mutant can found a new ex-

panding sub-population of mutants. Each such jump can potentially
found a new satellite cluster, which again expands at a constant speed,
as illustrated in Fig. 1b. Hence, any successful jump increases the
rate of growth of the mutant population. As a consequence, even very
rare long-range jumps can greatly accelerate the spreading dynamics,
which becomes much faster than linear, although (as we will see) typ-
ically slower than exponential. The goal of this paper is to develop a
theory of this highly stochastic process that is capable of predicting
the resulting growth laws. For definiteness, we focus for most of the
paper on the evolutionary context of the spread of a single beneficial
mutation. By analogy, we will argue that the same line of argument
can be applied to the spreading of any kind of reactive agent, such as
infectious disease or invasive species.

In the past, two types of mean field models have been devel-
oped to estimate the consequence of long range jumps on non-linear
spreading processes. The first type incorporates long range dispersal
via a deterministic approximation, which predicts faster than linear
growth when the distribution of jump sizes is broader than exponen-
tial [13, 14] (NEED TO MORE THROUGHLY DISCUSS MOLLI-

Fig. 1. The spread of beneficial variants sensitively depends on the dispersal
behavior of individuals. (a) For a broad class of models with ’short-range migra-
tion’, the mutant subpopulation expands at a constant speed that characterizes
the advance of the mutant-wild type boundary. In the space-time plot, the mu-
tant population therefore takes the form of a cone. (b) The picture is changed
drastically if individuals even occasionally move long distances, because such
long-range jumps seed new expanding clusters. As a result of this “meta-static”
growth, the spreading is much faster than linear, though typically markedly slower
than exponential. ILLUSTRATION NEEDS TO BE IMPROVED.
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in our model by having compact mutant clusters grow at a constant
speed. Long-range jumps seed new clusters that, upon survival, again
expand at a constant speed. In the simulation, these jumps are drawn
at a certain rate from a fixed dispersal kernel with power law tails, as
is characteristic for many biological systems [4, 5, 6, 7, 8, 9].

Specifically, the state of the population is described by a linear
array of N sites with periodic boundary conditions. N is chosen large
enough so that end-effects can be ignored (typically between 10

7 and
10

8 sites). In the following, we use the convention that N time-steps
comprise “one generation”. Each site has the identity of either mutant
or wildtype. Initially, the whole population is wildtype except for the
central site, which is occupied by mutants.

In our one-dimensional simulations, each time step cycles through
following procedure. First, a pair of sites is chosen randomly. If these
sites happen to fall on a boundary of a mutant cluster, i.e. the identity
of both sites is mixed, then the wildtype site is switched to a mutant
site. This leads to expansion of mutant clusters at average speed of
2 sites per generation. Secondly, a long-range jump is realized with
probability ✏̃ per time step. That is, a source site A and target site B
are chosen randomly such that their distance r is sampled from a prob-
ability density function with a tail µr�(1+µ) at large r with support in
[1, L], see Appendix A for details. If A is mutant and B a wild type
then B turns into mutants and seeds a new cluster of mutations. The
rate ✏̃ of long-range jumps should be thought of as representing the
product of the probability to establish a new cluster per jump and the
jump rate per generation and site. Our two-dimensional simulations
are carried out analogously, see Appendix A for details.

Results
Simulated spreading dynamics. The growth of mutant populations
generated by our simulations is best visualized in a space-time por-
trait. A typical result of a (small) simulation for µ = 1.6 is illustrated
in Fig. 2. It is clear from the depicted genealogical tree (highlighted in
red) that long-range jumps play a pivotal role in the spreading process.
Fig. 3A and Fig. 3B show the overlaid space-time plots of multiple
runs in the regimes 1.5 < µ < 2 and 0.8 < µ < 1.1, respectively.

We have also measured the growth of mutant population averaged
over many realizations. Fig. 5 depicts the size of mutant population
as a function of time. Three different values of µ were chosen to
display three qualitatively different behaviors we find: For µ & 1.4,
we find fast approach to a power law. For µ . 0.7, the simulations
are consistent with stretched exponentials. The intermediate regime

Fig. 6. The pre-factor Aµ of the predicted power law in [ 3 ]. The blue curve is ob-
tained numerically from solving [ 1 ] with the power-law ansatz [ 3 ], the red-curve
represents an analytic approximation derived in . Notice the sharp (non-analytic)
drop of the pre-factor as µ approaches 1. The reason is a very slow cross-over
to the power law from an intermediate asymptotic regime derived in Sec. . THIS
PLOT MAY GO INTO THE SUPPLEMENT.

0.7 < µ < 1.3 is elusive, as one cannot extract a clear asymptotic
behavior on the time scales feasible to simulations.

In the following, we develop an analytical theory that is able to
predict not only the asymptotic growth dynamics but also the cru-
cial transients. This will suggest to plot the simulation data in a
more meaningful way that reveals the key control parameters of the
problem. The mathematical analysis also has the advantage to be ex-
tendable to a wide range of dispersal kernels (NEED TO WRITE AN
APPENDIX).

Self-consistency condition. The seeding of new mutant clusters and
the growth of the total mutant population has to satisfy a self-
consistency condition that enables us to determine the typical spread-
ing dynamics of the mutant population.

Our argument assumes that the population consists of an almost
fully occupied core of typical radius l(t) bounded by a sufficiently
steeply decaying (power law) tail of lower occupancy. We check the
validity of the compactness assumption in the appendix ?? (HOW
SHALL WE DO THIS?).

If l(t) grows faster than linear, a space-time plot of the growing
cluster core resembles a funnel with concave boundaries, as illustrated
in Fig. 4. Consider the edge of the growing population core at time
t (grey point in Fig. 4). The only way that this edge can become
populated is by becoming part of a population sub-cluster seeded by
an appropriate long-range jump at earlier times. To this end, the seed
of this sub-cluster must have been established somewhere in the in-
verted blue funnel in Fig. 4. This “target” funnel has the same shape
as the space-time portrait of the growing total population, but its stem
is placed at (l(t), t) and the mouth opens backward in time. Notice
that a long range jump is required due to the concavity of the funnel
shape.

Asymptotic regimes. We now show that the asymptotic growth dy-
namics is severely constrained by the above self-consistency condi-
tion. In one dimension, it can be stated mathematically as

1 ⇡
Z t

0

dt0
Z

Bl(t0)

ddr

Z

Bl(t�t0)

ddr0 G
ˆ
l(t)ê + ~r � ~r0

˜
, [1]

where Bl denotes a d dimensional ball of radius l centered at the ori-
gin. The kernel G(~z) represents the rate density of jumps of size |~z|.
ê is a unit vector that can point in any direction if the dispersal ker-
nel is isotropic (for a generalization, see the Appendix (NEEDS TO
BE DONE)). We suppose, as in our simulations, that jumps follow a
power law distribution

G(~z) ⇠ ✏|~z|�(µ+d) , [2 ]

for large enough |~z|. In terms of the parameters of our 1d simula-
tion, the pre-factor ✏ = ✏̃µ is given by the product of the power law
exponent µ and the jump probability ✏̃ per generation and site.

For d < µ < d+1, equations [1] and [2] exhibit the asymptotic
solution

l(t) = Aµt1/(µ�d) . [3]

Inserting the ansatz [3] into equation [1] determines the pre-factor
Aµ, which is plotted as a function of µ in Fig. 8 for d = 1. No-
tice that Aµ sharply drops for µ approaching d, where it follows the
asymptotics Aµ ⇠ 2

�2d/(µ�1). As we discuss below, this drop is
a manifestation of an intermediate asymptotic regime that leads to a
very slow approach to the asymptotic behavior.

For µ < d, a direct solution to [1] cannot be found. How-
ever, much can be learned when we approximate [1] by assuming
G[l(t)ê + ~r � ~r0] ⇡ G[l(t)ê],

1 ⇡ G[l(t)ê]S2
(d)

Z t

0

dt0ld(t0)ld(t� t0) , [4 ]
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Our argument assumes that the population consists of an almost
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FIG. 6 Close to the marginal case, µ = d, the spreading dynamics exhibits three behaviors. On asymptotically large times,
either stretched exponential growth for �d < � ⌘ µ�d < 0 or superlinear power law growth for 0 < � < 1 occurs. However, the
approach to the asymptotic regime is extremely slow for µ close to d. For log-times log2(⌧) ⌧ 2d/|�|, the behavior is controlled
by the dynamics of the marginal case. Note that cross-over behavior also obtains near to the borderline between linear and
super-linear behavior at µ = d+ 1.

Another benefit of the ability of the simple iterative scaling argument to capture well non-asymptotic behavior, is
that it can be used in cases in which the dispersal spectrum of jumps is not a simple power-law, e.g. with a crossover
from one form to another as a function of distance. And the heuristic picture that it gives rise to – an exponential
hierarchy of time scales separated by roughly factors of two — is suggestive even in more complicated situations.
That such a structure should emerge without a hierarchal structure of the underlying space or dynamics is perhaps
surprising.

A. Potential applications and dynamics of epidemics

Our primary aim biologically is the qualitative and semi-quantitative understanding that emerges from consideration
of the simple models and analyses of these, especially demonstrating how rapid spatial spread of beneficial mutations
or other biological novelty can be even with very limited long-range dispersal. As the models do not depend on any
detailed information about the biology or dispersal mechanisms, they can be considered as a basic null model for
spreading dynamics in physical, rather than more abstract network, space.

The empirical literature suggests that power-law spectra of spatial dispersal are wide-spread in the biological
world (Atkinson et al., 2002; Dai et al., 2007; Fritz et al., 2003; Klafter et al., 1990; Levandowsky et al., 1997;
Ramos-Fernandez et al., 2004). Although these are surely neither a constant power-law over a wide range of scales,
nor spatially homogeneous, our detailed results are not directly applicable. But, as discussed above, our iterative
scaling argument is more general and can be applied with more complicated distance dependence, anisotropy, etc.
Furthermore, some of the heterogeneities of the dispersal will be averaged out for the overall spread, while a↵ecting
when mutants are likely to arrive at particular locations.

For dispersal via hitchhiking on human transport, either of pathogens or of commensals such as fruit flies with food,
the apparent heterogeneities are large because of the nature of transportation networks, although data suggest that
dispersal of humans can be reasonably approximated by power-law jumps (Brockmann et al., 2006). Whether or not
transport via a network with hubs at many scales fundamentally changes the dynamics of an expanding population of
hitchhikers from that with more homogeneous jump processes, depends on the nature of how the population expands.

For spread of a human epidemic, there are several possible scenarios. If the human population is reasonably
uniform spatially, and the chances that a person travels from, say, their home to another person’s home is primarily
a function of the distance between these rather than the specific locations, then whether or not the properties of the
transportation network matter depends on features of the disease. If individuals are infectious for the whole time the

Full cross-over form is needed for  
comparison with simulations and nature.
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where S(d) = ⇡d/2/�(d/2 + 1) is the volume of a sphere of unit
radius in d dimensions. Corrections to this approximation are on the
order of O[l2(t)/l2(t/2)], and thus become very small when l(t) is
rapidly increasing with time. Then, we obtain asymptotic solutions
in terms of a stretched exponential,

l(t) ⇠ exp(Bµt⌘
) [5]

⌘ ⌘ log2(2d/(d + µ)) , [6]

which can be checked by direct insertion into equation [4]. Notice
that �(⌧) becomes exponential as µ ! 0, consistent with earlier
results obtained for a flat distribution (i.e. µ = �1) of long-range
jumps [19]. The important pre-factor Bµ ⇠ 2 ln(2)(d � µ)

�2 in
the exponent has to be determined from the dynamics leading to the
asymptotics, and is derived below.

For the marginal case, µ = 1, one can find another unique asymp-
totic solution of the form

�(t) ⇠ exp

ˆ
log

2
2(t)/(4d ln(2))

˜
, [7]

which may again be verified by insertion into equation [4]. This
regime is shown below to be a crucial intermediate asymptotic regime
that dominates the dynamics in the vicinity of the marginal case.

Transients. Asymptotic laws are in fact of little value when the ap-
proach to the asymptotics is slow. In our problem, a long transient
arises close to the boundary between the stretched exponential and
power law regime. One indication for this behavior is the fact that the
pre-factor Aµ obtained for the power-law regime rapidly approaches
0 as µ approaches d from above, c.f. Fig. 8. This suggest to take a
closer look at the dynamics in the vicinity of the marginal case, µ = d.

For µ . d + 0.3, the integrand in equation [4] has a strong peak
located half-way between the bounds of the integral, at t0 = t/2.
Laplace’s method can then be used to approximate the integral, as de-
tailed in the Supplementary Information. This approximation scheme
leads to the simplified self-consistency condition

�d+µ
(⌧) ⇡ ⌧� (⌧/2)

2d , [8 ]

where we measure length � = l/L and time ⌧ = t/T in units of
cross-over scales L and T , which are both proportional to ✏1/(µ�d�1).
These characteristic length and time scales signal the cross-over from
the linear short-time regime, at t ⌧ T (where l ⌧ L), to a regime
dominated by long-range jumps.

Notice that the self-consistency condition in equation [8] relates
the population size at time ⌧ to its size at ⌧/2. This suggests to
carry out the analysis in binary-log-space. To this end, we introduce
' ⌘ log2(�) and z ⌘ log2(⌧), and take the binary logarithm log2 of
equation [8],

(d + µ)'(z) ⇡ z + 2d'(z � 1) . [9 ]

This linear recurrence relation can be solved exactly. For the initial
condition �(0) = 0, we obtain

�2

2d
'(z) =

�z

2d
+

„
1 +

�

2d

«�z

� 1 , [10]

where we introduced the variable � = µ � d, which measures the
distance to the marginal case.

The asymptotic scaling for � > 0 reproduces the earlier predicted
power law regime, [3], and yields the pre-factor Aµ ⇠ 2

�2d/�2
,

which was plotted in Fig. 8. For � < 0, the asymptotics yields
the stretched exponential in [5], and fixes the pre-factor Bµ ⇠
2 ln(2)��2, which could not be obtained from the above asymptotic
analysis.

As a consequence of these pre-factors, the asymptotic scaling
laws rapidly diverge as � ! 0. This peculiar behavior is ultimately

the consequence of an intermediate asymptotic regime that dominates
the dynamics close to the marginal case, for �/2d⌧ 1. This regime,
which we obtained earlier in [7] for the exact marginal case, leads to
slow convergence to the asymptotics close to the marginal case. The
asymptotic scaling can be observed only on times such that

log2(⌧)� 2d/� . [11]

On smaller times, the dynamics is controlled by the growth law [7] of
the marginal case. Notice that the “log-relaxation” time in [11] raises
extremely rapidly as � becomes small. This explains why it is nearly
impossible to clearly observe the asymptotic limits in 1d simulations
when |�| < .4, and very likely even harder in natural systems. This
underscores the need for the fully dynamical solution in [10] of the
spreading problem.

While the dynamics at small z will be dominated by the initial
growth, We expect [10] to be a good description of the universal dy-
namics at large z. The limit z !1while �z/2d fixed is particularly
interesting, as the solution [10] then reduces to a scaling form

�2'

2d
⇠ �

„
�z

2d

«
[12 ]

with �(⇣) = exp(�⇠) + ⇠ � 1. This scaling form allows us to test
our solution across all intermediate asymptotic regimes, by plotting
data obtained for different � in one scaling plot, see Fig. 7.

Discussion
We have studied the impact of long-range jumps on the spreading of
reactive agents using the example of mutants that carry a favorable
genetic variant. To this end, we devised a simple simulation model
in one dimension that incorporates two essential features: i) due to
short range migration and selection, mutant populations develop clus-
ters that expand at a constant speed and ii) Long-range jumps lead
to the foundation new clusters of mutants. To classify the phenom-
ena emerging from this model, we focussed on jump distributions
that exhibit a power law tail, which are wide-spread in the biological
world [4, 5, 6, 7, 8, 9]. We found that, on sufficiently long times,

Fig. 7. Data for different µ = d+� collapse on a scaling plot close to the thresh-
old µ = d between (stretched) exponential and power law growth, here demon-
strated for the one-dimensional case. The main plot shows the rescaled sizes
�

2
log2(�)/2 of the mutant population versus rescaled time ⇣ ⌘ � log2(⌧)/2.

The differently colored data sets correspond to 10 realizations with power law ex-
ponents µ 2 {0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4} (same colors as in Fig. 5a).
The simulated data collapse reasonably well with the dashed red line, represent-
ing the predicted scaling function �(⇣) = exp(�⇣) + ⇣ � 1. The inset depicts
the same data scaled slightly differently such that the horizontal axis for � < 0

shows ⌘ ln(⌧) (with ⌘ defined in [ 5 ]), upon which the data collapse improves
(PERHAPS, WE SHOULD ONLY SHOW THE INSET). Note that ⌘ ln(⌧) ⇠ ⇣ as
� ! 0. To enter the asymptotic regimes as quickly as possible, the jump rate ✏̃

was set to 1 and the linear wave speed v to 0. (Crossover scales L and T have
been fitted for all data sets.) THIS PLOT MAY GO INTO THE SUPPLEMENT.
NEED TO ADD LABELS.
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where S(d) = ⇡d/2/�(d/2 + 1) is the volume of a sphere of unit
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data obtained for different � in one scaling plot, see Fig. 7.

Discussion
We have studied the impact of long-range jumps on the spreading of
reactive agents using the example of mutants that carry a favorable
genetic variant. To this end, we devised a simple simulation model
in one dimension that incorporates two essential features: i) due to
short range migration and selection, mutant populations develop clus-
ters that expand at a constant speed and ii) Long-range jumps lead
to the foundation new clusters of mutants. To classify the phenom-
ena emerging from this model, we focussed on jump distributions
that exhibit a power law tail, which are wide-spread in the biological
world [4, 5, 6, 7, 8, 9]. We found that, on sufficiently long times,
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shows ⌘ ln(⌧) (with ⌘ defined in [ 5 ]), upon which the data collapse improves
(PERHAPS, WE SHOULD ONLY SHOW THE INSET). Note that ⌘ ln(⌧) ⇠ ⇣ as
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SON AND KOT REVIEWS). For power law distributed jump sizes
with infinite variance, numerical simulations and mathematical anal-
yses predict exponential growth [15, 16]. Crucially, these studies
neglect the chance involved in generating long-range jumps in a finite
population. We will see that the stochasticity of the jump process in
fact qualitatively changes the dynamics, and generically leads to either
power-law growth or stretched exponential growth. Our results also
contrast with modified mean-field theories that introduce a cut-off in
the reaction or migration term, as these models lead to finite wave
velocity on long times [17, 18].

Fig. 2. The growth of a mutant population in one dimension simulated under
our model of selective sweeps with long-range dispersal. Time runs from top to
bottom, the horizontal axis represents the spatial location. Notice the fast super-
linear spread of the funnel-like grey area, which represents the region occupied
by the beneficial mutation at any time. Long range jumps were sampled at rate
✏̃ = 1 (NEED TO REDO THIS PLOT WITH ✏̂ = 0.1, v = 1 here) from a dis-
tribution with a power law tail, as described in MODEL. Each jump gives rise to
a cluster that expands by a lattice site per time-step. The exponent of the power
law was chosen to be µ = 1.6, which leads to a power law L / t

2.5 on long
times, as we show in our Analysis. Highlighted in red are the particular long-range
jumps that gave rise to the colonization of mutants sampled equidistantly at final
time (1000 generations).

Fig. 3. The stochastic growth of the mutant population over time in one dimen-
sion is illustrated. A) Power law regime: Each level of grey represents a single
simulation run. The used µ values are 1.5, 1.6, 1.7, 2.0 in order of increasing
darkness. ✏̃ = 1, v = 1. B) Regime of very fast growth with µ around 1.
Each level of grey represents a single simulation run. The used µ values are
0.8, 0.9, 1.0, 1.1 in order of increasing darkness. ✏̃ = 1, v = 1.

Fig. 4. Sketch of the typical growth of a compact cluster (red) due to long-range
jumps. For the grey edge of the growing cluster to be occupied, one has to require
that one seed typically becomes established in the blue region (“target funnel”) by
means of a long range jump from the red region (black arrow). This leads to the
self-consistency condition in Eq. [ 1 ]. As an aside, we notice that the concavity
of the funnel geometry (leading to a gap between red and blue region) is key to
our arguments.

Simulation model
To capture the spreading dynamics at long time and length scales, we
combine the key forces driving the growth of the mutant population in
a phenomenological simulation model. As mentioned above, it is well
established that short-range dispersal combined with the growth rate
advantage of the mutants leads to the expansion at a constant speed
of mutant clusters. This Fisher-Kolmogorov effect is implemented

Fig. 5. Summary of the spreading dynamics in one (top) and two (bottom) spa-
tial dimensions. The effective radius l(t) of the region occupied by the mutant
population is plotted as a function of time t, for various long range jump ker-
nels. Each colored cloud represents data obtained from 10 runs for a given
jump kernel with tail exponent µ as indicated. Red dashed lines represent pre-
dictions, obtained from equation [ 10 ] with fitted cross-over scales. In the one-
dimensional simulations, cluster grew at a linear speed of v = 1 and the jump
rate was set to ✏̃ = 0.1. To speed up the two-dimensional simulations, we set
✏̃ = 1 and v = 0. NEED TO DRAW LABELS. JUMP EXPONENTS: 1D: µ 2
{0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4} 2D: µ 2 {1.6, 1.8, 1.9, 2.1, 2.3, 2.5}.
IT MAY BE GOOD TO ALSO DRAW IN EACH CURVE ONE ’PURE’ STRETCHED
EXPONENTIAL FOR THE SMALLEST µ AND A POWER-LAW FOR THE
LARGEST µ. ALSO MAKE SURE TO PLOT RADIUS L(T) AND NOT THE DI-
AMETER.
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FIG. 3 Summary of the quantitative spreading dynamics in one spatial dimension. The total number, M(t), of mutant sites
is plotted as a function of time t, for various long range jump kernels. Each colored cloud represents data obtained from 10
runs for a given jump kernel. The data are for µ 2 {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4} from top to bottom. Red dashed lines
represent predictions obtained from equation (8) with fitted magnitude scales for M and t. In the double logarithmic plot at
the bottom, short blue lines indicate the predicted asymptotic power-law behavior for µ > 1. For µ = 1.1 and µ = 1.2, the
dynamics is still far away from the asymptotic power law, which is indicative of the very slow crossover.
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• Sub-exponential growth laws for l(t):  
Power law, stretched exponentials and a crucial marginal case in between. 

SUMMARY OF  
SPREADING ANALYSIS

• Mean-field theories fail because they neglect discreteness of long-range jumps.
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• Self-consistency constrains the leading order dynamics	



• Indirect seeding: mean occupancy @ x :
hc(x)i = 1� exp

⇣
|x/l(t)|�(d+µ)

⌘



MORE COMPLEX EPIDEMIC 
MODELS

SI model
S + I ! 2I

symmetry breaking

SIR model
S + I ! 2I

I ! R
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