Genetic Diversity in the Interference Selection Limit

How does pervasive natural selection alter patterns of genetic diversity?

Michael Desai, Harvard University

Standard methods describe neutral evolution

Selection and the Shape of Genealogies

Trace individual lineages through the fitness distribution: -Present individuals are descended from the fittest ancestors.

How does purifying selection shape diversity?

<u>A simple model:</u>	
Population size:	Ν
Mutation rate:	U
Fitness effects:	ho(s)
Recombination rate: R	
<u>An even simpler model:</u>	
Population size:	N
Neutral mutation rate:	U_n
Deleterious mutation rate:	U_d
Fitness effect:	s

Structured Coalescent:

Steady state distribution of fitness within the population. "Migrate" between fitness classes by mutations. Exchangeability *within* each fitness class.

Strong purifying selection: "Background Selection"

Strong purifying selection reduces effective population size. Exact in the limit $Ns \rightarrow \infty$ while holding *NU/Ns* constant.

Corrections for large but finite Ns from the Structured Coalescent

What about weak or pervasive selection?

When $Nsell - U/s \sim 1$ or less, the distribution fluctuates too much underneath, so the structured coalescent does not make sense.

BGS/Structured Coalescent Break Down for Weak Selection

Collapse with U/s (BGS) or with N σ (IS)

 10^{3}

 10^2

10

 10^{-1}

 10^{-2}

 10^{-3}

Interference Selection collapse holds generally

Two limits: background selection and interference selection

Background selection: $Ns \rightarrow \infty$ while holding *NU/Ns* constant Inteference selection: $Ns \rightarrow 0$ while holding $N\sigma$ constant

Intuition: "coarse-graining" the fitness distribution

This allows us to predict diversity

There is a fundamental problem of identifiability: Many different parameter values lead to *identical* patterns of diversity.

Coarse-Grained Predictions

Coarse-Grained Predictions

-- Neutral expectation

Coarse-Grained Predictions

A Linkage-Block Approximation for Recombining Genomes

Distributions of Fitness Effects

Interference Selection Still Applies

--- Neutral expectation

Acknowledgements

Graduate Students and Postdocs:

Ben Good

Dan Rice

d Lauren Nicolaisen Katya Kosheleva

Sebastian Akle

David van Dyken

Sergey Kryazhimskiy

Perron

Evgeni Frenkel Julia Piper

Collaborators:

Joshua Plotkin Alex Greg Lang Walczak

Richard Neher

Oskar Hallatschek

Undergraduate Students:

Henry Shull Ian Ochs Sadik Shahidain Nisreen Shiban

Funding:

McDonnell Foundation Milton Fund Sloan Foundation NIH/NIGMS NSF PoLS