Modeling the Evolution of Genes and Genomes in the Presence of ILS and Hybridization

Luay Nakhleh
Department of Computer Science
Rice University

New Directions in Probabilistic Models of Evolution
University of California, Berkeley
28 April 2014

OUTLINE

(1) From gene trees to phylogenetic networks
(2) From phylogenetic networks to genome annotation with introgression

From Gene Tree to Phylogenetic Networks

INCOMPLETE LINEAGE SORTING (ILS)

HYBRIDIZATION

ILS + HYBRIDIZATION

Hybridization as an invasion of the genome

James Mallet

Galton Laboratory, University College London, Wolfson House, 4 Stephenson Way, London, UK, NW1 2HE

Hybridization between species is commonplace in plants, but is often seen as unnatural and unusual in animals. Here, I survey studies of natural interspecific hybridization in plants and a variety of animals. At least 25% of plant species and 10% of animal species, mostly the youngest species, are involved in hybridization and potential introgression with other species. Species in
challenges the 'reality' of biological species. In the course of the development of the biological species concept, a sort of repugnance against hybridization prevailed, akin to the fear on which 'Invasion of the Body Snatchers' plays. Supporters of the biological species concept viewed hybridization as a 'breakdown of isolating mechanisms' [2]. When hybridization occurred, it was explained via

Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

The Heliconius Genome Consortium*

Report

Adaptive Introgression of Anticoagulant Rodent Poison Resistance by Hybridization between Old World Mice

Ying Song, ${ }^{1}$ Stefan Endepols, ${ }^{2}$ Nicole Klemann, ${ }^{3}$
Dania Richter, ${ }^{4}$ Franz-Rainer Matuschka, ${ }^{4}$ Ching-Hua Shih, ${ }^{1}$
Michael W. Nachman, ${ }^{5}$ and Michael H. Kohn ${ }^{1, *}$
${ }^{1}$ Department of Ecology and Evolutionary Biology,
to alter blood clotting kinetics and/or in vitro VKOR activities in humans and rodents in response to exposure to anticoagulants [2]; additional SNPs in vkorc1 await such experimental proof. A mere ~ 10 years after the inception of warfarin as

A MAXIMUM LIKELIHOOD APPROACH

If a gene tree has been inferred for each gene family, then:

$$
L(\Psi \mid \mathcal{G})=c \cdot \prod_{g t \in \mathcal{G}} \mathbf{P}(g t \mid \Psi)
$$

A MAXIMUM LIKELIHOOD APPROACH

If a gene tree has been inferred for each gene family, then:

$$
L(\Psi \mid \mathcal{G})=c \cdot \prod_{g t \in \mathcal{G}} \mathbf{P}(g t \mid \Psi)
$$

How do we compute $\mathbf{P}(g t \mid \Psi)$?

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

\square Denote by $\mathrm{H}_{\Psi}(\mathrm{gt})$ the set of all coalescent histories of species tree Ψ and gene tree topology gt

$$
H_{\Psi}(g t)=\{(1,2),(2,2)\}
$$

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

\square Degnan and Salter (Evolution, 2005) gave the mass probability function of a gene tree topology gt for a given species tree with topology Ψ and vector of branch lengths λ :

$$
P_{\Psi, \lambda}(g t)=\sum_{h \in H_{\Psi}(g t)} \frac{w(h)}{d(h)} \prod_{b=1}^{n-2} \frac{w_{b}(h)}{d_{b}(h)} p_{u_{b}(h) v_{b}(h)}\left(\lambda_{b}\right)
$$

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

coalescent history h

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

coalescent history h

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

coalescent history h

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

$$
\mathrm{w}_{\mathrm{b}}(\mathrm{~h})=3
$$

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

$$
\begin{gathered}
\mathrm{wb}_{\mathrm{b}}(\mathrm{~h})=3 \\
3<1<2 \\
1<3<2 \\
1<2<3
\end{gathered}
$$

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

$$
u_{b}(\mathrm{~h})=5
$$

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{b}}(\mathrm{~h})=3 \\
& 3<1<2 \\
& 1<3<2 \\
& 1<2<3 \\
& \mathrm{~d}_{\mathrm{b}}(\mathrm{~h})=180
\end{aligned}
$$

coalescent history h

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

coalescent history h

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{b}}(\mathrm{~h})=3 \\
& 3<1<2 \\
& 1<3<2 \\
& 1<2<3 \\
& \mathrm{~d}_{\mathrm{b}}(\mathrm{~h})=180 \\
& \binom{5-0}{2}\binom{5-1}{2}\binom{5-2}{2}=180
\end{aligned}
$$

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

branch b

coalescent history h

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{W}_{\mathrm{b}}(\mathrm{~h})=3 \\
3<1<2 \\
1<3<2 \\
1<2<3
\end{array} \\
& \begin{array}{l}
d_{b}(h)
\end{array} \prod_{y=0}^{c_{b}-1}\binom{u_{b}-y}{2} \\
& \left(\begin{array}{c}
5-0 \\
\left.\mathrm{~d}_{\mathrm{h}}\right)=180 \\
2
\end{array}\right)\binom{5-1}{2}\binom{5-2}{2}=180
\end{aligned}
$$

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

$$
p_{u v}(t)=\sum_{k=v}^{u}\left[e^{-\frac{k(k-1) t}{2}} \frac{(2 k-1)(-1)^{k-v}}{v!(k-v)!(v+k-1)} \prod_{y=0}^{k-1} \frac{(v+y)(u-y)}{u+y}\right]
$$

Tavaré (Theoretical Population Biology, 1984) Watterson (Theoretical Population Biology, 1984) Takahata and Nei (Genetics, 1985)

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

$$
\begin{aligned}
P[((H C) G)] & =1-\frac{2}{3} e^{-\left(T_{2}-T_{1}\right) / N} \\
P[((H G) C)] & =\frac{1}{3} e^{-\left(T_{2}-T_{1}\right) / N} \\
P[((C G) H)] & =\frac{1}{3} e^{-\left(T_{2}-T_{1}\right) / N}
\end{aligned}
$$

$\mathbf{P}(g t \mid \Psi)$ UNDER THE COALESCENT

$$
\begin{aligned}
P[((H C) G)] & =1-\frac{2}{3} e^{-\left(T_{2}-T_{1}\right) / N} \\
P[((H G) C)] & =\frac{1}{3} e^{-\left(T_{2}-T_{1}\right) / N} \\
P[((C G) H)] & =\frac{1}{3} e^{-\left(T_{2}-T_{1}\right) / N}
\end{aligned}
$$

$\mathbf{P}(g t \mid \Psi)$ UNDER BOTH SCENARIOS

PHYLOGENETIC NETWORKS

A phylogenetic network N on set \mathcal{X} of taxa is an ordered pair (G, f), where

- $G=(V, E)$ is a directed, acyclic graph (DAG) with $V=\{r\} \cup V_{L} \cup V_{T} \cup V_{N}$, where
- indeg $(r)=0(r$ is the root of $N)$;
- $\forall v \in V_{L}, \operatorname{indeg}(v)=1$ and $\operatorname{outdeg}(v)=0\left(V_{L}\right.$ are the leaves of $\left.N\right)$;
- $\forall v \in V_{T}, \operatorname{indeg}(v)=1$ and outdeg $(v) \geq 2\left(V_{T}\right.$ are the tree nodes of $\left.N\right)$; and,
- $\forall v \in V_{N}, \operatorname{indeg}(v)=2$ and outdeg $(v)=1$ (V_{N} are the reticulation nodes of $\left.N\right)$,
and $E \subseteq V \times V$ are the network's edges (we distinguish between reticulation edges, edges whose heads are reticulation nodes, and tree edges, edges whose heads are tree nodes.
- $f: V_{L} \rightarrow \mathcal{X}$ is the leaf-labeling function, which is a bijection from V_{L} to \mathcal{X}.

PHYLOGENETIC NETWORKS

In addition to the topology, the network has

- branch lengths (in coalescent units), and
- inheritance probabilities

TREES INDUCED BY NETWORKS

$P_{N, \gamma_{1}, \gamma_{2}}(g t)=\left(1-\gamma_{1}\right)\left(1-\gamma_{2}\right) \quad P_{N, \gamma_{1}, \gamma_{2}}(g t)=\left(1-\gamma_{1}\right) \gamma_{2}$

$P_{N, \gamma_{1}, \gamma_{2}}(g t)=\gamma_{1} \gamma_{2}$

INDUCED TREES DON'T CAPTURE THE FULL STORY WHEN ILS IS PRESENT

A SOLUTION

1. Convert the phylogenetic network N into a MUL-tree T
2. Consider all allele mappings from the leaves of gt to the leaves of T
3. For each allele mapping, compute the probability of observing gt, given T, and sum the probabilities.
[Yu, Degnan, Nakhleh, PLoS Genetics, 2012.]

I. FROM A NETWORK TO A MUL-TREE

```
Algorithm 1: NetworkToMULTree.
    Input: Phylogenetic \mathcal{X}}\mathrm{ -network N; branch lengths 和; hybridization probabilities }\gamma\mathrm{ .
    Output: MUL tree T; branch lengths }\mp@subsup{\boldsymbol{\lambda}}{}{\prime}\mathrm{ ; hybridization probabilities }\mp@subsup{\boldsymbol{\gamma}}{}{\prime}\mathrm{ ; edge mapping
        \phi:E(T)}->E(N)
    T\leftarrowN and set \phi(e)=\mp@subsup{e}{}{\prime}\mathrm{ where e eE E(T) is a copy of }\mp@subsup{e}{}{\prime}\inE(N);
    \lambda'\leftarrow\lambda;
    foreach b\inE(T) do
        \mp@subsup{\gamma}{}{\prime}}\mp@subsup{}{b}{}\leftarrow1
    while traversing the nodes of T bottom-up do
        if node h has two parents, }u\mathrm{ and v, and child w then
            Create a copy of T}\mp@subsup{T}{w}{}\mathrm{ whose root is new node w' and set }\phi(e)=\mp@subsup{e}{}{\prime}\mathrm{ where e}e\inE(\mp@subsup{T}{\mp@subsup{w}{}{\prime}}{}
            is a copy of e}\mp@subsup{e}{}{\prime}\inE(\mp@subsup{T}{w}{})\mathrm{ ;
            Add to T two new edges }\mp@subsup{e}{1}{}=(u,w)\mathrm{ and }\mp@subsup{e}{2}{}=(v,\mp@subsup{w}{}{\prime})
            \mp@subsup{\phi}{\mp@subsup{e}{1}{}}{}\leftarrow(h,w);\mp@subsup{\phi}{\mp@subsup{e}{2}{}}{}\leftarrow(h,w);
            \lambda'}\mp@subsup{}{(u,w)}{}\leftarrow\mp@subsup{\lambda}{(u,h)}{}+\mp@subsup{\lambda}{(h,w)}{};\mp@subsup{\lambda}{(v,w)}{\prime}\leftarrow\mp@subsup{\lambda}{(v,h)}{}+\mp@subsup{\lambda}{(h,w)}{}
            \mp@subsup{\gamma}{(u,w)}{\prime}}\leftarrow\mp@subsup{\gamma}{(u,h)}{;}\mp@subsup{\gamma}{(u,w)}{\prime}\leftarrow\mp@subsup{\gamma}{(u,h)}{}
            Delete from T node h and edges (u,h), (v,h), and (h,w);
            Delete }\mp@subsup{\gamma}{(u,h)}{\prime},\mp@subsup{\gamma}{(v,h)}{\prime},\mp@subsup{\lambda}{(u,h)}{\prime},\mp@subsup{\lambda}{(v,h)}{\prime},\mp@subsup{\lambda}{(h,w)}{\prime},\mp@subsup{\phi}{(u,h)}{},\mp@subsup{\phi}{(v,h)}{},\mp@subsup{\phi}{(h,w)}{}
```

 return \(T\);

I. FROM A NETWORKTO A MUL-TREE

2. CONSIDER ALL ALLELE MAPPINGS FROM gt TOT

2. CONSIDER ALL ALLELE MAPPINGS FROM gt TO T

> Phylogenetic network
> Valid allele mappings

$$
\begin{aligned}
& P_{N, \boldsymbol{\lambda}, \gamma}(g t)=\sum_{f \in \mathcal{F}} P_{T, \lambda^{\prime}, \gamma^{\prime}, f}(g t)
\end{aligned}
$$

2. CONSIDER ALL ALLELE MAPPINGS FROM gt TO T

\square We need to account for dependence among the branches of the MUL-tree

2. CONSIDER ALL ALLELE MAPPINGS FROM gt TO T

\square We need to account for dependence among the branches of the MUL-tree

\square The edge-mapping ϕ solves this problem.

3. THE PROBABILITY OF gt GIVEN MUL-TREE T

$$
\begin{gathered}
P_{T, \boldsymbol{\lambda}^{\prime}, \boldsymbol{\gamma}^{\prime}, f}(g t)=\sum_{h \in H_{T, f}(g t)} \frac{w(h)}{d(h)} \prod_{b=1}^{n-2} \gamma_{b}^{\prime v_{b}(h)} P_{b}^{\prime}(h) \\
\prod_{b \in \phi^{-1}\left(b^{\prime}\right)} P_{b}^{\prime}(h)=\left[\frac{1}{d_{b^{\prime}}(h)} p_{u_{b^{\prime}}(h) v_{b^{\prime}}(h)}\left(\lambda_{b^{\prime}}\right)\left[\left(u_{b^{\prime}}(h)-v_{\left.b^{\prime}(h)\right)!} \prod_{b \in \phi^{-1}\left(b^{\prime}\right)} \frac{w_{b}(h)}{\left(u_{b}(h)-v_{b}(h)\right)!}\right]\right]\right. \\
u_{b^{\prime}}(h)=\sum_{b \in \phi^{-1}\left(b^{\prime}\right)} u_{b}(h) \quad v_{b^{\prime}}(h)=\sum_{b \in \phi^{-1}\left(b^{\prime}\right)} v_{b}(h)
\end{gathered}
$$

ACCOUNTING FOR UNCERTAINTY IN GENE TREES

\square We have implemented two methods for accounting for uncertainty in the estimated gene trees:
\square Using gene tree distributions: $L(N, \boldsymbol{\lambda}, \gamma \mid \mathscr{G})=\prod_{g \in \mathscr{G}}\left[\mathbf{P}_{N, \boldsymbol{\lambda}, \gamma}(G=g)\right]^{p_{g}}$
\square Using non-binary trees:

$$
L(N, \boldsymbol{\lambda}, \gamma \mid \mathscr{G})=\prod_{g \in \mathscr{G}} \max _{g^{\prime} \in b(g)}\left\{\mathbf{P}_{N, \boldsymbol{\lambda}, \boldsymbol{\gamma}}\left(G=g^{\prime}\right)\right\}
$$

$$
L(\Psi \mid \mathcal{G})=c \cdot \prod_{g t \in \mathcal{G}} \mathbf{P}(g t \mid \Psi)
$$

Objective: $\operatorname{argmax}_{\Psi} L(\Psi \mid \mathcal{G})$

SOLUTION

[Yu, Dong, Liu, Nakhleh, Under Review, 2014.]

SOLUTION

We have a much faster algorithm for computing gene tree probabilities that neither converts the network to a MUL-tree nor does an explicit summation over coalescent histories.
$\square \quad$ [Yu, Ristic, Nakhleh, BMC Bioinformatics, 2013]

SOLUTION

\square To account for model complexity, we considered information criteria (which were used before in this context), and introduced an implementation with cross-validation.

[Yu, Dong, Liu, Nakhleh, Under Review, 2014.]

[Yu, Dong, Liu, Nakhleh, Under Review, 2014.]

THE YEAST DATA SET OF ROKAS ET AL. (NATURE 2003)

\square The authors concatenated the sequences of 106 genes, and inferred a single species tree, which had 100% bootstrap support of all branches

REANALYSIS OF THE YEAST DATA

B

Species phylogeny	t_{1}	t_{2}	t_{3}	t_{4}	γ	$-\ln L$	AIC	AICc	BIC
Fig. 3(A)	0.3	1.25	3.6	N/A	N/A	205	416	417	424
Fig. 3(B)	0.2	1.35	3.6	N/A	N/A	208	423	423	431
Fig. 3(C)	1.1	1.05	3.6	N/A	0.34	188	384	385	395
Fig. 3(D)	3.45	1.15	3.6	3.05	0.34	157	325	326	338
Fig. 3(E)	0.3	1.25	3.6	N/A	1.0	205	420	421	434
Fig. 3(F)	1.55	0.05	3.7	N/A	0.18	252	512	512	523

[Yu, Degnan, Nakhleh, PLoS Genetics, 2012.]
\square For a gene tree with its coalescence times, we also have a solution:

$$
\begin{aligned}
& P\left(h t \mid N_{\boldsymbol{\lambda}, \boldsymbol{\gamma}}\right)= \prod_{b=(u, v) \in E\left(N_{\boldsymbol{\lambda}, \boldsymbol{\gamma}}\right)}[\\
&\left.\prod_{k=1}^{\left|T_{b}(h t)\right|-1} e^{-\left(u_{b}(h t)-k+1\right)\left(T_{b}(h t)_{k+1}-T_{b}(h t)_{k}\right)}\right] \\
& \times e^{-\left(v_{b}(h t)\right.}{ }_{2}^{\left(\tau_{N_{\boldsymbol{\lambda}, \boldsymbol{\gamma}}}(u)-T_{b}(h t)_{\left|T_{b}(h t)\right|}\right)} \times \gamma_{b}^{u_{b}(h t)} \\
& P\left(g_{\boldsymbol{\lambda}^{\prime}} \mid N_{\boldsymbol{\lambda}, \boldsymbol{\gamma}}\right)= \sum_{h t \in H_{N_{\boldsymbol{\lambda}, \boldsymbol{\gamma}}}\left(g_{\boldsymbol{\lambda}^{\prime}}\right)} P\left(h t \mid N_{\boldsymbol{\lambda}, \boldsymbol{\gamma}}\right)
\end{aligned}
$$

[Yu, Dong, Liu, Nakhleh, Under Review, 2014.]
\square Our models and solutions allow for inference of networks directly from sequences when independent loci are used:

$$
L\left(N_{\boldsymbol{\lambda}, \boldsymbol{\gamma}} \mid \mathcal{S}\right)=\prod_{s \in \mathcal{S}}\left[\sum_{g} \int_{\boldsymbol{\tau}} \mathbf{P}\left(s \mid g_{\boldsymbol{\tau}}\right) \cdot \mathbf{P}\left(g_{\boldsymbol{\tau}} \mid N_{\boldsymbol{\lambda}, \boldsymbol{\gamma}}\right)\right]
$$

From Phylogenetic Networks to Genome Annotation with Introgression

Phylogenetic network
Genomes
Local (gene) genealogies

Input: A set \mathcal{G} of m aligned genomes, each of length n, and a set Ψ of parental species trees.

Output: For each site $1 \leq j \leq n$, the probability

$$
\mathbf{P}\left(\pi_{j}=\left(t_{x}, \psi_{y}\right) \mid \mathcal{G}\right)
$$

for every $t_{x} \in \Delta(m)$ and $\psi_{y} \in \Psi$.

SOLUTION: PHYLONET-HMM

[Liu, Dai, Truong, Song, Kohn, Nakhleh, PLoS Comp Bio, 2014.]

SOLUTION: PHYLONET-HMM

[Liu, Dai, Truong, Song, Kohn, Nakhleh, PLoS Comp Bio, 2014.]

SOLUTION: PHYLONET-HMM

s_{0}

$\mathbf{P}\left(\pi_{j}=\left(t_{x}, \psi_{y}\right) \mid \mathcal{G}\right)=\frac{f_{\left(t_{x}, \psi_{y}\right)}(j) b_{\left(t_{x}, \psi_{y}\right)}(j)}{\mathbf{P}(\mathcal{G})}$
[Liu, Dai, Truong, Song, Kohn, Nakhleh, PLoS Comp Bio, 2014.]

[Liu, Song, Kohn, Nakhleh, Under review, 2014.]

SUMMARY

\square Viewing a phylogenetic network as a collection of (MUL-tree,allele mapping) pairs provides a natural way to extend the multi-species coalescent and allows for computing gene tree probabilities in the presence of both ILS and hybridization.
\square This view also allows for extending HMMs to annotate genomes in the presence of introgression.
\square Major challenge: Computational requirements!
\square All methods are implemented in PhyloNet and publicly available in open-source (Java): http://bioinfo.cs.rice.edu/phylonet

SUMMARY

lineage sorting is the sole explanation of all gene tree incongruence

both hybridization and lineage sorting explain gene tree incongruence
hybridization is the sole explanation of all gene tree incongruence

ACKNOWLEDGMENTS

\square Collaborators:
\square R.M. Barnett (Rice), J. Dai (Rice), J.H. Degnan (Canterbury), J. Dong, (Rice), K. Liu (Rice), K. Truong (Rice), Y. Yu (Rice)
\square Funding:
\square NSF, NIH, Alfred P. Sloan Foundation, Guggenheim Foundation

THANK YOU

HTTP://WWW.CS.RICE.EDU/~NAKHLEH

