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Application I	




Privacy amplification	


•  A1 shares  n   uniformly random bits  X  with  A2	


•  Eve obtains some information in the form of a quantum 
state    Y	


•  Can they distill a more secure key ?	
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Randomness extraction	


•  A1 generates uniformly random bits  Z,  sends to  A2	


•  Both compute   K = E(X,Z)   where   E   is a suitable 
randomness extractor	


•  Eve sees the seed   Z,   may measure   Y   depending on   Z	


•  Would like   K   to be nearly uniform, even given   Y,Z	
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Ta-Shma construction	


•  Based on Trevisan extractor, assuming   Y   has   b   qubits	


•  Reconstruction paradigm 	
=> 	
Random access code	


If Eve can distinguish   K   from uniform, there is a “short” 
string   A,   such that given any index   i   and   q   
independent copies of   Y,    outputs bit   Xi   with 
probability    ≥ p .	


•  Code length is linear in   n	


•  Superadditivity of information   =>	


	
(1 – H(p)) n   ≤   Σi  I(Xi : Q)   ≤   S(Q)   ≤   |A| + qb	


	
[Ambainis, N., Ta-Shma, Vazirani; N.]	


•  If   b   is “small”, no such distinguisher exists. So   E   is 
quantum-proof.	




Application II	




Local Hamiltonian problem in 1-D	


•  n   particles on a line, each   d-level	


•  nearest neighbour interaction   Hi   between   i   and   i+1,   
Hermitian,   || Hi ||    ≤   1	


•  Would like to understand properties of the ground state of 
the Hamiltonian   H   =   Σi  Hi   	


•  QMA-hard to estimate ground energy to within additive 
error 1/poly    [Aharonov, Gottesman, Irani, Kempe]	


•  If    H   has spectral gap   Ω(1), such approximation is 
tractable    [Landau, Vazirani, Vidick]	


H HH H1 2 3 n-1.   .   .



Area law	


•  A general state may be highly entangled across an interval	


•  Example:   particles paired above may each be in the 
maximally entangled state    (1/√d) Σj ej × ej   	


	
 	
So, the entropy of the reduced state of an interval of 	

	
length   L 	
may be    L log d   (maximal)	


•  If    H   has spectral gap   Ω(1),   the entropy is constant, 
independent of   L    [Hastings; Aharonov, Arad, Kitaev, 
Landau, Vazirani ]	


•  Basis for efficient algorithm	




Key step in Hastings’ proof	


•  If the entropy at cut   i   is “high”,    entropy for all cuts up 
to   i + m   is high	


•  Let   A, B   be contiguous intervals of length   L  within this	


•  Let   S(ρAB), S(ρA), S(ρB)   be the entropies of the 
corresponding reduced states	


•  In general,   S(ρAB)   may be as high as   S(ρA) + S(ρB)	


•  Lieb-Robinson bound   =>  entanglement mostly within	


•  There is a measurement that distinguishes   ρAB   from    
ρA × ρB    with    exp(– c L)   probability of error	
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Hastings’ proof continued…	


•  By monotonicity of relative entropy (data processing 
inequality),    	


	
c’ L   ≤   S(ρA) + S(ρB)  –   S(ρAB)	


=> 	
S2L    ≤    2 SL  – c’ L	


⇒    SL     ≈    L log d  -  c’’ L log L	


•  Contradiction, if   L   is large. So entropy is small across 
every cut.	
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Application III	




Short quantum proofs for 3Sat	


•  NP witness for 3Sat has length   n	

	
(shorter proofs would imply a subexponential algorithm)	


	

•  Surprisingly, two unentangled quantum provers can convince an 

efficient quantum verifier of satisfiability with constant soundness and 
with proofs of length   O(√n polylog(n) )	

	
[Aaronson, Beigi, Drucker, Fefferman, Shor; Chen and Drucker;	

	
 Harrow and Montanaro]	


•  How short can the quantum proofs be?	
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Optimality of the proof system	


•  Unentangled quantum proofs of length shorter than  n1/2 –ε   would 
imply subexponential time algorithm for 3Sat 	

	
[Brandao and Harrow]	


	

•  Goal of the algorithm is to optimize verifier’s acceptance over 

product states (a quadratic objective function)	


•  Instead, optimize over states which are approximately so	


•  Observation:   Product states are infinitely extendible  	


•  A bipartite state   ρ×σ  over   AB   may be extended to   
ρ×σ×σ×σ×σ…   AB1B2B3B4 …	

	
	


•  Every reduced state on   ABi   is identical to that on   AB	




Monogamy of entanglement	


•  A   k-extendible state   τAB    is “close” to the convex hull   SA:B   of 
the set of product states	

	
 	
||τAB - SA:B ||locc-1   ≤   c (log dim(A) / k )1/2	


	
	


	
[Brandao, Christandl, Yard; Brandao and Harrow]	

	

•  Consequence of the chain rule for mutual information and the 

Pinsker inequality	

	

•  Intuition:   system   A   cannot be simultaneously strongly entangled 

with all   k   subsystems    Bi	


•  k-extendibility can be expressed using semi-definite programming 
constraints	


•  Optimization over   k-extendible states for   k ≈ log dim(A)   within 
error   ε  doable in time    exp( (log dim(A))2 / ε2 )	
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Quantum information theory is being 
	
reinvented as we speak���

���
	
Information measures tailored to the task at 
	
hand, are replacing traditional notions���
	
 	
Conditional min-entropy for privacy 	
 	

	
 	
amplification, tensor rank for 	
 	
 	

	
 	
approximation of one-D ground states���

���
	
Much sought: measure for the information 
	
gained by receiving an additional part of a 
	
state���
	
 	
Conditional mutual information? 	



