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The difficulty of understanding many-body physics

Each particle a d dimensional space– Cd

n particles = tensor the individual spaces together

= space of dimension dn H = (Cd)⊗n.

System described by a state: a unit vector |v〉 ∈ H.

The same property that leads to the power of quantum computation is the major barrier
for understanding many-body physics:

Exponential Dimensional Space

So even describing a state requires exponential amount of information.
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A Basic Question

All states

Physically relevant 
states

Can we develop a better understanding of a class of relevant states?

Do they have a special structure?

Does that structure allow for meaningful short descriptions?

Does that structure allow us to compute various properties of them?
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Physically Relevant States: Ground States of Local Hamiltonians

Local term:

Hi linear operator. (self-adjoint).

acts "locally": non-trivial on only a few particles.

Local Hamiltonian
H =

P
i Hi an operator formed from the sum of local terms.

Ground State
The ground state |Γ〉 is the smallest eigenvector of H.

Gap = distance between the lowest two eigenvalues.

Focus on unique ground state and constant gap.

Ground states model the state of the system at low temperatures.
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Fundamental Connection: Local Hamiltonians and Constraint
Satisfaction Problems.

Classical Constraint Satisfaction Problems (CSP’s).
Example: 3 colorability

Each region can be one of three colors,

Regions that share a boundary cannot be the same color,

Each edge encodes the constraint that neighbors can’t be the same color.

Interested in assignments that satisfy as many constraints as possible.

Solving, classifying, and understanding the structure of the solutions of CSP’s at the
heart of complexity theory.
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Local Hamiltonians = non-commutative CSP’s

non−commutativeConstraint Satisfaction
Problems

Complexity Theory Condensed Matter Physics

Local Hamiltonians
generalization

Number of colors ↔ Dimension of single particle
Local constraint diagonal only ↔ Local term Hi arbitrary

Assignment that violates fewest constraints ↔ Ground state: lowest eigenvalue
Least number of constraints violated ↔ Lowest eigenvalue

CSP constraints correspond to Hi that are diagonal in the standard basis. In particular
they all commute.
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The Fundamental Quest: understanding ground states

Do they have a special structure?

Does that structure allow for meaningful short descriptions?

Does that structure allow us to compute various properties of them?

Spoiler:

For (gapped) 1D systems: yes

For higher dimensions: ?
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Understanding ground states of local Hamiltonians: A journey

"In theory, there is no difference between theory and practice. In practice, there is."

How do you do Physics?

[’92, White] Density Matrix Renormalization Group (DMRG):
...

1D – remarkably successful in practice.
2D – open.

However not a great understanding of what is going on.

Sure you can do it in practice . . . but can you do it in theory?

Zeph Landau () The complexity of ground states 9 / 28
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Quantum Complexity Theory viewpoint

[ ’97, Kitaev]:

Introduction of QMA– quantum analogue of NP.

Finding ground states of general quantum systems is QMA complete.

[’05, Oliveira, Terhal, ’06, Kempe, Kitaev, Regev]:

Finding solutions to 2D systems is QMA hard.

[’07, Aharonov, Gottesman, Irani, Kempe]

Solutions to 1D systems are also hard.
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Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

Total amount of information in a black hole resides on the boundary. . .

"Complexity of system should depend only on the size of the boundary"

L

L

Became known as an Area Law.

[’01, Vidal, Latorre, Rico, Kitaev] Area Law formalized in terms of entanglement
entropy.

Effect on DMRG: speedup, simplification, better understanding of the heuristics
used.
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Area Law in 1D systems

1D Area law proved [Hastings ’07].

Established that many 1D solutions (constant gap) satisfy an area law and are in
NP rather than QMA-complete.

Area Law
Holds

1D Solutions

DMRG

Hard
Easy

"All is well . . . Area Law structure provides the proper dichotomy between easy and
hard in 1D."

[’08, Cirac, Schuch, Verstraete] Example of finding a solution that satisfies the area law
that is NP-hard.
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The birth of Approximate Ground State Projections
"If there is a problem you can’t solve, then there is an easier problem you can’t solve:
find it." - George Polya

A special case: frustration-free commuting case.
Can assume Hi are projections.
P =

Q
i(1−Hi) projects onto the ground space.

P ’s complexity across a cut proportional to number of terms acting across the cut.
How to generalize this idea?

Approximate Ground State Projection (AGSP)
Ground State

Perpendicular
Space

Properties:
It "approximately" projects onto one vector you want (ground state).
It isn’t too complex.
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New blood: Approximate Ground State Projections (AGSPs)

Area Law
Holds

1D Solutions

DMRG

Hard
Easy

Two new results:

[’11,’12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters
of the 1D area law which→ a sub-exponential time algorithm for finding solutions.
[’13 Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to

constant gapped 1D systems.

Area
Law

Exist

1D Simulation 

Area Law

1D Solutions

AGSP’s

Hard
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[’13 Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to

constant gapped 1D systems.
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Role of AGSP in proof of Area Law I

Two main steps:

1. Find a not very complex state that has constant overlap with the ground state.

Ground State

|v>

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the
ground state.

Both steps use AGSPs– the first is much more delicate.

Zeph Landau () The complexity of ground states 16 / 28
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Measure of Complexity: Entanglement rank

A state on H1 ⊗H2 of the form
PC

1 ai ⊗ bi will be said to have entanglement rank C.

C

An operator on H1 ⊗H2 of the form
PC

1 Ai ⊗Bi will be said to have entanglement
rank C.

C

Entanglement rank behavior

Multiplicative for operators applied to states or product of operators.

Additive for sums of states or operators.
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AGSP: almost projection with small entanglement rank
We are looking for an operator K with 2 properties:

It approximately projects onto the ground state:

∆

1

Ground state

of AGSP
Eigenvalues 

Eigenvalues of H

It has small entanglement rank:

D

. . . 

. . . . . . 

. . . 

K

Critical threshold D∆ < 1.
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Role of AGSP in proving Area Law cont.

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which
D∆ < 1/2 proves that the ground state has entropy O(1) logD.

Proof:

Start with an unentangled state |v〉.
Apply AGSP to get |w〉 = K|v〉

||K|v〉|| .

New |w〉 has better overlap with ground state (factor 1
∆

).

At least one of the D pieces of |w〉 will have better overlap than |v〉.

AGSP definition uses notions: truncation away from cut, Chebyshev polynomials.
Requires careful analysis to bound complexity. (See arxiv, find me, or future workshop).
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Finding the ground state of 1D systems: solving a large convex program

finding the minimal energy state

m

solving a convex program

min tr(ρH), with the conditions
I ρ ≥ 0
I tr(ρ) = 1.

Exponential size space is too costly. What we’ll need:

A restriction of the convex program to a polynomial size subspace,

A succinct description of the elements of that subspace that allows us to perform
linear algebra efficiently.

Zeph Landau () The complexity of ground states 20 / 28
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The algorithm: a bird’s eye view

A sequence of spaces Si termed viable sets:

all polynomial size

all with succinct descriptions that allow efficient linear algebra,

each containing a good approximation of the "left" side of the ground state.

iS

|Γ〉 ≈
X

j

|aj〉 |bj〉 with each |aj〉 ∈ Si.

Zeph Landau () The complexity of ground states 21 / 28



The algorithm: a bird’s eye view

Key components:

Splitting: 1D structure allows reduction of convex program to left side by iterating
over a net of boundary conditions. Structural result allows this net to be fixed
polynomial size.

AGSP: allows for essential reduction in errors along the way.

|v>

K

Si

Arxiv, find me, later workshop.
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Where do we go from here?

Simulation

Quantum Many−Body
Systems

AGSP

Structure

A 2D area law?

A more local 1D algorithm?

Degenerate ground space?

Different questions?

"The future ain’t what it used to be." – Yogi Berra

Zeph Landau () The complexity of ground states 23 / 28
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AGSP construction: norm reduction

Looking for low entanglement operators that look like:

f(x)

∆

1

ε ||H||

Smaller ||H|| would be better but we don’t want to lost the local structure around the
cut.
Solution: Replace H =

P
i Hi with H ′ = HL +H1 +H2 + · · ·+Hs +HR.

1

HL

s+1
...

Zeph Landau () The complexity of ground states 24 / 28



AGSP construction: Chebyshev polynomials
Chebyshev polynomials: small in an interval:

The desired AGSP is a dilation and translation of the Chebyshev polynomial:

l

∆

1

ε ||H’||

K=C (H’)

Zeph Landau () The complexity of ground states 25 / 28



AGSP complexity: Entanglement rank analysis

(H ′)` =
X

( product of Hj).

For a single term:

Across some cut, an average number of terms are involved→ d2`/s.
Roundtrip cost of going and coming back from center cut: → ds.

Total: d2`/s+s

. . .

Zeph Landau () The complexity of ground states 26 / 28
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AGSP complexity: Entanglement rank analysis

Problem: Too many (s`) terms in naive expansion of (H ′)`.

Need to group terms in a nice way but it all works out with total entanglement increase
of the same order as the single term.
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Putting things together: Area Law for H ′

Chebyshev C`(H
′) has ∆ ≈ e−O(`/

√
s):

f(x)

∆

1

ε ||H||

Entanglement analysis yields D ≈ O(d`/s+s).

. . .

2l/sCost d

Cost d s

Chosing ` = s2 yields D∆ ≈ e−s3/2+s log d < 1 for appropriate choice of s ≈ log2 d.

Zeph Landau () The complexity of ground states 28 / 28


