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* finding statistical correlations
* genotype/phenotype associations
* correlating medical outcomes with risk
factors or events

* publishing aggregate statistics

* noticing events/outliers
*intrusion detection
e disease outbreaks

* datamining/learning tasks
* use customer data to update strategies
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Stats: Who's to blame for AOL's search debacle?
Let the fingerpointing begin A friend of ousted AOL advertising executive Mike Kelly takes

issue with our assignment of blame.
gawker.com/302054/whos-to-blame-for-aols-search-debacle -

AOL Proudly Releases Massive Amounts of Private Data
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AOL search data scandal - Wikipedia, the free encyclopedia
The AOL search data scandal was the result of a research project by AOL. .... AOL

apologizes for release of user search data | CN ET News.com; * AOL search ...
en.wikipedia.org/wiki/AOL_search_data scandal - 45Kk -
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This doesn’t apply to me! | don’t want to
publish the whole dataset!
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This doesn’t apply to me! | don’t want to
publish the whole dataset!

not so fast...

see, e.g., Korolova 201 |’'s Facebook
microtargeting attack

... must pay attention to all uses of sensitive

data
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what to promise about output!?

think of output as randomized

promise: if you leave
the database, no
outcome will change
probability by very
much




more formally...

® database D a set of rows, one per person

® sanitizing algorithm M probabilistically maps
D to event or object in outcome space
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ratio bounded
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differential privacy
Pr[M(D)) € C] < et Pr[M(D2) € C]

s a statistical property of mechanism behavior
® unaffected by auxiliary information

¢ independent of adversary's computational
power



differential privacy
Pr[M(D)) € C] < et Pr[M(D2) € C]

promise: if you leave
the database, no

outcome will change
probability by ver
much




yes!
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particular shape
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sensitivity of a function f

Af = maxpi,p2 [f(D1) — f(D2)|

for neighboring data sets Dy, D>

measures how much one person can affect
output

sensitivity is 1 for counting queries that
count number of rows satisfying a predicate

29



scale noise with sensitivity

Af = maxpi,p2 [f(D1) — f(D2)|

[DMNSO06]: on query f, can add scaled
symmetric noise Lap(b) with b = Af/g, to
achieve g-differential privacy.

30



Laplace distribution Lap(b)
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applying the Laplace
mechanism

single counting query: how many people in the
database satisfy predicate P!

® sensitivity = |

® can add noise Lap(1/¢€)

32



what if want more than one
query! ...composition

® an £-DP mechanism, followed by an &;-DP
mechanism, is (€| + &2)-DP

33



what if want more than one
query! ...composition

® an £-DP mechanism, followed by an &;-DP
mechanism, is (€| + &2)-DP

® can also sum both the epsilons and the
deltas for (g, 0)-DP

33



what if want more than one
query! ...composition

® an £-DP mechanism, followed by an &;-DP
mechanism, is (€| + &2)-DP

® can also sum both the epsilons and the
deltas for (g, 0)-DP

® more sophisticated argument: k runs of
(€, 0)-DP mechanisms gives (€', kd + O’)-
DP for € = (2 k In(1/0’))'2e + k € (ef - 1)
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applying the Laplace
mechanism

vector-valued queries of dimension d

® can apply composition and add noise
Lap(dAf/€) in each component of output,

where Af is the sensitivity of each
component

34



applying the Laplace
mechanism

histogram queries

® could again use noise Lap(d/g)
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applying the Laplace
mechanism

histogram queries

® could again use noise Lap(d/g)

® but actually only need ~Lap(1/¢), since
sensitivity generalizes as max L| distance

35



Gaussian mechanism H

[DKMMNO06]: Gaussian noise gives (&, 0)-DP
with

o = (2 In(2/0))"? /€ * (max L distance)

36



Ok, but | wanted to use my database for more
than a handful of statistics...



Ok, but | wanted to use my database for more
than a handful of statistics...

Data can be “big” in two dimensions: more
rows makes privacy easier (lower sensitivity);
more columns makes it harder (more queries
to preserve)



handling an exponential
number of queries

lung
cancer
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handling an expg
number of que

name DOB

John Doe 12/1/51
Jane Smith 3/3/46
Ellen Jones 4/24/59
Jennifer Kim |3/1/70
Rachel Waters |9/5/43




a brief history of synthetic data
(theory)

BLROS8: €-DP, error log!’3 |Q]| n%3

39



a brief history of synthetic data
(theory)

BLROS8: €-DP, error log'’3 n2/3

DNRRVO09: (g, 0)-DP, error

O

o(l)n 112

O

39



a brief history of synthetic data

BLROS8: €-DP, error log!’3 |Q
DNRRV09: (¢, 0)-DP, error |Q
DRV 0: (g, 0)-DP, error polylog

39

(theory)

n2/3

o(l)n 112

‘Q‘ n|/2



a brief history of synthetic data

BLROS8: €-DP, error log'’3
DNRRVO09: (g, 0)-DP, error

Q
Q

(theory)

n2/3

o(l)n 112

DRV 0: (g, 0)-DP, error polylog |Q| n'/2
HR10: (€, 0)-DP, error log|Q| n'”2

39



a brief history of synthetic data

BLROS8: €-DP, error log'’3
DNRRVO09: (g, 0)-DP, error

Q
Q

(theory)

n2/3

o(l)n 112

DRV 0: (g, 0)-DP, error polylog |Q| n'/2
HR10: (€, 0)-DP, error log|Q| n'”2
HLMI2: simple & matches best bounds

39



a brief history of synthetic data

BLROS8: €-DP, error log'’3
DNRRVO09: (g, 0)-DP, error

Q
Q

(theory)

n2/3

o(l)n 112

DRV 0: (g, 0)-DP, error polylog |Q| n'/2
HR10: (€, 0)-DP, error log|Q| n'”2
HLMI2: simple & matches best bounds

39



a brief history of synthetic data

BLROS8: €-DP, error log'’3
DNRRVO09: (g, 0)-DP, error

Q
Q

(theory)

n2/3

o(l)n 112

DRV 0: (g, 0)-DP, error polylog |Q| n'/2
HR10: (€, 0)-DP, error log|Q| n'”2
HLMI2: simple & matches best bounds

Can (sometimes) do much better than naive noise
addition, with much more sophisticated techniques

39



exponential mechanism [MTO07]

select an element C € range(M) with
probability ~ exp(€ u(D, C)/(2 Au))

where u is a “scoring function”
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exponential mechanism [MTO07]

select an element C € range(M) with
probability ~ exp(€ u(D, C)/(2 Au))

where u is a “scoring function”

privacy obvious

utility... depends

40



[BLROS]

combines

® exponential mechanism [MT07] for
sampling complex output space

® sample complexity bounds from learning
theory to guarantee existence of good
output

4]
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[HLM 2]

simple to describe and to implement
actually implemented and tested it

state of the art in theory, performs well in
practice (and quickly, despite bad worst-
case news)
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[HLM 2]

® simple to describe and to implement
® actually implemented and tested it

® state of the art in theory, performs well in
practice (and quickly, despite bad worst-
case news)

..will hear more about multiplicative weights-
based techniques in Jon’s talk

43



| have to know all my queries in advance?!



interactive mechanisms

® so far, have discussed creating synthetic
data where must know query set in
advance

® tools exist to answer similar number of
queries on the fly (correlating randomness
across queries)

45
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It seems like DP would add too much noise for
my application.

... stop and think about what this means
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DP connected to robustness of computation to
presence or absence of individuals

* computation not robust! (should worry!)

* need more data (individuals) to get desired
privacy-utility tradeoff (should think)

* expect on “real” data will be robust (we can
do something about this!)



robustness (an aside)

® robustness in DP sense not identical to
statistical robustness---DP is worst-case
rather than wrt to distribution

® there are connections (will mention
shortly)

48



expect study robust on actual
data

® idea |:bootstrapping

49



bootstrap aggregation

® given training dataset, create many hew
training sets of smaller size by sampling
uniformly with replacement

® fit your model (estimate your statistic) on
each

® combine (e.g., voting, averaging)

50



bootstrap intuition

® a “‘robust” statistic should be stable on
most reasonbly sized subsets of the data

® if statistic is somewhat unstable, aggregation
“smooths” result

® if statistic was very stable, loss in precision
should be small

51



bootstrap for privacy

® if function is not low-sensitivity but suspect
it's usually stable, not clear how to
guarantee DP

® if aggregation preserves privacy, get DP
guarantee even when aggregating non-DP
estimates
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bootstrap for privacy =
subsample and aggregate [NRSO07]
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subsample and aggregate: good
news

® can use any DP aggregation function (as
long as choice doesn’t depend on data)

® private aggregation just requires adding
noise scaled to sensitivity of the
aggregation function

® privacy is immediate!
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subsample and aggregate: bad
news

® may be difficult to bound worst-case
sensitivity of aggregation function

® default bound is max of its range (quite
bad)

® may be difficult to get good utility
guarantees
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applications

® underlying function might be selecting best
model from among set of m options; could
aggregate with a noisy max
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subsample and aggregate:
applications

® underlying function might be selecting best
model from among set of m options; could

aggregate with a noisy max

® similarly, could output a set of significant
features (as for LASSO)
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expect study robust on actual
data

® idea |:bootstrapping

® idea 2:check robustness before proceeding
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check robustness

® would like to be able to test in DP manner
whether computation “should” proceed

® “should”: e.g., whether desired function is
robust (low-sensitivity) on actual data

® if not, halt
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local sensitivity of function f on
database D

maxp [f(D) — f(D')]

for D’ neighboring data set of D
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local sensitivity of function f on
database D

maxp [f(D) — f(D')]

for D’ neighboring data set of D

® measures how much one person can affect
output on this data
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propose-test-release [DL09]

® Hropose a bound on local sensitivity
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propose-test-release [DL09]

® Hropose a bound on local sensitivity

® test in DP manner whether actual data
satisfies bound

® if fails, halt

® if passes, release function with noise tailored
to local sensitivity
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notes on propose-test-release

® test could be “what is L distance to closest
database that fails local sensitivity bound?”
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notes on propose-test-release

® test could be “what is L distance to closest
database that fails local sensitivity bound?”

® test only has sensitivity |

® can use conservative local sensitivity
threshold

® could still sometimes fail; can’t get €-DP
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DP output need not be noisy!

PTR can be used to privately check whether
distance to nearest unstable data set is far, and
if so release the true f(x)
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robustness, revisited
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robustness, revisited

® robustness wrt adding/removing a few
points from dataset
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robustness, revisited

® robustness wrt adding/removing a few
points from dataset

® robustness wrt subsampling
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subsample & aggregate +

propose-test-release

[ST | 3]: can modify subsample & aggregate so
that outputs true f(x) with high probability
when f is subsampling stable on x
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subsample & aggregate +

propose-test-release

[ST | 3]: can modify subsample & aggregate so
that outputs true f(x) with high probability
when f is subsampling stable on x

shows that DP model selection only increases
sample complexity of model selection by

O(log (1/0)/¢)
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DP statistics

® connections to robustness; interquartile distance, median, linear
regression [DworkLei09]

® Me-estimators [Leil |, NekipelovYakovlevl I]

® for almost any estimator that is asymptotically normal on i.i.d.
samples, DP adds asymptotically no additional perturbation [Smith| I]

® convergence rate of DP estimators tied to gross error sensitivity
[ChaudhuriHsu 2]

® minimizing convex loss functions [ChaudhuriMonteleoniSarwatel |,
Rubinstein et al. 2012, KiferSmithThakurtal?2]

® model selection [SmithThakurtal 3]

® empirical investigations [VuSlavkovic09,
ChaudhuriMonteleoniSarwate | I, AbowdSchneiderVilhuber| 3]
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| need to look at the data before | know what
statistics to run.

not DP

interactive (or hybrid interactive/
noninteractive ) mechanisms?

big data force us to formalize “looking at the
data”
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summary

privacy easy to get wrong; DP provides
compelling definition and useful dose of paranoia

powerful tools exist (some with no cost of
privacy, and some with no noise!)

powerful intuition from notions of robustness

many nearly ready (and quite relevant) to
common big data applications

no ready-to-use, commercial- grade applications:
need demand!
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Differential Privacy
Tutorial

Katrina Ligett
katrina@caltech.edu

“Privacy and Data-Based Research,” with Ori Heffetz.
Available on SSRN.
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