Vertical Versus Horizontal Poincare Inequalities

Assaf Naor

Courant Institute

Bi-Lipschitz distortion

$\left(M, d_{M}\right)$ a metric space and $\left(X,\|\cdot\|_{X}\right)$ a Banach space.
$c_{X}(M)=$ the infimum over those $D \in(1, \infty]$ for which there exists $f: M \rightarrow X$ satisfying

$$
\forall x, y \in M, \quad d_{M}(x, y) \leqslant\|f(x)-f(y)\|_{X} \leqslant D d_{M}(x, y)
$$

$$
M \stackrel{D}{\hookrightarrow} X .
$$

The discrete Heisenberg group

- The group \mathbb{H} generated by a, b subject to the relation stating that the commutator of a, b is in the center:

$$
a c=c a \quad \text { and } \quad b c=c b
$$

where

$$
c=[a, b]=a b a^{-1} b^{-1}
$$

Concretely, $\mathbb{H}=\left\{\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right): x, y, z \in \mathbb{Z}\right\}$

$$
a=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

$$
c=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The left-invariant word metric on \mathbb{H} corresponding to the generating set $\left\{a, a^{-1}, b, b^{-1}\right\}$ is denoted d_{W}.

Denote

$$
\forall n \in \mathbb{N}, \quad B_{n}=\left\{x \in \mathbb{H}: d_{W}\left(x, e_{\mathbb{H}}\right) \leqslant n\right\}
$$

Basic facts:

$$
\begin{aligned}
& \forall k \in \mathbb{N}, \quad d_{W}\left(c^{k}, e_{\mathbb{H}}\right) \asymp \sqrt{k} \\
& \forall m \in \mathbb{N}, \quad\left|B_{m}\right| \asymp m^{4}
\end{aligned}
$$

Uniform convexity

The modulus of uniform convexity of $\left(X,\|\cdot\|_{X}\right)$:

$$
\delta_{X}(\epsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|_{X}:\|x\|_{X}=\|y\|_{X}=1, \quad\|x-y\|_{X}=\epsilon\right\}
$$

- X is uniformly convex if $\forall \epsilon \in(0,1), \quad \delta_{X}(\epsilon)>0$.
- For $q \in[2, \infty), X$ is q-convex if it admits an equivalent norm with respect to which $\delta_{X}(\epsilon) \gtrsim \epsilon^{q}$.

Theorem (Pisier, 1975). If X is uniformly convex then it is q-convex for some $q \in[2, \infty)$.
ℓ_{p} is $\max \{2, p\}$-convex for $p>1$.

Mostow (1973), Pansu (1989), Semmes (1996)

Theorem. The metric space $\left(\mathbb{H}, d_{W}\right)$ does not admit a bi-Lipschitz embedding into \mathbb{R}^{n} for any $n \in \mathbb{N}$.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K-doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K-doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K-doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K-doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K-doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K-doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K-doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem

- A metric space $\left(M, d_{M}\right)$ is K-doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem

- A metric space $\left(M, d_{M}\right)$ is K-doubling if any ball can be covered by K-balls of half its radius.

Assouad's embedding theorem (1983)

- A metric space $\left(M, d_{M}\right)$ is K -doubling if any ball can be covered by K-balls of half its radius.

Theorem (Assouad, 1983). Suppose that (M, d_{M}) is K-doubling and $\epsilon \in(0,1)$. Then

$$
\left(M, d_{M}^{1-\epsilon}\right) \stackrel{D(K, \epsilon)}{\longrightarrow} \mathbb{R}^{N(K, \epsilon)} .
$$

Theorem (N.-Neiman, 2010). In fact

$$
\left(M, d_{M}^{1-\epsilon}\right) \xrightarrow{D(K, \epsilon)} \mathbb{R}^{N(K)} .
$$

David-Snipes, 2013: Simpler deterministic proof.

$$
\left(M, d_{M}^{1-\epsilon}\right) \stackrel{D(K, \epsilon)}{\longrightarrow} \mathbb{R}^{N(K, \epsilon)}
$$

Obvious question: Why do we need to raise the metric to the power $1-\epsilon$?

$$
\left(M, d_{M}^{1-\epsilon}\right) \stackrel{D(K, \epsilon)}{\longrightarrow} \mathbb{R}^{N(K, \epsilon)}
$$

Obvious question: Why do we need to raise the metric to the power $1-\epsilon$?

Since in $\left(\mathbb{H}, d_{W}\right)$ we have $\forall m \in \mathbb{N}, \quad\left|B_{m}\right| \asymp m^{4}$, the metric space $\left(\mathbb{H}, d_{W}\right)$ is $\mathrm{O}(1)$-doubling.

By Mostow-Pansu-Semmes, $\left(\mathbb{H}, d_{W}\right) \nrightarrow \mathbb{R}^{N}$.

Proof of non-embeddability into \mathbb{R}^{n}

By a limiting argument and a non-commutative variant of Rademacher's theorem on the almosteverywhere differentiability of Lipschitz functions (Pansu differentiation) we have the statement "If the Heisenberg group embeds bi-Lipschitzly into \mathbb{R}^{n} then it also embeds into \mathbb{R}^{n} via a bi-Lipschitz mapping that is a group homomorphism."
A non-Abelian group cannot be isomorphic to a subgroup of an Abelian group!

Heisenberg non-embeddability

- Mostow-Pansu-Semmes (1996).
- Cheeger (1999).
- Pauls (2001).
- Lee-N. (2006).
- Cheeger-Kleiner (2006).
- Cheeger-Kleiner (2007).
- Cheeger-Kleiner (2008).
- Cheeger-Kleiner-N. (2009).
- Austin-N.-Tessera (2010).
- Li (2013).

Heisenberg non-embeddability

- Mostow-Pansu-Semmes (1996).
- Cheeger (1999).
- Pauls (2001).
- Lee-N. (2006).
- Cheeger-Kleiner (2006).

\mathbb{H} does not embed into

any uniformly convex space.

- Cheeger-Kleiner (2007).
- Cheeger-Kleiner (2008).
- Cheeger-Kleiner-N. (2009).
- Austin-N.-Tessera (2010).
- Li (2013).

Heisenberg non-embeddability

- Mostow-Pansu-Semmes (1996).
- Cheeger (1999).
- Pauls (2001).
- Lee-N. (2006).
- Cheeger-Kleiner (2006).
- Cheeger-Kleiner (2007).
- Cheeger-Kleiner (2008).
- Cheeger-Kleiner-N. (2009).
- Austin-N.-Tessera (2010).
- Li (2013).

[ANT (2010)]: Hilbertian case

$$
c_{\ell_{2}}\left(B_{n}, d_{W}\right) \asymp \sqrt{\log n} .
$$

[ANT (2010)]: Hilbertian case

$$
c_{\ell_{2}}\left(B_{n}, d_{W}\right) \asymp \sqrt{\log n}
$$

A limiting argument combined with [Aharoni-Maurey-Mityagin (1985), Gromov (2007)] shows that it suffices to treat embeddings that are 1cocycles associated to an action by affine isometries. By [Guichardet (1972)] it further suffices to deal with coboundaries. This is treated by examining each irreducible representation separately.

[ANT (2010)]: q-convex case

If $\left(X,\|\cdot\|_{X}\right)$ is q-convex then

$$
c_{X}\left(B_{n}, d_{W}\right) \gtrsim X\left(\frac{\log n}{\log \log n}\right)^{1 / q} .
$$

[ANT (2010)]: q-convex case, continued

Qualitative statement: There is no bi-Lipschitz embedding of the Heisenberg group into an ergodic Banach space X via a 1-cocycle associated to an action by affine isometries.
X is ergodic if for every linear isometry $T: X \rightarrow X$ and every $x \in X$ the sequence
converges in norm.

$$
\frac{1}{n} \sum_{j=1}^{n-1} T^{j} x
$$

[ANT (2010)]: q-convex case, continued
N.-Peres (2010): In the case of q-convex spaces, it suffices to treat 1-cocycle associated to an affine action by affine isometries.

For combining this step with the use of ergodicity, uniform convexity is needed, because by [Brunel-Sucheston (1972)], ultrapowers of X are ergodic if and only if X admits an equivalent uniformly convex norm.
[ANT (2010)]: q-convex case, continued
Conclusion of proof uses algebraic properties of cocycles combined with rates of convergence for the mean ergodic theorem in q-convex spaces.

Li (2013): A quantitative version of Pansu's differentiation theorem. Suboptimal bounds.

Almost matching embeddability

Assouad (1983): If a metric space $\left(M, d_{M}\right)$ is O(1)doubling then there exists $k \in \mathbb{N}$ and 1-Lipschitz functions $\left\{\phi_{j}: M \rightarrow \mathbb{R}^{k}\right\}_{j \in \mathbb{Z}}$ such that for $x, y \in M$,

$$
d_{M}(x, y) \in\left[2^{j-1}, 2^{j}\right] \Longrightarrow\left\|\phi_{j}(x)-\phi_{j}(y)\right\|_{2} \gtrsim d_{M}(x, y) .
$$

Almost matching embeddability

Assouad (1983): If a metric space $\left(M, d_{M}\right)$ is $\mathrm{O}(1)$ doubling then there exists $k \in \mathbb{N}$ and 1-Lipschitz functions $\left\{\phi_{j}: M \rightarrow \mathbb{R}^{k}\right\}_{j \in \mathbb{Z}}$ such that for $x, y \in M$,

$$
d_{M}(x, y) \in\left[2^{j-1}, 2^{j}\right] \Longrightarrow\left\|\phi_{j}(x)-\phi_{j}(y)\right\|_{2} \gtrsim d_{M}(x, y)
$$

$$
O(\log n) \quad O(\log n)
$$

So, define $f: B_{n} \rightarrow \bigoplus_{j=1} \mathbb{R}^{k}$ by $f(x)=\bigoplus_{j=1} \phi_{j}(x)$.
For $p \in[2, \infty)$ the bi-Lipschitz distortion of f is of order $(\log n)^{1 / p}$.

Lafforgue-N., 2012

Theorem. For every q-convex space $\left(X,\|\cdot\|_{X}\right)$, every $f: \mathbb{H} \rightarrow X$ and every $n \in \mathbb{N}$,

$\lesssim x \sum_{x \in B_{21 n}}\left(\|f(x a)-f(x)\|_{X}^{q}+\|f(x b)-f(x)\|_{X}^{q}\right)$.

The proof of this inequality relies on realvariable Fourier analytic methods. Specifically, a vector-valued Littlewood-Paley-Stein inequality due to Martinez, Torrea and Xu (2006), combined with a geometric argument.

For embeddings into ℓ_{p} one can use the classical Littlewood-Paley inequality instead.

Sharp non-embeddability

If $\forall x, y \in B_{22 n}, \quad d_{W}(x, y) \leqslant\|f(x)-f(y)\|_{X} \leqslant D d_{W}(x, y)$,

$$
\begin{aligned}
& \sum_{x \in B_{21 n}}\left(\|f(x a)-f(x)\|_{X}^{q}+\|f(x b)-f(x)\|_{X}^{q}\right) \\
& \quad \lesssim D^{q}\left|B_{21 n}\right| \asymp D^{q} n^{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{k=1}^{n^{2}} \sum_{x \in B_{n}} \frac{\left\|f\left(x c^{k}\right)-f(x)\right\|_{X}^{q}}{k^{1+q / 2}} \geqslant \sum_{k=1}^{n^{2}} \sum_{x \in B_{n}} \frac{d_{W}\left(x c^{k}, x\right)^{q}}{k^{1+q / 2}} \\
& \gtrsim \sum_{k=1}^{n^{2}} \sum_{x \in B_{n}} \frac{k^{q / 2}}{k^{1+q / 2}} \asymp\left|B_{n}\right| \log n \asymp n^{4} \log n .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=1}^{n^{2}} \sum_{x \in B_{n}} \frac{\left\|f\left(x c^{k}\right)-f(x)\right\|_{X}^{q}}{k^{1+q / 2}} \\
& \lesssim X \sum_{X}\left(\|f(x a)-f(x)\|_{X}^{q}+\|f(x b)-f(x)\|_{X}^{q}\right)
\end{aligned}
$$

so,

$$
n^{4} \log n \lesssim_{X} D^{q} n^{4} \Longrightarrow D \gtrsim_{X}(\log n)^{1 / q} .
$$

$$
c_{X}\left(B_{n}, d_{W}\right) \gtrsim X(\log n)^{1 / q} .
$$

Sharp distortion computation

$$
\begin{aligned}
& p \in(1,2] \Longrightarrow c_{\ell_{p}}\left(B_{n}, d_{W}\right) \asymp_{p} \sqrt{\log n} . \\
& p \in[2, \infty) \Longrightarrow c_{\ell_{p}}\left(B_{n}, d_{W}\right) \asymp_{p}(\log n)^{1 / p} .
\end{aligned}
$$

The Sparsest Cut Problem

Input: Two symmetric functions

$$
C, D:\{1, \ldots, n\} \times\{1, \ldots, n\} \rightarrow[0, \infty) .
$$

Goal: Compute (or estimate) in polynomial time the quantity

$$
\Phi^{*}(C, D)=\min _{\emptyset \neq S \subsetneq\{1, \ldots, n\}} \frac{\sum_{i, j=1}^{n} C(i, j)\left|\mathbf{1}_{S}(i)-\mathbf{1}_{S}(j)\right|}{\sum_{i, j=1}^{n} D(i, j)\left|\mathbf{1}_{S}(i)-\mathbf{1}_{S}(j)\right|} .
$$

The Goemans-Linial Semidefinite

 ProgramThe best known algorithm for the Sparsest Cut Problem is a continuous relaxation called the Goemans-Linial SDP (~1997).

Theorem (Arora, Lee, N., 2005). The GoemansLinial SDP outputs a number that is guaranteed to be within a factor of

$$
(\log n)^{\frac{1}{2}+o(1)}
$$

of $\Phi^{*}(C, D)$.

The link to the Heisenberg group

Theorem (Lee-N., 2006): The Goemans-Linial SDP makes an error of at least a constant multiple of $c_{\ell_{1}}\left(B_{n}, d_{W}\right)$ on some inputs.

Cheeger-Kleiner-N., 2009: There exists a universal constant $c>0$ such that

$$
c_{\ell_{1}}\left(B_{n}, d_{W}\right) \geqslant(\log n)^{c} .
$$

Cheeger-Kleiner, 2007, 2008: Non-quantitative versions that also reduce matters to ruling out a certain more structured embedding.
Quantitative estimate controls phenomena that do not have qualitative counterparts.

How well does the G-L SDP perform?

Conjecture: $c_{\ell_{1}}\left(B_{n}, d_{W}\right) \gtrsim \sqrt{\log n}$.

Remark: In a special case called Uniform Sparsest Cut (approximating graph expansion) the G-L SDP might perform better. The best known performance guarantee is $\lesssim \sqrt{\log n}$ [Arora-Rao-Vazirani, 2004] and the best known impossibility result is

$$
e^{c \sqrt{\log \log n}}
$$

[Kane-Meka, 2013].

Vertical perimeter versus horizontal perimeter

Conjecture: For every smooth and compactly supported $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& \left(\int_{0}^{\infty}\left(\int_{\mathbb{R}^{3}}|f(x, y, z+t)-f(x, y, z)| d x d y d z\right)^{2} \frac{d t}{t^{2}}\right)^{\frac{1}{2}} \\
& \lesssim \int_{\mathbb{R}^{3}}\left(\left|\frac{\partial f}{\partial x}(x, y, z)\right|+\left|\frac{\partial f}{\partial y}(x, y, z)+x \frac{\partial f}{\partial z}(x, y, z)\right|\right) d x d y d z .
\end{aligned}
$$

Implies $c_{\ell_{1}}\left(B_{n}, d_{W}\right) \gtrsim \sqrt{\log n}$.

Theorem (Lafforgue-N., 2012): For every $p>1$,

$$
\begin{aligned}
& \left(\int_{0}^{\infty}\left(\int_{\mathbb{R}^{3}}|f(x, y, z+t)-f(x, y, z)|^{p} d x d y d z\right)^{2 / p} \frac{d t}{t^{2}}\right)^{1 / 2} \\
& \lesssim_{p}\left(\int_{\mathbb{R}^{3}}\left(\left|\frac{\partial f}{\partial x}(x, y, z)\right|^{p}+\left|\frac{\partial f}{\partial y}(x, y, z)+x \frac{\partial f}{\partial z}(x, y, z)\right|^{p}\right) d x d y d z\right)^{1 / p}
\end{aligned}
$$

Equivalent form of the conjecture

Let A be a measurable subset of \mathbb{R}^{3}. For $t>0$ define

$$
v_{t}(A)=\operatorname{vol}(\{(x, y, z) \in A:(x, y, z+t) \notin A\}) .
$$

Then

$$
\int_{0}^{\infty} \frac{v_{t}(A)^{2}}{t^{2}} d t \lesssim \operatorname{PER}(A)^{2}
$$

Proof of the vertical versus horizontal Poincare inequality

Equivalent statement: Suppose that $\left(X,\|\cdot\|_{X}\right)$ is q-convex and $f: \mathbb{R}^{3} \rightarrow X$ is smooth and compactly supported. Then

$$
\begin{aligned}
& \left(\int_{0}^{\infty} \int_{\mathbb{R}^{3}} \frac{\|f(x, y, z+t)-f(x, y, z)\|_{X}^{q}}{t^{1+q / 2}} d x d y d z\right)^{\frac{1}{q}} \\
& \lesssim x\left(\int_{\mathbb{R}^{3}}\left(\left\|\frac{\partial f}{\partial x}(x, y, z)\right\|_{X}^{q}+\left\|\frac{\partial f}{\partial y}(x, y, z)+x \frac{\partial f}{\partial z}(x, y, z)\right\|_{X}^{q}\right) d x d y d z\right)^{\frac{1}{q}} .
\end{aligned}
$$

Proof of the equivalence: partition of unity argument + classical Poincare inequality for the Heisenberg group.

$$
a=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f\left(\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & \epsilon & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \\
& =\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f\left(\left(\begin{array}{ccc}
1 & x+\epsilon & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\right)=\frac{\partial f}{\partial x} .
\end{aligned}
$$

$$
\begin{aligned}
& a=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& \left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f\left(\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & \epsilon \\
0 & 0 & 1
\end{array}\right)\right) \\
& =\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f\left(\left(\begin{array}{ccc}
1 & x & z+\epsilon x \\
0 & 1 & y+\epsilon \\
0 & 0 & 1
\end{array}\right)\right)=\frac{\partial f}{\partial y}+x \frac{\partial f}{\partial z} .
\end{aligned}
$$

The Poisson semigroup

$$
\begin{gathered}
P_{t}(x)=\frac{1}{\pi\left(t^{2}+x^{2}\right)} \\
Q_{t}(x)=\frac{\partial}{\partial t} P_{t}(x)=\frac{x^{2}-t^{2}}{\pi\left(t^{2}+x^{2}\right)^{2}}
\end{gathered}
$$

Vertical convolution

For $\psi \in L_{1}(\mathbb{R})$,

$$
\psi * f(x, y, z)=\int_{\mathbb{R}} \psi(u) f(x, y, z-u) d u \in X
$$

Heisenberg gradient

$$
\nabla_{\mathbb{H}} f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}+x \frac{\partial f}{\partial z}\right): \mathbb{R}^{3} \rightarrow X \oplus X .
$$

Proposition:

$$
\begin{aligned}
& \left(\int_{0}^{\infty} \int_{\mathbb{R}^{3}} \frac{\|f(x, y, z+t)-f(x, y, z)\|_{X}^{q}}{t^{1+q / 2}} d x d y d z\right)^{\frac{1}{q}} \\
& \lesssim\left(\int_{0}^{\infty} t^{q-1}\left\|Q_{t} * \nabla_{\mathbb{H}} f\right\|_{L_{q}\left(\mathbb{R}^{3}, X \oplus X\right)}^{q} d t\right)^{\frac{1}{q}}
\end{aligned}
$$

Littlewood-Paley

By Martinez-Torrea-Xu (2006), the fact that X is q-convex implies

$$
\begin{aligned}
& \left(\int_{0}^{\infty} t^{q-1}\left\|Q_{t} * \nabla_{\mathbb{H}} f\right\|_{L_{q}\left(\mathbb{R}^{3}, X \oplus X\right)}^{q} d t\right)^{\frac{1}{q}} \\
& \quad \lesssim\left\|\nabla_{\mathbb{H}} f\right\|_{L_{q}\left(\mathbb{R}^{3}, X \oplus X\right)} .
\end{aligned}
$$

So, it remains to prove the proposition.

By a variant of a classical argument (using Hardy's inequality and semi-group properties),

$$
\begin{aligned}
& \left(\int_{0}^{\infty} \int_{\mathbb{R}^{3}} \frac{\|f(x, y, z+t)-f(x, y, z)\|_{X}^{q}}{t^{1+q / 2}} d x d y d z\right)^{\frac{1}{q}} \\
& \quad \lesssim\left(\int_{0}^{\infty} t^{\frac{q}{2}-1}\left\|Q_{t} * f\right\|_{L_{q}\left(\mathbb{R}^{3}, X\right)}^{q} d t\right)^{\frac{1}{q}} .
\end{aligned}
$$

So, we need to show that

$$
\begin{aligned}
& \left(\int_{0}^{\infty} t^{\frac{q}{2}-1}\left\|Q_{t} * f\right\|_{L_{q}\left(\mathbb{R}^{3}, X\right)}^{q} d t\right)^{\frac{1}{q}} \\
& \quad \lesssim\left(\int_{0}^{\infty} t^{q-1}\left\|Q_{t} * \nabla_{\mathbb{H}} f\right\|_{L_{q}\left(\mathbb{R}^{3}, X \oplus X\right)}^{q} d t\right)^{\frac{1}{q}}
\end{aligned}
$$

Key lemma: For every $\mathrm{t}>0$,

$$
\begin{aligned}
& \left\|Q_{t} * f-Q_{2 t} * f\right\|_{L_{q}\left(\mathbb{R}^{3}, X\right)} \\
& \quad \lesssim \sqrt{t}\left\|Q_{t} * \nabla_{\mathbb{H}} f\right\|_{L_{q}\left(\mathbb{R}^{3}, X \oplus X\right)}
\end{aligned}
$$

The desired estimate

$$
\begin{aligned}
& \left(\int_{0}^{\infty} t^{\frac{q}{2}-1}\left\|Q_{t} * f\right\|_{L_{q}\left(\mathbb{R}^{3}, X\right)}^{q} d t\right)^{\frac{1}{q}} \\
& \quad \lesssim\left(\int_{0}^{\infty} t^{q-1}\left\|Q_{t} * \nabla_{\mathbb{H}} f\right\|_{L_{q}\left(\mathbb{R}^{3}, X \oplus X\right)}^{q} d t\right)^{\frac{1}{q}}
\end{aligned}
$$

Follows from key lemma by the telescoping sum

$$
Q_{t} * f=\sum_{m=1}^{\infty}\left(Q_{2^{m-1} t}-Q_{2^{m} t} * f\right)
$$

Proof of key lemma

Since $P_{2 t}=P_{t} * P_{t}$ we have $Q_{2 t}=P_{t} * Q_{t}$.

So, by identifying \mathbb{R}^{3} with \mathbb{H}, for every $h \in \mathbb{R}^{3}$,

$$
\begin{aligned}
& Q_{t} * f(h)-Q_{2 t} * f(h) \\
& =Q_{t} * f(h)-P_{t} * Q_{t} * f(h) \\
& =\int_{\mathbb{R}} P_{t}(u)\left(Q_{t} * f(h)-Q_{t} * f\left(h c^{-u}\right)\right) d u .
\end{aligned}
$$

For every $s>0$ consider the commutator path

$$
\gamma_{s}:[0,4 \sqrt{ } \bar{s}] \rightarrow \mathbb{R}^{3}
$$

$$
\gamma_{s}(\theta)=
$$

$$
\left\{\begin{array}{l}
a^{\theta} \\
a^{\sqrt{s}} b^{\theta-\sqrt{s}} \\
a^{\sqrt{s}} b^{\sqrt{s}} a^{-\theta+2 \sqrt{s}}
\end{array}\right.
$$

$$
\text { if } 0 \leqslant \theta \leqslant \sqrt{s} \text {, }
$$

$$
\text { if } \sqrt{s} \leqslant \theta \leqslant 2 \sqrt{s}
$$

$$
\text { if } 2 \sqrt{s} \leqslant \theta \leqslant 3 \sqrt{s} \text {, }
$$

$$
a^{\sqrt{ } \sqrt{s}} b^{\sqrt{s}} a^{-\sqrt{s}} b^{-\theta+3 \sqrt{s}}
$$

$$
\text { if } 3 \sqrt{s} \leqslant \theta \leqslant 4 \sqrt{s} \text {. }
$$

So, $\gamma_{s}(0)=0=e_{\mathbb{H}}$ and

$$
\gamma_{s}(4 \sqrt{s})=\left[a^{\sqrt{s}}, b^{\sqrt{s}}\right]=[a, b]^{s}=c^{s}
$$

Hence,

$$
\begin{aligned}
& Q_{t} * f(h)-Q_{t} * f\left(h c^{-u}\right) \\
& =\int_{0}^{4 \sqrt{u}} \frac{d}{d \theta} Q_{t} * f\left(h c^{-u} \gamma_{u}(\theta)\right) d \theta
\end{aligned}
$$

By design, $\frac{d}{d \theta} Q_{t} * f\left(h c^{-u} \gamma_{u}(\theta)\right)$ is one of
$\partial_{a} Q_{t} * f\left(h c^{-u} \gamma_{u}(\theta)\right)=Q_{t} * \partial_{a} f\left(h c^{-u} \gamma_{u}(\theta)\right)$
or
$\partial_{b} Q_{t} * f\left(h c^{-u} \gamma_{u}(\theta)\right)=Q_{t} * \partial_{b} f\left(h c^{-u} \gamma_{u}(\theta)\right)$,
where $\partial_{a}=\partial_{x}$ and $\partial_{b}=\partial_{y}+x \partial_{z}$.

We used here the fact that since Q_{t} is convolution along the center, it commutes with $\partial_{a}, \partial_{b}$.

We saw that

$\left.Q_{t} * f(h)-Q_{2 t} * f(h)\right)$
$=\int_{\mathbb{R}} P_{t}(u)\left(Q_{t} * f(h)-Q_{t} * f\left(h c^{-u}\right)\right) d u$
$=\int_{\mathbb{R}} P_{t}(u) \int_{0}^{4 \sqrt{ } \bar{u}} \frac{d}{d \theta} Q_{t} * f\left(h c^{-u} \gamma_{u}(\theta)\right) d \theta d u$.
Now the key lemma follows from the triangle inequality and the fact that
$\sqrt{u} P_{t}(u) d u \asymp \sqrt{t}$.

