THE STRUCTURE OF THE FOURIER SPECTRUM OF BOOLEAN FUNCTIONS, AND THEIR COMPLEXITY

Ben Lee Volk (Technion)

Based on joint work with Amir Shpilka and Avishay Tal

Main Theme:
Boolean functions with simple Fourier transform have small complexity.

There are several

1. ways to measure the complexity of the Fourier transform
2. relevant computational models

OUTLINE

- Boolean functions with small spectral norm
- Circuit Complexity
- Decision Trees
- Boolean functions with very few non-zero coefficients
- Communication Complexity of XOR functions
- Decision Trees

BOOLEAN FUNCTIONS

- Consider the vector space of functions:

$$
\left\{f \mid f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{R}\right\}
$$

- $\chi_{\alpha}(x)=(-1)^{\langle\alpha, x\rangle}$ for all $\alpha \in \mathbb{Z}_{2}^{n}$ is an orthonormal basis with respect to the inner product

$$
\langle f, g\rangle=\mathbb{E}_{x}[f(x) g(x)]
$$

- $f(x)=\sum_{\alpha} \hat{f}(\alpha) \chi_{\alpha}(x)$.
- We're interested in functions that only take the values $\{ \pm 1\}$ (aka boolean functions).

SPECTRAL NORM OF BOOLEAN FUNCTIONS

The spectral norm (ℓ_{1} norm) of $f: \mathbb{Z}_{2}^{n} \rightarrow\{-1,1\}$ is:

$$
\|\hat{f}\|_{1}=\sum_{\alpha}|\hat{f}(\alpha)| .
$$

Parseval and Cauchy-Schwartz imply: For every boolean function, $\|\hat{f}\|_{1} \leq 2^{n / 2}$.

For a random boolean function $f,\|\hat{f}\|_{1}=2^{\Omega(n)}$.

FUNCTIONS WITH SMALL SPECTRAL NORM

If $f: \mathbb{Z}_{2}^{n} \rightarrow\{-1,1\}$ is an indicator function of an affine subspace $V \subseteq \mathbb{Z}_{2}^{n},\|\hat{f}\|_{1} \leq 3$.
(Examples of such functions: AND, OR, XOR)

FUNCTIONS WITH SMALL SPECTRAL NORM

Theorem ([Green-Sanders08]): Suppose f is a boolean function with $\|\hat{f}\|_{1} \leq M$. Then

$$
f=\sum_{i=1}^{L} \pm \mathbf{1}_{V_{i}},
$$

where $V_{i} \subseteq \mathbb{Z}_{2}^{n}$ are affine subspaces and $L \leq 2^{2^{O\left(M^{4}\right)}}$.

CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

$\mathrm{AC}^{0}[2]$: Class of boolean functions computed by circuits with polynomial size, constant depth, and unbounded fan-in AND, OR, NOT and "MOD 2" gates.

An application of [GS08]: Functions with constant spectral norm are in $\mathrm{AC}^{0}[2]$.

CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

Proof:

Part \#1: Every indicator of a subspace (AND of at most n parities or negation of parities) is in $\mathrm{AC}^{0}[2]$:

CIRCUIT COMPLEXITY OF FUNCTIONS WITH SMALL SPECTRAL NORM

Part \#2:

Number of gates: $2^{2^{O\left(M^{4}\right)}} \cdot \operatorname{poly}(n)$. Depth $=O(1)$

DECIIION TREES

PARITY DECISION TREES (\oplus-DT)

Same as decision tree, except that every internal node is labeled with a linear function over \mathbb{Z}_{2}^{n} :

$D^{\oplus}(f):=$ minimal depth of a \oplus-DT for f $\operatorname{size}_{\oplus}(f):=$ minimal size of a $\oplus-$ DT for f (minimal number of leaves).

PARITY DECISION TREES (\oplus-DT)

A function f computed by a parity decision tree of size s has $\|\hat{f}\|_{1} \leq s$.

This inequality can be quite loose (e.g. $f=$ AND:
$\|\hat{f}\|_{1} \leq 3, \operatorname{size}_{\oplus}(f)=\Omega(n)$.

PARITY DECISION TREES (\oplus-DT)

Theorem: If f is a boolean function with $\|\hat{f}\|_{1} \leq M$ then $\operatorname{size}_{\oplus}(f) \leq n^{M^{2}}$ 。

Key Lemma: Can find a hyperplane such that the restriction of f to it has significantly smaller spectral norm.

KEY LEMMA

$\|\hat{f}\|_{1}=M>1, \hat{f}(\alpha), \hat{f}(\beta)$ two largest coefficients.
$\left.f\right|_{\chi_{\alpha+\beta}=z}:=$ restriction of f to $\left\{x \mid \chi_{\alpha+\beta}(x)=z\right\}$.
Then:

$$
\begin{gathered}
\left\|\left.f\right|_{\chi_{\alpha+\beta}=1}\right\|_{1} \leq M-|\hat{f}(\alpha)| \leq M-1 / M \\
\left\|\left.f\right|_{\chi_{\alpha+\beta}=-1}\right\|_{1} \leq M-|\hat{f}(\beta)|
\end{gathered}
$$

(*or the other way around)

KEY LEMMA

BACK TO PARITY DECISION TREES (\oplus-DT)

Set $L(n, M)=\max _{\|\hat{f}\|_{1} \leq M} \operatorname{size}_{\oplus}(f)$. By Key Lemma:

$$
L(n, M)
$$

$$
\Rightarrow L(n, M) \leq L(n-1, M-1 / M)+L(n-1, m)
$$

Remark: More careful analysis of Key Lemma gives $2^{M^{2}} n^{M}$.

FORMULAS

A formula is a circuit such that every gate has outdegree 1 (the underlying graph is a tree).

FORMULAS

Let $L(f)$ be the size of a minimal De Morgan formula (gates allowed: fan-in 2 AND, OR, NOT) which computes f.

Example: $L(\mathrm{XOR})=O\left(n^{2}\right)$.

FORMULAS

Observation: If $\operatorname{size}_{\oplus}(f)=s$ then $L(f)=O\left(s \cdot n^{2}\right)$. Proof: Induction on s.

$L\left(\chi_{\gamma}\right), L\left(\neg \chi_{\gamma}\right)=O\left(n^{2}\right)$.

$$
\begin{aligned}
& f=\left(\chi_{V} \wedge f_{L}\right) \vee\left(\neg \chi_{V} \wedge f_{R}\right) \\
& \Rightarrow L(f) \leq L\left(f_{L}\right)+L\left(f_{R}\right)+O\left(n^{2}\right) .
\end{aligned}
$$

FORMULAS

Corollary: Functions with small spectral norm not only have small $\mathrm{AC}^{0}[2]$ circuits but also small formulas (of size $O\left(2^{M^{2}} n^{M} \cdot n^{2}\right)$.

Furthermore: formulas, unlike trees, can be balanced.

So f also has a formula of depth $O\left(M \log n+M^{2}\right)$.

SPARSITY OF BOOLEAN FUNCTIONS

The sparsity of $f: \mathbb{Z}_{2}^{n} \rightarrow\{-1,1\}$ is the number of its nonzero Fourier coefficients:

$$
\|\hat{f}\|_{0}=\#\{\alpha \mid \hat{f}(\alpha) \neq 0\} .
$$

For a random function $f,\|\hat{f}\|_{0}=(1-o(1)) 2^{n}$.

SPARSE FUNCTIONS: EXAMPLES

If f is computed by a \oplus-DT of depth d and size s, then $\|f\|_{0} \leq s \cdot 2^{d} \leq 4^{d}$.

Example: "Address function." Input:
$x_{1} \cdots x_{\log n}$

$y_{1} y_{2}$	\cdots	$y_{n-1} y_{n}$

Output: $y_{x_{1} \cdots x_{\log n}}$.
Sparsity: n^{2}.

SPARSE FUNCTIONS

Conjecture ([Zhang-Shi10],[Montanaro-Osborne09]): $\exists c>0$ such that for every boolean function f,

$$
D^{\oplus}(f) \leq\left(\log \|\hat{f}\|_{0}\right)^{c}
$$

COMMUNICATION COMPLEXITY

Alice has $x \in\{0,1\}^{n}$

Bob has $y \in\{0,1\}^{n}$ Want to compute $F(x, y)$.
$C^{\operatorname{det}}(F)=$ minimal number of bits needed to communicate in order to compute F deterministically.

COMMUNICATION COMPLEXITY

Observation: A parity decision tree of depth d for $F \Rightarrow$ a protocol with at most $2 d$ bits of communication.

COMMUNICATION COMPLEXITY:LOG-RANK CONJECTURE

Associate with every function F a real $2^{n} \times 2^{n}$ matrix M_{F} such that $M_{F}(x, y)=F(x, y)$.

Fact [Mehlhorn-Schmidt82]: $\mathrm{CC}^{\operatorname{det}}(F) \geq \log \operatorname{rank}\left(M_{F}\right)$.

Log-Rank Conjecture [Lovász-Saks88]: $\exists c$ such that $\mathrm{CC}^{\operatorname{det}}(F) \leq\left(\log \operatorname{rank}\left(M_{F}\right)\right)^{c}$.

COMMUNCCATON COMPLEXITY: SPARSTTY

Suppose now $F(x, y)=f(x \oplus y)$, for $f: \mathbb{Z}_{2}^{n} \rightarrow\{-1,1\}$. (Such functions are referred to as "XOR functions.")

The eigenvectors of M_{F} are the Fourier characters, and the eigenvalues are (up to normalization) the Fourier coefficients of f.
So $\operatorname{rank}\left(M_{F}\right)=\|\hat{f}\|_{0}$.

SPARSE FUNCTIONS AND \oplus-DTs

If follows that if

$$
D^{\oplus}(f)=\operatorname{poly} \log \|\hat{f}\|_{0}
$$

Then the log-rank conjecture holds for XOR functions.

Best separation known:
a function f such that $D^{\oplus}(f)=\Omega\left(\log \|\hat{f}\|_{0}^{1.63 \ldots}\right)$
[Nisan-Szegedy92, Nisan-Wigderson95, Kushilevitz94]

SPARSE FUNCTIONS: WHAT IT TAKES

When we look at f restricted to $\left\{x \mid \chi_{\alpha}(x)= \pm 1\right\}$:
BEFORE

after

$$
\hat{f}\left(\beta_{1}\right) \pm \hat{f}\left(\beta_{1}+\alpha\right)
$$

$$
\hat{f}\left(\beta_{2}\right) \pm \hat{f}\left(\beta_{2}+\alpha\right)
$$

We want to find α with many pairs $\hat{f}(\beta), \hat{f}(\beta+\alpha)$ in the support of \hat{f}.

SPARSE FUNCTIONS WITH SMALL SPECTRAL NORM

What is f has $\|\hat{f}\|_{1} \leq M$ and $\|\hat{f}\|_{0}=s$?

Theorem: $D^{\oplus}(f) \leq M^{2} \log s$
([Tsang-Wong-Xie-Zhang13]: $M \log s$).

SPARSE FUNCTIONS WITH SMALL SPECTRAL NORM

Proof:
Recall Key Lemma: Can find restriction with reduces the spectral norm by $M-1 / M$.

Apply Key Lemma M^{2} times to obtain:
Theorem: For all f, \exists affine subspace V of co-dimension $\leq M^{2}$ such that $\left.f\right|_{V}$ is constant.

There exists M^{2} linear functions $\chi_{\alpha_{1}}, \ldots, \chi_{\alpha_{M^{2}}}$ which can be fixed in a way which makes f constant. Consider the tree:

Because $\left.f\right|_{\left\{\chi_{\alpha_{i}}=b_{i}\right\}}$ is constant, for any non-zero $\hat{f}(\beta)$ there is a non-zero $\hat{f}(\beta+\gamma)$ with $\gamma \in \operatorname{span}\left\{\alpha_{i}\right\}$.

Hence: $\hat{f}(\beta)$ and $\hat{f}(\beta+\gamma)$ collapse to the same coefficient under any settings of the $\chi_{\alpha_{i}}$'s:

$$
\left\|\left.f\right|_{\left\{\chi_{\left.\alpha_{i}=b_{i}^{\prime}\right\}}\right.}\right\|_{0} \leq\|\hat{f}\|_{0} / 2
$$

Iterate at most $\log \|\hat{f}\|_{0}$ steps.

The same argument shows that in order to prove $D^{\oplus}(f)=$ poly $\log \|\hat{f}\|_{0}$, it's enough to prove:

Conjecture: For every boolean function f there is a subspace of co-dimension poly $\log \|\hat{f}\|_{0}$ on which f is constant.
(since the reverse implication is immediate, this conjecture is in fact equivalent)

SUMMARY

Functions with small spectral norm have:

- Small circuits
- Small formulas
- Small \oplus-DTs
- (They also have small randomized [Grolmusz97] and deterministic [Gavinsky-Lovett13] communication complexity)

Sparse Functions:

- Open problem

